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MOTIVATING QUESTIONS

1. How do we characterize quantum computational speedup?

2. What can we do with NISQ (Noisy Intermediate-Scale Quantum) devices?
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MOTIVATING QUESTIONS

1. How do we characterize quantum computational speedup?
» One route - Measurement-Based Quantum Computing

2. What can we do with NISQ (Noisy Intermediate-Scale Quantum) devices?
» Fun playground for physicists!

Image Credit: Quanta Magazine
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1D RESOURCE STATES - DEFINING COMPUTATIONAL ORDER

Ability to perform arbitrary single qubit unitaries (rotations) with high fidelity.




1D RESOURCE STATES - 2 EXAMPLES AND INTERPOLATION

Universal Resource: Cluster State |C) Useless Resource: Product State |+)%"
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Universal Resource: Cluster State |C) Useless Resource: Product State |+)%"

oO—0O—C0O—-—0 O O O O
Ground state of Ground state of
Hpuster = — Zz ZileiZiJrl Hproduct = - Zz Xi

Computational order of ground states |¥(«)) of:

H(Od) = — COS(O&) Z ZileiZiJrl — sin(a) Z Xz

7 7




1D RESOURCE STATES - SPT PHASES & DECOHERENCE

Answer (for infinite systems):

Zo X Zsg Cluster phase Trivial phase
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m Computational power is uniform in symmetry-protected topological (SPT) phases.
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Answer (for infinite systems):

Zo X Zsg Cluster phase Trivial phase
1C) l+) ¥ ()
0 /4 /2 @

m Computational power is uniform in symmetry-protected topological (SPT) phases.

symmetric FDLU
C) < X > [+)
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1D RESOURCE STATES - STRING ORDER & DECOHERENCE

m Logical decoherence away from the cluster state!

m Desired (logical) rotation exp(—i%P) becomes a probabilistic channel:

5t ()] 5 (20

with v is the computational order parameter.

m Equivalent to o the string order parameter.
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(T 9-)-CI-I-)- D))+

m Error is O(3%) - m subdivisions reduces error:
€tot = T * Esingle ~ 110 - (

m Infinite case: Split as far apart (A > () and as much as needed = computational phases.
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1D RESOURCE STATES - DECOHERENCE MANAGEMENT |1

m Finite case: Tradeoff of rotation splitting and independence.




1D RESOURCE STATES - DECOHERENCE MANAGEMENT |1

m Finite case: Tradeoff of rotation splitting and independence.

m Optimal strategy: Splitting wins!




PrRoOPOSED EXPERIMENTS

1. Computational order = String order
2. Decoherence management | - Divide and conquer

3. Decoherence management Il - The counterintuitive regime
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EXPERIMENT 0 - GROUND STATE ANSTATZ

Recall H(a):

H(Oé) = = COS(O() Z Zi—lXiZi—l—l - sin(a) Z )(7

% %

We consider the following variational ansatz:

N-—1 N-1
T;(60) |C) = (X) (cos(6)I; + sin(6)X;) |C)
1=2 1=2

For a given value of a, find |1)(#)) which minimizes:

N N
((0) H() [¢(6)) = —cos(a) > (Ki = Zi1XiZit1)p — sin(e) Y (X;)
i=1 i=1




EXPERIMENT 0 - STATE PREPARATION (RESULTS)

Expectation Values for VQE Ansatz Observables
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EXPERIMENT 0 - STATE PREPARATION (RESULTS)

Optimal VQE parameter 6in VS. a
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(from V): (X) 4 = cos(8), (V)4 = vsin(5) = gcii
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EXPERIMENT 1 - HOW TO MEASURE COMPUTATIONAL AND STRING ORDER

|+) . B
O OO

o=(Z3 X4 Zs)

<l

(from V): (X)4 = cos(B), (Y4 = vsin(8) = W _ vtan(f3)

(X)+
v from MBQC, o (for free) from VQE!




EXPERIMENT 1 - COMPUTATIONAL ORDER = STRING ORDER (RESULTS)

Ratio of Logical Paulis vs. Logical Rotation Angle
for varied interpolation a
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EXPERIMENT 1 - COMPUTATIONAL ORDER = STRING ORDER (RESULTS)

Order Parameters vs. Interpolation value a

1.0 A —— Theory
X COP measurement
¢ SOP measurement
0.8 A
@
@ 0.6
go.
o
©
o
T 0.4
go.
_
o
0.2
0.0 A

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Interpolation a



EXPERIMENT 2 - HOW TO MEASURE DIVIDE AND CONQUER

+)

LB
CO-CHT OO0 (0-(0-)




EXPERIMENT 2 - HOW TO MEASURE DIVIDE AND CONQUER

+)

LB
CO-CHT OO0 (0-(0-)

m Measure loss in purity LOP(3) = 1 — (X(8))? — (Y())? in the three cases.



EXPERIMENT 2 - HOW TO MEASURE DIVIDE AND CONQUER

+)

LB
CO-CHT OO0 (0-(0-)

m Measure loss in purity LOP(3) = 1 — (X(8))? — (Y())? in the three cases.
m For small angles j3, verify LOP ~ % (from V).



EXPERIMENT 2 - DIVIDE AND CONQUER (RESULTS)

Loss in purity vs. Rotation angle for a = /3 (variational) ground state
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EXPERIMENT 2 - DIVIDE AND CONQUER (RESULTS)

Small-angle curvature of purity vs. inverse splitting of logical rotation

—— Theory
0.5 - X Experiment
g —-—- Linear fit
2 X
g 0.4 A
]
(]
Q 0.3 A
—
3
o
< 0.2
wn
%)
So14
0.0 A
1/100 1/10 1/4 1/3 1/2 1/1

(Number of splittings)~*



EXPERIMENT 3 - RESOURCE STATE

m VQE ansatz [¢(0)) has no length scale!




EXPERIMENT 3 - RESOURCE STATE

m VQE ansatz [¢)(6)) has no length scale!

m Instead, we consider:

N-3

() = H RX X i+2(4)[C)

1=2




EXPERIMENT 3 - HOW TO MEASURE THE COUNTERINTUITIVE REGIME

m Measure loss in purity LOP(3) = 1 — (X (B))? — (Y())? in the three cases.




EXPERIMENT 3 - THE COUNTERINTUTIVE REGIME (RESULTS)

Experimental loss in purity vs. Logical rotation angle 8
cluster state with ¢ =7 NNN-XX rotation
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CONCLUSIONS

1. Have demonstrated COP = SOP
2. Have demonstrated 1/m scaling of decoherence with m-splitting of rotations
3. Counterintuitive regime: Experimental data is suggestive, but inconclusive.

Outlook: How do we get more out of these devices?
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ExPERIMENT 0 - VQE FOR GROUND STATE
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ExPERIMENT 0 - VQE FOR GROUND STATE

0 __O__E_I _______ \ Zi-1 Algorithm for finding (X5), / (K;):

im —4 Tu 1. Prepare the cluster state |Cy).

b ’ 2. Probabilistically implement (non-unitary)
I+ o—~] X; T;(0) = cos(0)I; + sin(f)X; on each site.

_____________________ \ 3. Measure X; or K; = Z; 1X;Z; 11 on the

1 4 0 1

"i> ________ U_()_- prepared state to obtain (X;), / (K;),.
I+) . & EI Zi+1| Then, various tricks with symmetry,

‘ J . half-teleportation, translation invariance...
+) —=— U0



ExPERIMENT 0 - VQE SIMPLIFICATIONS
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ExPERIMENT 0 - VQE SIMPLIFICATIONS
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