EFFICIENT REGIMES OF MEASUREMENT-BASED QUANTUM COMPUTATION ON A SUPERCONDUCT-ING PROCESSOR

EQUIPTNT Workshop, 7.10.2025

Rio Weil, Arnab Adhikary, Dmytro Bondarenko, Robert Raussendorf

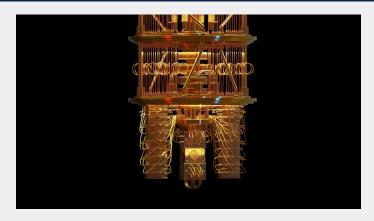
FEATURING...

- Measurement-based quantum computation in finite one-dimensional systems: string order implies computational power, R. Raussendorf, W. Yang & A. Adhikary, Quantum 7, 1215 (2023)
- Counterintuitive Yet Efficient Regimes for Measurement-Based Quantum Computation on Symmetry-Protected Spin Chains, A. Adhikary, W. Yang, R. Raussendorf, Phys. Rev. Lett. 133, 160601 (2024)
- My MSc thesis + arXiv (soon...)

MOTIVATING QUESTIONS

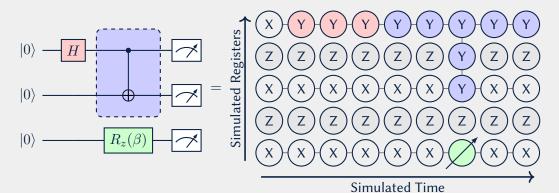
- 1. How do we characterize quantum computational speedup?
- 2. What can we do with NISQ (Noisy Intermediate-Scale Quantum) devices?

MOTIVATING QUESTIONS



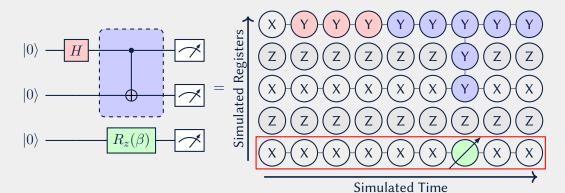
- 1. How do we characterize quantum computational speedup?
 - ► One route Measurement-Based Quantum Computing
- 2. What can we do with NISQ (Noisy Intermediate-Scale Quantum) devices?
 - ► Fun playground for physicists!

A One-Slide Review of MBQC



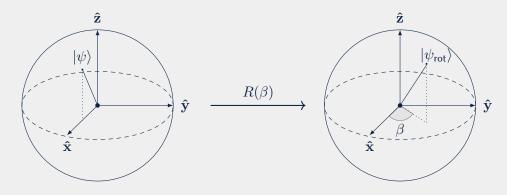
	Circuit Model	MBQC
Initialization	$ 00\dots0\rangle$	(Universal) resource state
Evolution	Unitary Gates	(Adaptive) single-qubit measurements

A One-Slide Review of MBQC



	Circuit Model	MBQC
Initialization	$ 00\dots0\rangle$	(Universal) resource state
Evolution	Unitary Gates	(Adaptive) single-qubit measurements

1D Resource States - Defining Computational Order



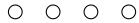
Ability to perform arbitrary single qubit unitaries (rotations) with high fidelity.

1D Resource States - 2 Examples and Interpolation

Universal Resource: Cluster State $|C\rangle$

Ground state of $H_{\text{cluster}} = -\sum_{i} Z_{i-1} X_{i} Z_{i+1}$

Useless Resource: Product State $\ket{+}^{\otimes N}$



Ground state of $H_{\text{product}} = -\sum_{i} X_{i}$

1D Resource States - 2 Examples and Interpolation

Universal Resource: Cluster State $|C\rangle$

Ground state of $H_{\text{cluster}} = -\sum_{i} Z_{i-1} X_{i} Z_{i+1}$

Useless Resource: Product State $\ket{+}^{\otimes N}$

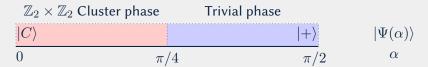
Ground state of $H_{\text{product}} = -\sum_{i} X_{i}$

Computational order of ground states $|\Psi(\alpha)\rangle$ of:

$$H(\alpha) = -\cos(\alpha) \sum_{i} Z_{i-1} X_i Z_{i+1} - \sin(\alpha) \sum_{i} X_i$$

1D Resource States - SPT Phases & Decoherence

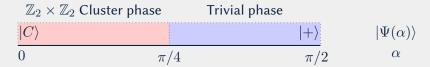
Answer (for infinite systems):



■ Computational power is uniform in symmetry-protected topological (SPT) phases.

1D Resource States - SPT Phases & Decoherence

Answer (for infinite systems):



■ Computational power is uniform in symmetry-protected topological (SPT) phases.

1D Resource States - String Order & Decoherence

■ Logical decoherence away from the cluster state!

1D Resource States - String Order & Decoherence

- Logical decoherence away from the cluster state!
- Desired (logical) rotation $\exp\left(-i\frac{\beta}{2}P\right)$ becomes a probabilistic channel:

$$\mathcal{V} = \frac{1+\nu}{2} \left[\exp\left(-i\frac{\beta}{2}P\right) \right] + \frac{1-\nu}{2} \left[\exp\left(i\frac{\beta}{2}P\right) \right]$$

with $\boldsymbol{\nu}$ is the computational order parameter.

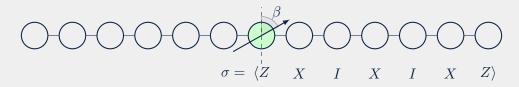
1D Resource States - String Order & Decoherence

- Logical decoherence away from the cluster state!
- Desired (logical) rotation $\exp\left(-i\frac{\beta}{2}P\right)$ becomes a probabilistic channel:

$$\mathcal{V} = \frac{1+\nu}{2} \left[\exp\left(-i\frac{\beta}{2}P\right) \right] + \frac{1-\nu}{2} \left[\exp\left(i\frac{\beta}{2}P\right) \right]$$

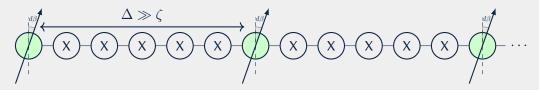
with ν is the computational order parameter.

\blacksquare Equivalent to σ the *string order parameter*.



1D Resource States - Decoherence Management I

VS.

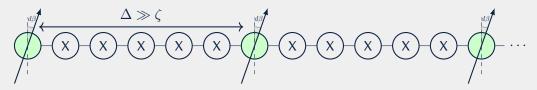


■ Error is $O(\beta^2)$ - m subdivisions reduces error:

$$\epsilon_{\mathrm{tot}} = m \cdot \epsilon_{\mathrm{single}} \sim m \cdot \left(\frac{\beta}{m}\right)^2 = \frac{\beta^2}{m}$$

1D Resource States - Decoherence Management I

VS.



■ Error is $O(\beta^2)$ - m subdivisions reduces error:

$$\epsilon_{\mathsf{tot}} = m \cdot \epsilon_{\mathsf{single}} \sim m \cdot \left(\frac{\beta}{m}\right)^2 = \frac{\beta^2}{m}$$

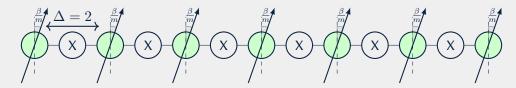
■ Infinite case: Split as far apart ($\Delta \gg \zeta$) and as much as needed \Rightarrow computational phases.

1D Resource States - Decoherence Management II

■ Finite case: Tradeoff of rotation splitting and independence.

1D Resource States - Decoherence Management II

■ Finite case: Tradeoff of rotation splitting and independence.



■ Optimal strategy: Splitting wins!

Proposed Experiments

- 1. Computational order = String order
- 2. Decoherence management I Divide and conquer
- 3. Decoherence management $\ensuremath{\mathsf{II}}$ The counterintuitive regime

EXPERIMENT 0 - GROUND STATE ANSTATZ

Recall $H(\alpha)$:

$$H(\alpha) = -\cos(\alpha) \sum_{i} Z_{i-1} X_i Z_{i+1} - \sin(\alpha) \sum_{i} X_i$$

EXPERIMENT 0 - GROUND STATE ANSTATZ

Recall $H(\alpha)$:

$$H(\alpha) = -\cos(\alpha) \sum_{i} Z_{i-1} X_i Z_{i+1} - \sin(\alpha) \sum_{i} X_i$$

We consider the following variational ansatz:

$$|\psi(\theta)\rangle = \bigotimes_{i=2}^{N-1} T_i(\theta) |\mathcal{C}\rangle = \bigotimes_{i=2}^{N-1} (\cos(\theta)I_i + \sin(\theta)X_i) |\mathcal{C}\rangle$$

EXPERIMENT 0 - GROUND STATE ANSTATZ

Recall $H(\alpha)$:

$$H(\alpha) = -\cos(\alpha) \sum_{i} Z_{i-1} X_i Z_{i+1} - \sin(\alpha) \sum_{i} X_i$$

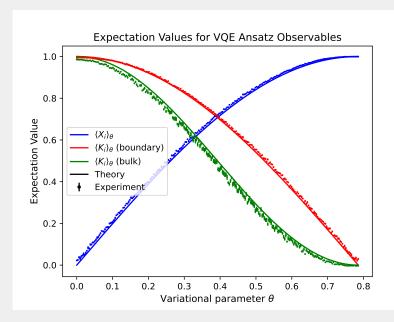
We consider the following variational ansatz:

$$|\psi(\theta)\rangle = \bigotimes_{i=2}^{N-1} T_i(\theta) |\mathcal{C}\rangle = \bigotimes_{i=2}^{N-1} (\cos(\theta)I_i + \sin(\theta)X_i) |\mathcal{C}\rangle$$

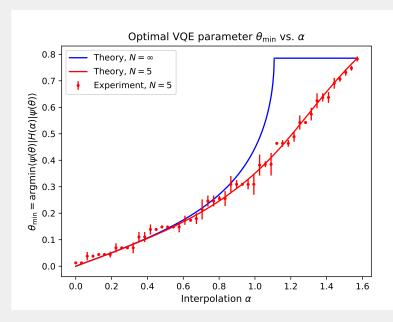
For a given value of α , find $|\psi(\theta)\rangle$ which minimizes:

$$\langle \psi(\theta) | H(\alpha) | \psi(\theta) \rangle = -\cos(\alpha) \sum_{i=1}^{N} \langle K_i = Z_{i-1} X_i Z_{i+1} \rangle_{\theta} - \sin(\alpha) \sum_{i=1}^{N} \langle X_i \rangle_{\theta}$$

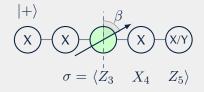
Experiment 0 - State Preparation (Results)



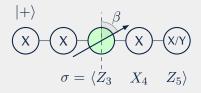
EXPERIMENT 0 - STATE PREPARATION (RESULTS)



EXPERIMENT 1 - HOW TO MEASURE COMPUTATIONAL AND STRING ORDER

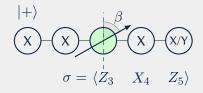


Experiment 1 - How to measure computational and string order



(from
$$\mathcal{V}$$
): $\langle \overline{X} \rangle_+ = \cos(\beta), \langle \overline{Y} \rangle_+ = \nu \sin(\beta) \implies \frac{\langle \overline{Y} \rangle_+}{\langle \overline{X} \rangle_+} = \nu \tan(\beta)$

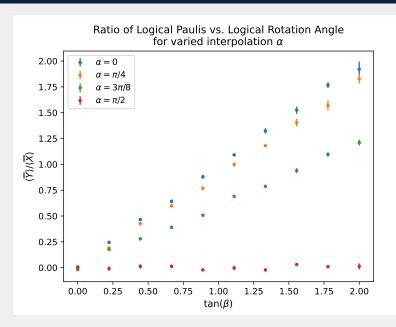
EXPERIMENT 1 - How to measure computational and string order



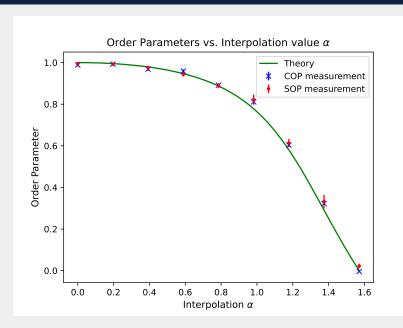
(from
$$\mathcal{V}$$
): $\langle \overline{X} \rangle_+ = \cos(\beta), \langle \overline{Y} \rangle_+ = \nu \sin(\beta) \implies \frac{\langle \overline{Y} \rangle_+}{\langle \overline{X} \rangle_+} = \nu \tan(\beta)$

 ν from MBQC, σ (for free) from VQE!

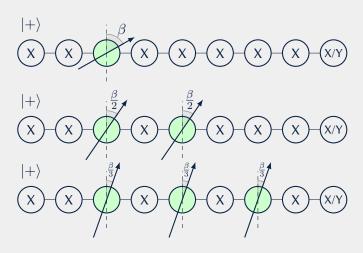
Experiment 1 - Computational order = String order (Results)



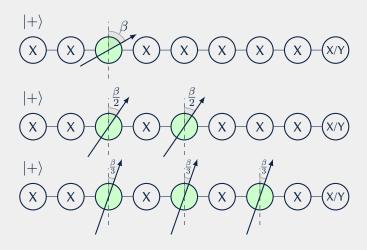
EXPERIMENT 1 - COMPUTATIONAL ORDER = STRING ORDER (RESULTS)



EXPERIMENT 2 - How to measure divide and conquer

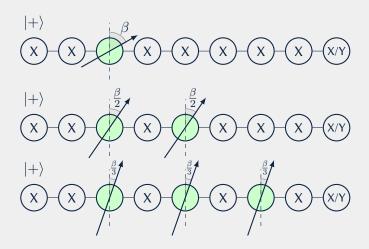


EXPERIMENT 2 - How to measure divide and conquer



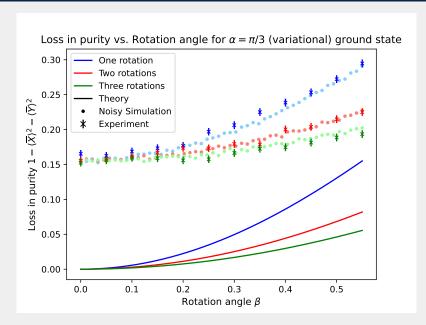
■ Measure loss in purity $LOP(\beta) = 1 - \langle \overline{X}(\beta) \rangle^2 - \langle \overline{Y}(\beta) \rangle^2$ in the three cases.

EXPERIMENT 2 - How to MEASURE DIVIDE AND CONQUER

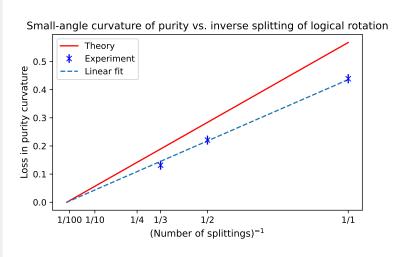


- Measure loss in purity LOP(β) = $1 \langle \overline{X}(\beta) \rangle^2 \langle \overline{Y}(\beta) \rangle^2$ in the three cases.
- For small angles β , verify LOP $\sim \frac{1}{m}$ (from \mathcal{V}).

Experiment 2 - Divide and conquer (Results)



Experiment 2 - Divide and conquer (Results)



Experiment 3 - Resource state

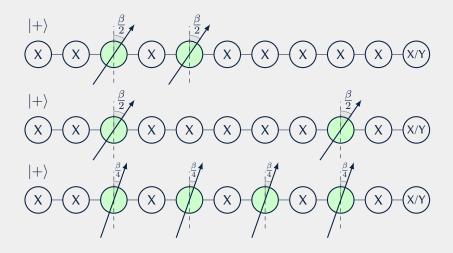
 \blacksquare VQE ansatz $|\psi(\theta)\rangle$ has no length scale!

EXPERIMENT 3 - RESOURCE STATE

- VQE ansatz $|\psi(\theta)\rangle$ has no length scale!
- Instead, we consider:

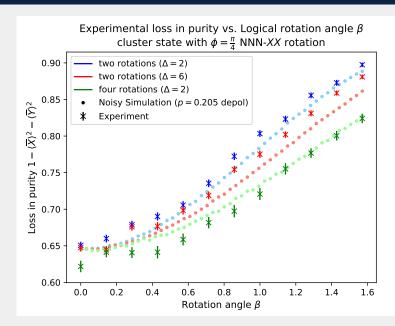
$$|\Omega(\phi)\rangle = \prod_{i=2}^{N-3} RXX_{i,i+2}(\phi) |\mathcal{C}\rangle$$

EXPERIMENT 3 - How to measure the counterintuitive regime



■ Measure loss in purity LOP(β) = $1 - \langle \overline{X}(\beta) \rangle^2 - \langle \overline{Y}(\beta) \rangle^2$ in the three cases.

EXPERIMENT 3 - THE COUNTERINTUTIVE REGIME (RESULTS)



1. Have demonstrated COP = SOP

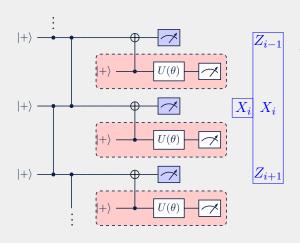
- 1. Have demonstrated COP = SOP
- 2. Have demonstrated 1/m scaling of decoherence with m-splitting of rotations

- 1. Have demonstrated COP = SOP
- 2. Have demonstrated 1/m scaling of decoherence with m-splitting of rotations
- 3. Counterintuitive regime: Experimental data is suggestive, but inconclusive.

- 1. Have demonstrated COP = SOP
- 2. Have demonstrated 1/m scaling of decoherence with m-splitting of rotations
- 3. Counterintuitive regime: Experimental data is suggestive, but inconclusive.

Outlook: How do we get more out of these devices?

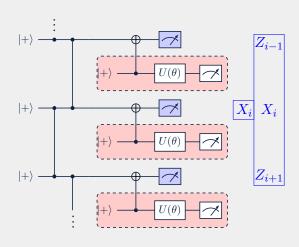
EXPERIMENT 0 - VQE FOR GROUND STATE



Algorithm for finding $\langle X_i \rangle_{\theta} / \langle K_i \rangle_{\theta}$:

- 1. Prepare the cluster state $|\mathcal{C}_N\rangle$.
- 2. Probabilistically implement (non-unitary) $T_i(\theta) = \cos(\theta)I_i + \sin(\theta)X_i$ on each site.
- 3. Measure X_i or $K_i = Z_{i-1}X_iZ_{i+1}$ on the prepared state to obtain $\langle X_i \rangle_{\theta} / \langle K_i \rangle_{\theta}$.

Experiment 0 - VQE for Ground State

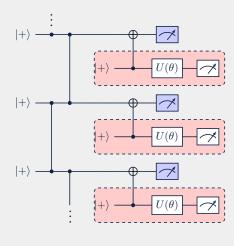


Algorithm for finding $\langle X_i \rangle_{\theta} / \langle K_i \rangle_{\theta}$:

- 1. Prepare the cluster state $|\mathcal{C}_N\rangle$.
- 2. Probabilistically implement (non-unitary) $T_i(\theta) = \cos(\theta)I_i + \sin(\theta)X_i$ on each site.
- 3. Measure X_i or $K_i = Z_{i-1}X_iZ_{i+1}$ on the prepared state to obtain $\langle X_i \rangle_{\theta} / \langle K_i \rangle_{\theta}$.

Then, various tricks with symmetry, half-teleportation, translation invariance...

EXPERIMENT 0 - VQE SIMPLIFICATIONS



EXPERIMENT 0 - VQE SIMPLIFICATIONS

