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Introduction:

Lecture notes for the physics of qLDPC codes I gave at group meeting, Frankenstein’ed together from
results in recent literature + presentations given by Michael Vasmer, Vedika Khemani, and Chao Yin.
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1 Motivation

Definition: LDPC Codes

A family of stabilizer QECCs {Q;} is LDPC if for every Q;, there exists a generating set S; such
that:

1. Vs € S; then Wt(s) < r for some constant r (the stabilizers have bounded weight)

2. Vg € [ni], |{s € Si : q € supp(s) }| < ¢ for some constant ¢ (qubit degree - each qubit should
only be in the support of a constant number of checks).

Useful because they allow for fault-tolerant constructions (bounded stabilizer weight and qubit degree
allow for errors to not propagate). Prototypical examples: The Ising model/repetition code in the classical
case (where the stabilizers are just Z-checks and the qubits are bits) with [n,k,d] = [n,1,n] and in the
quantum case the surface codes with [[n, k,d|| = [[n,0(1),®(y/n)]].

But the search for “good” codes with k,d = ®(n) is harder, and limited by locality; the classi-
cal/quantum BPT bound 0909.5200 :

kd'/P < cn  (classical) (1.1)
kd?/ (P=1) < en (quantum) (1.2)

tells us that finite-D Euclidean models cannot correspond to good codes. Indeed, the Ising model and
surface code saturate these bounds, even though their encoding rate is zero. Indeed, the limiting factor
appears to be the surface area/volume ratio:

Proof sketch. Consider a 2D Euclidean space (can be D-dimensional, but easier to draw):


https://arxiv.org/abs/0909.5200
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Then, |B| = IP ~ d < d. If two ground states agree on A, they must agree everywhere. Now, consider
two B boxes:

=] A
[B.]

Since the checks are geometrically local, they overlap with at most one B; block. Even though the size
of the two Bs together may be larger than d, since they do not overlap, it is still the case that if the ground
states agree on A \ By \ B, that they agree everywhere. Now, we can tile the entire system with B blocks.
We then observe that:

k1Al
kil .
n- n (1.3)
because we can only choose things independently in A to specify the codewords. But the size of A here is
|f§i_‘ , and thus:
k1Al loB| 1 1
o< ~ =~ . 14
n- on |Bl; 1 4D 14
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This motivates us to think about non-locality (exactly “how much” locality in the sense of what kind
of long-range interactions do you need at minimum appears to be explored in 2409.15203). In particular
gives a natural motivation to consider codes on expander graphs, where the surface-to-volume ratio goes
to 1; hence we can circumvent above bounds that rely on geometric locality of checks (which we replace
with a notion of graph locality /density). In the classical setting, this was done quite a while ago:

* (1960s Gallager) probabilistic construction, (¢, b) regular random bipartite graph as the tanner graph
yields asymptotically good code.

® (1990s Sipser-Spielman) consider Tanner codes, specified by a sufficiently expandering unerlying
graph of fixed degree and a good “local code” on every vertex of the code. Good graph expansion
quantified by the Cheeger constant. Defined on graph G(V,E) as:

h(G)_min{||aSS||:SCV,|S|<Z} (1.5)

where dS € E are the set of edges connecting S to its complement. We can also consider the spectral
expansion: eigenvalues of the adjacency matrix:

S:/\lz/\QZ)\g,... (16)
A large spectral gap is characterized by a better expansion:

A1 — Az < 20(G) (1.7)


https://arxiv.org/abs/2409.15203

Much more recently, work in developing good qLDPC codes, e.g. 2111.03654 and 2202.13641 asymp-
totically, as well as 2308.07915 (IBM) for targeting actual realization

Seems a bit theoretical /unrealistic, but experiments with synthetic/designed quantum systems can
indeed realize:

* Systems where you can shuttle different components (neutral atoms, trapped ions)
¢ QED on hyperbolic lattices
* Optical cavities with all-to-all interactions

¢ IBM staking their entire quantum future on the ability to do long-range interactions with low noise,
because their roadmap is based on an instance of a bivariate bicycle code: [[144,12,12]] “Gross” code
(toric code + additional nonlocal connections) 2308.07915, 2506.03094

Ok lots of background - motivates some questions on the physics side:
1. Can we understand the construction of LDPC codes from a more physical perspective?

2. Local codes have been amenable to study as stable phases of error-correcting matter (e.g. the toric
code) - do analogous results hold in k-local settings?

3. What exotic physical properties do good LDPC/qLDPC codes possess?

2 Physical picture of LDPC constructions

Based on the two-part paper by Vedika/Tibor, given in: 2310.16032, 2402.16831.

General upshot of the work is a physical “code factory” where one inputs in graphs, defines classical
codes on those graphs, then takes products (of various types) on these graphs, then can perform physical
operations (e.g. “modding out” symmetries, gauging, or higgsing) to get quantum codes and models of
various types.

A prominent example; in the CS literature, a very common construction for quantum codes is the “hy-
pergraph product code.” Usually, it is formulated coding-theoretically in terms of parity check matrices.
But with our physical code factory, we can now interpret it as taking the tensor product of two codes
C4,Cp to form C4 ® Cp, and then gauging it to get a CSS code, with X/Z codes given by:

Cx =(Ca@C)T, Cz=(CiachT (2.1)
dx = min{da,ds}, dz =min {dl;,d%;} 2.2)

and overall rate:
ko = kakh + kL kp (2.3)

Hypergraph product code

%A\
ot

€p

® _>%A®%B_>?_>%CSS

Let’s go through the simplest possible example of this to see how this factory works.
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2.1 Ising model as a classical code/chain complex

First - characterization of Ising model in terms of Chain complexes.
Bits define an n-dim vector space Vy = FF4. There is a basis vector for each bit {|i) }i' and each vector

b = (010100...b,)T picks out a subset of bits.

Checks define an m-dimensional vector space V; = ]ng There is a basis vector for each check {|a> }u,
and each vector |c) = (01110...c,)T identifies a subset of checks. The map 9; : F3' — FJ is the transpose
of the parity check matrix, and what it does is d1|c) = |b) where |b) is the subset of bits in the support of
the checks |c). The transpose map 9] : Fj — IF4" (which is just the parity check matrix) does the opposite,
mapping from bits to checks 9] [b) = |c), where |c) are the subset of bits triggered by the bits |b), i.e. the
syndrome.

If we look at the 1-D Ising model, we have bits on 0-cells (sites) and checks on 1-cells (edges). We can
consider the boundary map d;:

0—0—O0==0—0—0— ', 000000 —
1 11
al
OO OmeeQeeeO)—O— by OO0 00O —
(I T 1 1 1 1
01
OmmOmm OO Ore G L, O—O0—0—0—0—0—

The redundancy is a collection of checks which does not act on any bit (here the product of all checks).
ker(d1) defines a basis for the vector space of redundancies.
We can also consider the transpose map 97:

@T
O O===QmeeO—O—O—— — oO—0—0—0—0—0—
1 1 1
o oo o o 0 o0 —
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The symmetry of the model is a collection of (flipped) bits which does not trigger any checks. ker(97)
defines a basis for the vector space of symmetries.

We can now observe that this transformation is nothing more than a Kramers-Wannier duality! An
excitation in the original code becomes a degree of freedom in the transpose code, once we swap the bit
and the checks.

o Ukw 14
—O8- 080808 0— i 20, 0, 205 00 g

a i a j
C cT

m checks (6): C, = 07,07 m bits 77

n bits o n checks (6T) A; = TaTo1
Symmetry [T; o7 Redundancy []; A; =1
Redundancy [1,C, =1 Symmetry []; 77



Note that to define the unitary between the two subspaces, we have to work in the symetric subspace.
Then:
dim(HI™) = 2nF = 2k — dim(HY™) (2.4)

Gauging generally is exactly this - we want to turn symmetry defects (e.g. domain walls) into dy-
namical degrees of freedom. Another way to think about it is to “make global symmetries local”. As
we discussed, we can use the transpose ¢ <+ ¢! to get a new model with the bits and checks swapped.
The KW unitary Ugw maps between the symmetric subspaces of H, HT. The last step to get a full gauge
theory in terms of the gauge degrees of freedom is to remove this constraint to map between symmetric
subspaces.

Note that for the 1D Ising model, this prescription does not yield a non-trivial gauge theory (it just
gives us the 1D Ising model back, with | <+ h swapped). Thus we need something extra to get a non-trivial
gauge theory out; in particular, we require the degrees of freedom to be extended, rather than point like
(loop-like in the simplest case).

2.2 Taking a product to get the 2D Ising model

We consider the simplest product construction, the tensor product; we can use this to construct a 2D
system out of two 1D systems, e.g. building up the 2D Ising model out of 2 copies of the 1D Ising model.

X 0—0—0=0——0

o0—0—10—490
0—0—0—490

The tensor product creates local redundancies, increasing the dimension of the chain complex by one
D. — D, +1.

We now have a chain complex of dimension 2 - As in our 2D Ising model, we can add to our chain
complex a V, vector space corresponding to local (few-body, not necessarily geometrically) reduncies of
checks.

‘plaquettes”  “edges” “vertices”
V2 v v,
{/\\\ 52 | O 51 [\
b @ bits
local* )
redundancies checks bits B checks _
‘ A redundancies



Then:
010, =0 (2.5)

and ker(d1) defines a basis for the vector space of redundancies (collections of checks that do not flip any
bits), with:
B =Im(dy) C ker(d1) = C; (2.6)

and ker(J]) defines a basis for the vector space of symmetries (collections of flipped bits which do not
trigger any checks).

In the 2D Ising model, each plaquette corresponds to a local redundancy [[,c, Ca = +1. Thus the
domain walls in the model are loop like. This gives rise to the thermal stability of the Ising model, as well
as the fact that it yields a non-trivial gauge theory upon gauging. In particular, gauging the 2D Ising model
gives us a Zp-gauge theory, which corresponds to the toric code. Pictorially, the uniform superposition
over loop configuration in the ground state of the toric code arises from gauging the loop-like degrees of
freedom in the Ising model.

The beauty of the formalism is that - even though we used the Ising model here as an example - the
formalism only cares about the (boundary) maps and so the gauging procedure applies to LDPC codes
and codes on arbitrary geometries.

2.3 Gauging the 2D Ising model to get the Toric code

When we look at the KW duality for the 2D Ising model, we go from the 2D Ising model C with one
global (Z;) symmetry of the Ising model with many local redundancies to the toric code CT with one
global redundancy (obtained by multiplying out all star operators/checks [], Ay, = I) and many local
symmetries (the B, plaquettes).

Doing the KW duality, we go from the Ising Hamiltonian:

HIsing =—] Z 0'1;0—]'2 - gqu (2'7)
(i) :
where local redundancies = domain walls form closed loops, to the TC Hamiltonian:

Ape =] Y. Zi -1y A% 2.8)
(i) i

where local symmetries being enforced = B} = +1 (no vortex excitation).
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If we want to allow for vortex excitation, we follow the standard minimal coupling prescription:

1. Couple interactions to gauge fields Ufaf — U'ZTZU]‘-Z ® Zjj. This takes the global Ising symmetry and
promotes it to a local symmetry.

2. Add local gauge invariant terms —K}_, By, —h}_ (i) Xij. The latter makes the background gauge
fields dynamical and allows them to fluctuate (lifting the no vortex excitation condition). The former
is needed for the toric code, and comes from the redundancy of the original Ising model. By the
time we take local products, all matter fields/c cancel out, leaving us with just the B),.

(x)

3. Enforce the local Gauss law A; oF =

So, promoting our Hamiltonian to:

H:—Zaf—hZXi]-—]Zafzijaf—ZBp (2.9)
l (i) (i) 4

we get a full gauge theory for Z, matter coupled to Z, gauge fields.

10 Higgs

é phase
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h (magnetic fluct.) @ matter qubits

Fradkin, Shenker: PRD 1979 B gauge qubits

Thus we can understand the toric code as the hypergraph product of two 1D Ising models/repetition
codes. The Z logicals are derived from the global redundancies of the 1D Ising model (and the fact that
they can be deformed arises from multiplying via a check of the 1D Ising model), while the X logicals
are derived from the global symmetries of the 1D Ising model. The deconfined point-like (anyonic /1)
excitations arise from the domain walls of the 1D Ising model.



The input code parameters being [1, 1, 11] enforces that under the HGP we get code parameters [1?,2, n].

2.4 More facets of the factory + good qLDPC codes

* More types of products; tensor products were straightforwards and introduced local redundancies.
Check products or cellular automota products can introduce subsystem symmetries. Cubic products
(check products in 3D/taking in 3 classical codes) can introduce both..

¢ In addition to the “Gauging” map of classical to quantum there is also a “Higgsing” map which
takes the tanner graph of the classical code and associates it with the graph state.

¢ The HGP construction above, if we take two good classical LDPC codes as input, would give k =
©(n) and d ~ /n. One way to boost this is through the so-called “balance product code”, introduced
in 2012.09271 and used to construct good qLDPC and locally testable good LDPC codes in 2111.03654
(remark: every good qLDPC code is a “gauge dual” of a locally testable code). Idea is that the input
codes have enhanced symmetry (permutation of bits that leave the code invariant - obtained from the
Cayley graph of the code). The symmetry is then modded out after taking the product (reducing the
number of bits), which boosts the distance (actually the relative distance d/n by reducing n). This
is depicted below for the case of translation invariance, where the symmetry can be “modded out”
after taking the product, removing bits and making the system quasi-1D with non-local connections.

Balanced product code
Hypergraph product code J

(gﬁ
\‘e_)%zi®%.ﬂ?css""!6 """"""""""" —)gcss

p 6> %, @0 %5 — B

Key point: boost relative distance d/n by reducing n



https://arxiv.org/abs/2012.09271
https://arxiv.org/abs/2111.03654
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Through the work they get quite the zoo of known models related through homology, products, and
gauging/higgsing:

£t ’/f—\ ® /—;\_3

e Surpinakl Honeycomb cluster <—— Newman-Moore < 1D Ising Z—)mcw 20 Plaquette Ising =—> Square cluster /) _
- Y Fractal SPT / Fractal 5B ssB | SPT Subsystem SSB Subsystem SPT
ractal SPT I = ) p
v 4 .
Haah's code < Fractal Ising lnmll = 3Dfractal code  Lieb cluster <— 2D Ising == 2DTC 3D Plaquette Ising = X-cube D,
Type 2 fracton Type *1.5" fracton O-form x 1-form SPT |:'__ Top. Order Subsystem SSB Type 1 fracton
pKW WV
RBH < 3D gauge theory <.~ 3D Ising ==—> (1,2) 3D TC D,
1-form x 1-form SPT '
pKW W
(2.2) 4D TC < 4D gauge theory <~ 4D lsing == (1,3)4D TC D

Thermally stable

where replacing the 1D Ising model at the root of the tree can yield constructions of non-Euclidean
models and phases of matter.

3 qLDPC codes as stable phases of matter
3.1 Stability of Topological Orders

That the toric code has had a stable phase around ithas been known for quite a while; consider perturbed

TC Hamiltonian:
4 p i i
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where we have a phase around the toric code (I - deconfined) with topological order (vs. magnetically
ordered phases (II - confined)/(Ill - Higgs), wherein the fluxes (m)/charges (e)/condense). Even more
generally, it has been known since 2010 (Brayvi/Hastings/Michalakis, 1001.0344, 1001.4363) that topologi-
cal orders are provably stable to local perturbations €} ; V;, involving (a) a gap that does not close between
the ground space and the excited states and (b) exponentially small splitting in the system size between
the ground states.

(b) is easy to see intuitively from the topological order condition. All ground states are locally in-
distinguishable, so to have non-vanishing matrix elements between ground states we require Lth order
perturbation theory, where we find splitting of order e = e~Llog(1/¢),

(a) Seems a little more technical. The proof has not been digested, but the overall sketch:

* Spectral gap is stable to relatively bounded perturbations | Wi|| < b|[Hoy|| for 0 < b < 1 (invoking
Lieb-Robinson).

¢ For Hamiltonians with TO, perturbations that are locally block-diagonal (i.e. all terms in the expan-
sion preserve the ground state subspace) are relatively bounded.

¢ General local perturbations can be shown to be local block diagonal + negligible error.

Beyond my roundhouse, but can allegedly also use QFT arguments' which do not work for general
geometries/relies on geometric locality.

3.2 Stability of qLDPC codes

So - what of this result when we go to a non-local setting?

¢ First stab appears to be from 2405.19412, which follow the Brayvi-Hastings proof but relaxing the
graph structure. They prove stability so long as Jej, €2 > 0 such that the size of balls of radius r
on the interaction graph are upper bounded by T'(r) = O(exp(r'=1)) (c.f. T(r) = O(poly(r)) in
the Euclidean case) and balls of radius O(log(n)'*€2) are locally indistinguishable. Unfortunately
hyperbolic surface code and good LDPC constructions have €; = 0 so falls just short. The problem
appears to be the use of quasiadiabatic evolution, as LR bounds have exponential decay in the
diameter, not the volume of the set, which results in quasipolynomial bounds on energy splitting for
expanders (rather than exponential).

¢ A more physically heuristic argument is given in 2406.15757. 1 haven’t read it in detail, but the
idea seems to be (a la Dennis, Kitaev, Preskill) to associate (general) CSS stabilizer Hamiltonians
with classical stat mech models with quenched disorder. They consider purely hy /h, local magnetic
fields (drawing a correspondence to the stat mech models under pure bit/phase flip noise), and
suggest the use of decodability success as evidence for an ordered phase (in some sense a bit of an
operational definition).

I The stability of the spectral gap “can be understood as a consequence of the fact that there exists a stable quantum field theory
at long wavelengths that gives a well-defined description of the low-energy physics of geometrically local topological systems in the
thermodynamic limit.” 2405.19412
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The full theorem is given in 2411.01002:

Theorem: Stability of good qLDPC codes

Let Hy be a stabilizer Hamiltonian of a [[, k, d]] quantum LDPC code with Q(1) gap, with:
d = Q(logn) (3.2)

and Hj has better than quadratic “check soundness” a < 2. Then, Jeg such that for V with local
strength € < €y, Hy + V still has 2¥ low-energy states, separated by gap > 1/2 from the remainder
of the spectrum. The lowest energy states have small splitting:

SE = ee— @) (3.3)

(if d = n* then this means splitting is exponential) and are connected to the unperturbed ground
states via quasi-local unitary U whose generator has O(€) local strength.
This is known to apply to

1. All known good qLDPC codes with d = ©(n)
2. hypergraph-product expander codes with d = ©(y/n) (Tillich and Zemor 0903.0566)

3. Finite-dimensional codes with local TO.

If” !]{ Y ‘

(1)

where “local strength” for a perturbation V =} g ¢ Vg is:

e=max; y_ ) ||Vssll e~IS| (3.4)

i€S s

where Vs 5 acts on qubit S and has error syndrome s (all terms in Vs ¢ anticommute with the same parity
checks) and ¥ = O(1). Note that this is a requirement that the perturbations decay with the volume, not
the diamater of S.

And a stabilizer code has (d., f) check soundness if stabilizers acting on M < d_ sites is equal to a
product of < f(M) parity checks, where generally we take f(M) = M” and for general qLDPC stability
a < 2. In finite dimensions, any polynomial f(x) is ok for stability (so the construction applies to the toric
code with a = 2 and product of parity checks in a region R acts along dR and the area scales as the square
of the perimeter). For good qLDPC constructions a = 1 so the proof applies.

Full proof is again quite technical, instead just give a sketch. We desire quasi-local U that maps from
original Hamiltonian to the new one:

UYHoU = Hy + Dy, + Vi, (3.5)
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with U quasi-local, Dy,,, Vi, quasi-local, Dy, block diagonal between the old/new codespace, Hy + Dy,
retaining the codespace as a gapped 2F-degenerate ground state subspace, and ||V« || = e~ 2@ such that
SE = eE~d),

This is constructed via iterated rotations U,,, = UjlU,...U,, 1 - perturbation theory via Schrieffer-
Wolff transformation/rotations. For example on the first step:

Ui (Hy + V)U; = Hy+ Dy 4 Vs (3.6)

with D, block diagonal, || Dy ||,.,|| V2|, <1 (k-local bounded), with U; ~ el4ss] with Agg ~ € V.

S
Technical point: not using LR bounds (which are not strong enough on expander graphé)‘, instead use
cluster expansion machinery (allows for bounding exponentially in volume rather than diameter).
Check soundness is importnat for ensuring the number of nonvanishing terms in the cluster expansion
is constrained; more formally in:

[Di, Atl = Y _[Disss Axs s 3.7)
S,s'

check soundness ensures that S, s’ are not too far apart. A violates a syndrome near S, so ||Ds||,||As|| <
e *II (exponentially small in volume).
Also, check soundness ensures that the gap does not close when rotating at each term in the PT:

I(D = coD)[w)|| < O(e?)||Holw) | 3.8)

3.3 More comments on check soundness

Some comments on the local check-soundness:
What people have considered is the notion of local topological order (1001.0344), which is a stronger
version of the error correction condition that is sufficient for stability.

Definition: Local topological order

For any ball region B, let B = B UNeigh(B). The LTO condition is then that for any ball with r < L
(with L, say, the code distance), the local ground states P are indistinguishable, with:

This is a stronger version of the error correction condition, as if we take B to be the whole system we
recover the error correction condition. This rules out scenarios like the “Ising” TC because the B, = +1
subspaces are distinguishable locally. Note that for stabilizer codes that any stabilizer Op is a product of
checks in B. The authors wanted to generalize this, but not straightforwards. Ball regions are not good,
because we can only consider balls with L < log N due to expansion properties. But, we cannot control
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perturbations V1V, ... Vi at order k > log N. So, we can only get an inverse polynomial energy splitting,
rather than exponential.

Other suggestion - could we consdier general regions with bounded volume instead of diameter? No
- LTO does not hold for such general regions, and we can even just consider the toric code:

syndrome X

so instead of trying to fill holes in “infinite dimensions” the authors considered check soundness as an
algebraic construction.

Intuition for why check soundness might be good for stability /protect against some finely tuned
counterexamples. Imagine we add a bunch of local stabilizers as a perturbation. Check soundness ensures
that each is associated to a small number of checks. For a state to gain a lower energy E from violating
stabilizers, it needs to violate many checks such that the energy penalty from Hj/the checks is > E,
meaning the gap is stable.

Linear check soundness is equivalent to local testability® of the classical code:

|HX| 2 aMiN¢odeword z ‘X - Z| (310)

i.e. energy of a codeword being proportional to the minimal distance between code words. Morally, both
are statements are connecting checks (low energy) to bits (low error).

4 Cool LDPC Physics

4.1 Violation of the 3rd law of thermodynamics

Finite rate qLDPC codes (by definition) have Hamiltonians for which the GSD increases exponentially in
the system size n, and the stability result of the previous section tells us that this extensive GSD is in fact
stable to arbitrary perturbations (c.f. SYK model which does have extensive 0-temperature entropy but is
not robust). So we have entire phases of matter with a robus/non-zero entropy density:

lim lim @ = SlogZ (4.1)

T—0n—oo N

open Q: does the 3rd law require locality?

4.2 The NLTS theorem

Theorem: No Low-Energy Trivial States

There exist a family of k-local Hamiltonians such that every low-energy state cannot be generated
by a constant depth ()(1) circuit.

2Called this because if testing whether one is given a codeword or codeword with finite errors takes only local checks given this
condition
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It was shown in 2206.13228 that there are indeed NLTS Hamiltonians - precisely those corresponding
to good qLDPC codes! Big step in complexity theory - related to the QPCP (quantum probablistic proof
checking) conjecture (in the sense that QPCP == NLTS), the classical analog which has been proven but
the quantum proof which has evaded.

(Proof overview - constant rate and linear distance quantum codes have expansion properties of their
check matrices, which implies their approximate code words are clustered. It can be shown for such
codes that the classical distributions of the low-energy states of these Hamiltonians are clustered and also
well-spread /not concentrated, which gives rise to the circuit lower bound.)

Physically, these are quite interesting because they are “ a very strong form of TO” - associating
constant/extensive circuit depth with whether a state is trivial/non-trivial, if we are below a certain T,
NLTS implies no state can be prepared by a finite depth circuit. This is very different from the toric code
- e.g. the 4D toric code is thermally stable but does not have this NLTS property; indeed the eigenstates
below T, are hard to prepare but we can do a sort of “tiling” argument where we prepare small patches of
toric codes on tiles of a larger system. The energy penalty scales with the surface/volume ratio, which can
be tuned by the size of the tiling, allowing us to create an arbitrarily low energy state (not an eigenstate)
efficiently /in finite time. In the good qLDPC setting, because the ratio of surface area to volume is
constant, this kind of construction is not possible.

Another way of phrasing - generally we expect that thermal states to be less complicated, as entangle-
ment decreases when we turn up temperature - but NLTS gives a setting where this is manifestly not true,
and all low energy states are still exotic/complex.

4.3 Spin Glasses and MBL
2412.13248 (have not looked into this paper yet)

Classical LDPC Codes 4 Classical Spin Glass Order
-
linear E‘
confinement |.|c.| u_v . thiit
t it
@ bits @ checks LLV ‘*r an
configuration space
products
Topological Quantum Spin Glass Order
Quantum LDPC Codes
2
lingar g‘ v
{co-)boundary =
confinement LW @ @
% Vs A
e 10) = 09Z) + RS + .. / Hilbert space
[0 Zstabilizers % X stabilizers X = F@%) b RSl + ..

LDPC codes with local testability have a very rich landscape:

¢ There are exponentially many (2F) global mimina at zero energy (codewords), surrounded by linear
energy barriers.

e There are exponentially many ~ 2 local minima at finite energy but zero energy density, also
surrounded by linear energy barriers.
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® There are exponetnally many ~ 2K with k' > k local minima at finite energy densities, again sur-
rounded by linear energy barriers.

Classical LDPC realizes spin glass order (given the above energy landscape), with the minima able
to store classical information. It turns out that the QLDPC analog is that the minima correspond to
topologically ordered quantum states, which can store quantum info.

Note that it is because of this type of landscape that local decoding is so efficient! Takes the form of a
bitflip Monte Carlo where we randomly flip local bits and accept if it lowers the energy.

This same feature has been used to give an example of many-body localization, a robust counterex-
ample to the Eigenstate thermalization hypothesis (that peigenstates & Pthermal for local probes). 2405.12279
uses these good classical LDPC codes with local testability to argue (via an Anderson localization type
argument) to show the MBL property:

Theorem: MBL for LDPC codes

If € < Co, then with high probability 1 — 27N, any eigenstate |¢) at low energy E < CyN is localized
in one well z():

|1 = Pylgd | <27V (42)

thus we have a robust ETH at low temperature! As a corollary, starting in one well, the state does not
escape for any time .
Proof (sketch).

1. A nice LDPC code exists with exponentially many (required for the localization to be an exponentially
small subspace) deep wells. Known from classical coding theory.

2. At low energy, the extensive energy barriers suppress couplings (off-diagonals) among wells (diago-
nals):

° H = H> —|—Zweuz Hz Wlth||H>‘10W E>H < €N

3. This energy difference is much smaller than the typical energy difference 2~V from detuning. Thus,
from a PT argument we can see that the H- will not mix energy eigenstates.
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A Mike Vasmer KITP Talk Notes

Notes based on Michael Vasmer’s 2025 KITP talk, found here.

A.1 Literature
e Review: 2103.06309

Good QLDPC codes:

— 2111.03654
- 2202.13641

Bicycle codes:

— quant-ph /0304161
- 1212.6703
- 2308.07915

Product codes:

- 0903.0566
— 1904.02703
- 2012.09271

¢ Logic gates:
2204.10812
2407.18490

2410.03628
2506.03094

A.2 Defining LDPC Codes

Definition: LDPC Codes

A family of stabilizer QECCs {Q;} is LDPC if for every Q;, there exists a generating set S; such
that:

1. Vs € S; then Wt(s) < r for some constant r (the stabilizers have bounded weight)

2. Vg € [n], |[{s € S; : q € supp(s)}| < ¢ for some constant ¢ (qubit degree - each qubit should
only be in the support of a constant number of checks).

Motivation: When we think about QEC, we have some encoded state |{), and we measure some
stabilizer - below X; X, X3:
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) HHA

In the real world where each step of this is noisy (the gates), the measurement, etc. the error scales
with the weight of the stabilizer. So, it is useful to have a bounded weight so then the noise does not scale
with the code size. The same is true for the qubit degree, because if one qubit happened to be part of
many checks, then this noise would propagate poorly.

Remark: Note this is not the only way we can do fault-tolerance. E.g. we can do concatenated codes.

Definition: CSS Codes

CSS codes are QECCS for which the stabilizers are exclusively Pauli-X or Z.

Such codes have convenient graphical form in terms of Tanner graphs. For example we can have
S = (XXXX,I11ZZ,ZZII). As a Tanner graph we can draw it as:

T

haS

in this representation, the LDPC condition can be phrased as the Tanner graph being a constant degree
graph, i.e. the degree of each vertex in the graph is bounded by an n-independent constant.
On the physics side of things, qLDPC codes correspond to k-local stabilizer Hamiltonians.

A.3 Families of qLDPC Codes

Recall the shorthand of [[n,k,d]] with n physical, k logical, and d code distance. Asymptotically good
codes are those for which k = @(n) and d = @(n). Good stabilizer codes were discovered in the "90s, but
whether there exists good LDPC codes was open for many years.

e Toric code with [[n,0(1),®(n)]|n - "97 by Kitaev. Best known for a while

e Hypergraph product codes with [[n,©(n), ®(y/n)]] - '14. Already we’ve left the world of geometri-
cally local things. The procedure to construct quantum codes involves inputting two linear codes,
and for HGPs we need to put in two expander codes (so we already leave finite dimensionality). But
the actual construction is quite simple, e.g. feeding in two classical repetition code gives the toric
code.

* Pantaleev-Kalach codes with [[n,®(n),®(n)]]. Complicated algebraic/randomized construction,
with the n growing extremely fast (PK, has n ~ 10° qubits already) so not practical. So we don’t
think about them in fault tolerance settings.
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Quantum Tanner codes [[n, ®(n), ®(n)]] - based on PK codes, but with more progress towards small
constructions.

Let’s think about some finite size families - we want to look at % as a metric. For Toric code, this is
O(1), and indeed for a-dimensional topological local codes we have the bound that kd* < cn for a constant
c. So a good figure of merit for “doing better” than the standard toric code.

A4

(2D) Hyperbolic codes - toric codes on a hyperbolic tiling. This yields [[n, ©(n), ©(logn)]]. Maybe
the log scaling looks bad, but for small code this is actually quite good. Q - Hyperbolic graphs
are some kind of instance of expander graphs? so why the difference in the scaling? A - Some
precise theorems about expanders must be hidden in the tanner graphs to get good scaling. But not
guaranteed - Necessary but not sufficient. Additional comment - we can add more structure to the
hyperbolic tiling and this can help us to get better parameters.

Microsoft construction of “rotating” the self-correcting 4D quantum memory 2506.15130

Product codes: HGP codes, lifted product codes, balanced product codes. Product codes are gener-
ally recipes for inputting types of linear codes, perhaps with some kind of symmetry constraint, then
taking the product and factoring out the symmetry gives more efficient constructions. Precursor to
PK codes.

Bicycle codes: Proposed by McKay a while ago, developed by Kovlev/Priyadko, and then develoepd
by IBM for bivariate bicyle code, and then trivariate tricycle codes and so on. Central idea: find
check matrices Hy = [A|B], H, = [BT|AT] with [A,B] = 0. Then, HyH! = AB+ BA = 2AB = 0.
How do I choose A, B in the right way (good code parameters but also low check weights)? We
can use polynomial formalism, machine search over different choices. The one IBM talks about is
[[144,12,12]] “Gross codes®” with % = 12. Stabilizer code with max weight-6 stabilizers, toric code
with some extra long-range connections. Also is translation invariant. IBM showed that even though
the stabilizer weight is higher, the threshold is comparable with the toric code p ~ 0.5% under a
circuit noise model, so is a much better memory. (Note - not a threshold in the true sense, more like
a pseudothreshold /breakeven point).

Logical Operations on LDPC Codes

Ok, so we’ve gone over what qLDPC codes are and some code families people are interested in. How do
we do logical operations on these codes? For CSS codes, we have transversal constructions, e.g. a logical
CNOT is done by doing a physical CNOT between every pair of qubits in the code block. But let’s look at
constructions in some detail.

Gate teleportation (Gottesman in the 90s) - used to prove that constant space overhead FT was
possible. In practice might be useful for concatenated codes, but not for qLDPC.

Many constructions which generalize gates for topological codes. (start with toric code gate, then
generalize to HGP which usually works, and so on).
— Defects + braiding (Krishna and Poulin)

- Folding (fold a TC to get a color code, similar logic applies to HGPs - gives us transversal gates
and permutations)

— Dane twists (Cut a torus, twist, and glue back together)

3because a dozen dozens is a gross.
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* Generalized lattice surgery: If we can do Pauli product measurements, we can generate the Clifford
group. This is useful because we can break down any QC into Clifford + Ts, which propagating
all Cliffords to the end becomes T /magic states and Pauli product measurements at the end. Since
magic state distillation is Clifford, so long as we just have some input magic states, then everything
else is Pauli product measurements.

Suppose we want to measure logical X (which will be a high weight operator) - this is noisy. If we
break the measurement into smaller pieces (measuring multiple times to combat measurement er-
rors), we can combine the measurement outcomes to get the X measurement. The cost of measuring
a weight-d logical oeprator: Cohen proposal requires O(d?) space, O(d) time cost. Improvements by
Burton, Xanadu etc. use O(dlogd) space and O(d) time cost. Let’s see this at a high-level using a
Tanner graph, wherein we can introduce an auxillary system to measure the logical:

@ ; X!,

%X- AJX!’W

Jy¥tn

In the toric code, this looks like (for measuring Z = [Ticstring Zi, with naively d layers to get a fault

tolerant measurement):
(lD' ~ "

0[&) Lo
i’f_@;i — i o(lpd) Myt

To get a sense for numbers, with IBM’s [[144, 12,12]] Gross code they require ~90 extra qubits to
measure all the operators they need.

Q - What is this in the physics picture? Gauging/anyon condensation picture? Someone raised
2212.00042 as a possible reference, where lattice surgery is described as anyon condensation. Mike
also brings up Dominic’s work in gauging local operators 2410.02213 which may offer another con-
nection.

A last comment - the O(d) time overhead doesn’t sound too bad, but in IBM’s new paper they show
that on average they require 18 rounds of measurements of generating Pauli products. Then the
overhead is ~ 18d...so although they save space over toric code the time overhead has had to been
blown up as a result.
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B Vedika Khemani IAS Talks Notes

Notes taken from Vedika Khemani’s 3-part lecture series about qLDPC physics at IAS, found here. Based
on 2310.16032, 2402.16831.

B.1 Introduction

There is a deep connection between error correcting codes and ordered phases of matters. In particular,
stabilizer error correcting codes can be associated with commuting projector Hamiltonians, which are
zero-correlation length fixed points of non-trivial phases. The intuition is that when looking at an error
correcting code, we want to encode information in a robust and redundant way. One way to do this
is to encode information into macroscopically distinct degenerate ground states. Such ground states
can arise due to spontaneous symmetry breaking (associated to classical codes) or to topological order
(associated with quantum codes) - note that the modern perspective actually unites these two in the sense
that topological order is the SSB of higher-form symmetries.
Some examples:

¢ Kitaev’s 2D toric code «+ topological order. This TO makes the system locally indistinguishable, and
goes hand in hand with the fact that the code is robust to local noise.

¢ 3D Haah code < fracton order.

® 2D repetition code <+ symmetry breaking order. Classical information can be encoded in the
symmetry-breaking ground states of the 2D Ising model, with the ZZ interaction providing the
error correction.

It turns out there is a deep relationship between classical and quantum codes - the 2D toric code which is
a particular point in a Z, gauge theory can be obtained by starting with a 2D Ising model and gauging it.

EC has seen recent breakthroughs - good (k = ©(n),d = ©(n)) qLDPC codes have been constructed
(PK codes 2111.03654, Quantum Tanner codes 2202.13641). Also, good locally testable classical LDPC
codes have also been constructed (2111.03654, 2203.03581, 2206.07750). Both of these constructions require
codes defined on non-Euclidean expander graphs. This is in contrast to the previous examples given,
which were all codes given on local, Euclidean lattice models. But these new sets of codes are defined on
more exotic geometries - locally tree like with closed boundaries, where the boundary is proportional to
the volume. Formally, this is captured by:

INeigh(S)| > /9] (B.1)

so long as |S| < n/2.

This seems perhaps a bit abstract, but indeed such geometries are accessible in new synthetic quantum
systems, such as neutral atoms.
The key messages to takeaway from the series:

e LDPC codes furnish an interesting class of stat mech models for many-body physics, leading to
novel phenomena in non-Euclidean geometries
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e We can understand qLDPC codes as generalized gauge theories. We can formulate symmetry-
breaking order, topological orders, and SPT order on general non-Euclidean graphs, and formulate
generalized Kramers-Wannier dualities relating these phases.

* We can unpack product constructions in the coding literature in physical terms, such as symmetries,
redundancies, and excitations. We will find a unified description of codes via homology.

® LDPC codes can furnish new analytically tractable classical and quantum spin glasses.
Talk outline:
¢ Classical LDPC codes on expander graphs.

— What is an LDPC code, and what is a “good code”? Why are expanders necessary?
* Quantum LDPC codes as “products” of classical codes.

- Unified homological description of quantum codes in terms of chain-complexes. Constrast
physical dimension from chain-complex dimension.

- Gauging and KW dualities

¢ Time permitting, a discussion of LDPC codes as spin glasses. (did not end up getting here)

B.2 Linear Classical Codes
B.2.1 Parity Checks and LDPC

We begin by reviewing classical coding theory. The goal is to transmit k message, or logical bits. We
encode this into # > k physical bits (some form of redundant encoding).

As an example - suppose we want to transmit a single bit k = 1. An error channel will come in and try
to flip our physical bits with probability p - if the information is unencoded, then the information is lost
with probability p. We can then consider the n = 5 code where we repeat the input bit 7 times (classical
repetition code). Then, so long as the error channel does not flip more than 3 bits, our encoded bit is safe
(we can take a majority vote at the end). The codewords are 0000000 and 1111111.

We also introduce the notion of code distance d, which is the Hamming distance between codewords.
Here, the code distance is d = n = 7. So long as the errors corrupt < % bits, then I can distinguish
codewords. What we would want is a family of codes such that as we scale up, the probability of successful
transmission goes to 1.

More generally, we have n physical bits x; = 0/1. The configuration space is is a vector space IF; with
F, = {0,1}. The configurations are n-bit vectors in the space, e.g. (0,0,1,1,0, 1)T. If we write |i) to be
the basis vector for the ith bit, a general configuration can be written as }; x;|i) with x; € {0,1}. We can
consider spins 07 = Z; = +1 based on x; = +1 (for now the spins are classical, but we use this suggestive
notation as we will soon promote these spins to quantum bits). Now, in order to encode information, we
consider a codespace C which is a subspace (itself a linear vector space) of F}. C will be composed of 2
codewords. How do we specify what these codewords are? We can specify them by imposing constraints,
known as parity checks (PC). These are encoded in a parity-check matrix H € F}"*" of m parity checks.
We can then define the codespace as the bitstrings that satisfy all parity checks:

C={xeF;:Hx =0} (B.2)

As an example, we can consider the parity check matrix:

H = (B.3)

O R =
_
=)
— =
o O =
o = o
_ o o
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so the codewords (x1x2x3%4x5x6X7) must obey:

X1 PxoDxsDx5 =0 (B.4)
X1Px3PxsPxg=0 (B.5)
XoPx3PxsBxy =0 (B.6)

where @ denotes mod 2 addition.
A couple observations:

x is always a codeword.
ker(H) gives a basis for codewords.
Linearity implies that if w,v € C, then w4 v € C.

The number of logical bits k is specified by:
k = n — rank(H) (B.7)

with rank(IH) being the number of linear constraints. If you have a CS background, this struc-
ture may remind you of satisfiability problems, and indeed they are instances of XOR satisfiability
problems.

The code distance d is determined as the minimum Hamming weight of a non-zero codeword.

We can think of each of the constraints appearing here as a term in a classical Hamiltonian - for each
row of H we get a term, with:

C= ]I % (B.8)

jZHﬂjzl

with a = 1,...m, and the full Hamiltonian is the sum:

H=-YC, (B.9)

the observation that x = 0" is always a codeword is analogous to the observation that the all-up state
is always a ground state in the Hamiltonian language.

With this mapping, we can understand the code parameters [, k,d] in more physical terms. n is the
number of physical bits, or the system size. k is the number of logical bits, or log,(GSD). d is the code
distance, or the number of flips between ground states.

Definition: LDPC Codes

LDPC codes are low-density parity check codes. These are linear codes for which H is sparse,
which implies:

¢ The number of bits each check acts on is O(1).

e Each bit is acted on by O(1) checks.

The LDPC condition is stronger than k-locality, which corresponds to the first condition (where each
interaction term in the Hamiltonian acts on k = O(1) bits) - here we also require that the bit degree is also
bounded.
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B.2.2 The Repetition Code, Logical Operators, The Hamming Code

Let us consider a few examples. The first (which we have already alluded to) is the repetition code, or

Ising model:
H=-)Y 7Z; (B.10)

{if)
If we have a 1D chain with periodic boundary conditions, we get:
[1ci=T1zz =112 =1 (B.11)
{if) (if) :
In this case, we have m = n — 1 independent constraints (because we have n terms, but one of them can
be obtained as a product of all other #n — 1 terms), and so:

k=n—(n-1)=1 (B.12)

So we get two codewords/groundstates, corresponding to 1" and |”. The code distance is then d = n.
The parity check matrix of this code looks like:

@
I
o
—_ =
= O
o O

(B.13)

Now, we want to introduce the notion of 1",|" as the logical state, and a logical Z that denotes
the logical bit as being 0 (up)/1 (down). Generally, we want to do operations on the logically encoded
information. The logical X that flips the logical bit is just the bitflip on all physical spins:

n
Xp=]]X (B.14)
i=1

This is nothing more than that Z; Ising symmetry! So - SSB here yields gives rise to degenerate (k > 1)
and macroscopically distinct (d = ®(n)) codewords.
If we label the basis states for the codewords as:

XA = Y10 (B.15)

i€xy
with A = 1,...,k, each defines a logical X, operator:

X =11 (B.16)
iE)()\

which takes us form the |0) codeword to the |x,) codeword.
Additionally, for each of these vectors we can introduce a dual vector (p,| where:

(Calxar) = oanr- (B.17)

We can also consider a logical Z, operator which will tell us which codeword state we are in + have
the correct anticommutation relations with the X, operators:

Zy=1]]z (B.18)
i€q)
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where we can see that {X/\,Z/\} = 0. Now, <Z/\> is an order parameter for the SSB, and in particular

for each k we will find an order parameter - each codeword defines a X, which is a logical and does not
excite any of the checks. Therein they are symmetries of the Hamiltonian, giving rise to a total symmetry
group of G = ZX. The codespace is SSB, with a 2f-fold degeneracy/symmetries being spontaneously
broken.

For the classical codes, there is a basis in which Z, can be chosen to be act on a single site i,. By the
time we finish consistently picking the Zs, we are left with k single-site bits we can view as our logical
bits, which is called putting our code in canonical form. We can think of the first k bits of the code as
labelling the logical space, while all the other n — k bits are padding/redundancy.

Note that we can either start with the parity check matrix IH or the generator matrix G, and then there
will be properties of the parity checks or codewords which will determine whether a local basis can be
found for the PCs or not. When looking at LDPC codes, we like to start with the parity check matrix IH
because we would like these to be local (in the generalized locality sense).

We can also think about a vector space of checks:

F}' =) Bala) (B.19)

with B, € {0,1}. We can then think of (HT)"*? mapping between checks |a) to collections of bits ¥;cyy |i).
In the spin language, if we have a set of interactions, multiplying out all the interactions, which sets of
spins are left?

This prescription is useful, because it allows us to consider a Tanner graph representation of code. A
Tanner graph is a bipartite graph where on one side we have nodes corresponding to (1) bits, and on
the other side we have nodes corresponding to (m) checks. In this formalism, the adjacency matrix of
the Tanner graph is exactly the parity check matrix H. In the coding literature, random constructions are
quite common - in this setting these constructions are just coming up with some random adjacency/parity
check matrix. The LDPC condition is that the adjacency matrix is sparse.

|
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We can consider the [7,4,3] Hamming code, which has 24 = 16 codewords. We have already written
down the parity check matrix:

1 1 01100
H=1]1 011 0 1 0 (B.20)
0111001
The corresponding Hamiltonian is that of a generalized Ising model:
H=—7172y7475 — 717Z37247¢ — 20737477 (B.21)

We can also consider a hypergraph representation, where edges can act on more than 2 bits at a time. For
the Hamming code, this looks like:
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B.2.3 Good Codes

A “good” code is that for which k,d = ©(n). This is as good as things can get! This scaling is in
fact impossible to achieve in finite D local Euclidean models (checks are on a Euclidean geometry). The
(classical) Brayvi-Poulin-Terhal bound tells you that for classical codes in D-dimensions:

kd'/P < cn (B.22)

note that indeed the 1D Ising model is k = 1 and d = n saturates the bound... this is quite bad. The
distance is good but the rate is terrible (asymptotically zero). The associated quantum bound is:

kdDET < en (B.23)

Proof (sketch). Consider a 2D Euclidean space (can be D-dimensional, but easier to draw):

2] A

Then, |B| = IP ~ d < d. If two ground states agree on A, they must agree everywhere. Now, consider
two B boxes:

=] A
[B.]

Since the checks are geometrically local, they overlap with at most one B; block. Even though the size
of the two Bs together may be larger than d, since they do not overlap, it is still the case that if the ground
states agree on A \ By \ B, that they agree everywhere. Now, we can tile the entire system with B blocks.
We then observe that: k1Al

- < — (B.24)
because we can only choose things independently in A to specify the codewords. But the size of A here is
|f§f‘ , and thus:

K_lAl Bl 1 1
n- on Bl 1 4D (8.25)



The key figure is the surface-to-volume ratio when we construct the codespace into a division/tiling of
smaller blocks. In Euclidean space, the surface scales not proportionally to the volume, but on expander
graphs the surface-to-volume ratio goes to one, which ensures we can circumvent bounds that are based
on geometric locality of checks (we will replace it with a notion of graph locality). Indeed we can consider
expander/hyperbolic graphs where the local structure looks like the local Ising models we have considered
today - we will elaborate on these when we discuss Tanner codes in the next section.

B.2.4 Classical expander codes

Definition: Expander codes

A classical linear code is (u,v) expanding if |x| < yn = |Hx| > v|x|.

In the definition above, x € F} is a configuration and s = Hx is the syndrome/vector of violated
checks, and |-| denotes the Hamming weight. Expansion ensures that the code distance is linear, with
d > un.

What does this condition say physically? If we start with a codeword, the energy barrier from one
codeword to another proportional to the number of spins that we flip, until a finite fraction of spins that
have been flipped. This is a very robust energy barrier.

Compare this to the 1D Ising model - if we start with 1" and flip one spin, we trigger two checks/costs
energy two. If we keep flipping (neighbouring) spins, the cost is still energy two (only proportional to the
size of the domain wall, which stays a constant size), until we get to the all one state. This is much tamer
than the energy barrier that expander codes have.

The energy landscape of expander codes is provably complex - this and connection to spin glass
properties are elaborated on in 2412.13248:

e There are exponentially many (2F) global mimina at zero energy (codewords), surrounded by linear
energy barriers.

e There are exponentially many ~ 2 local minima at finite energy but zero energy density, also
surrounded by linear energy barriers.

® There are exponetnally many ~ 2K with k' > k local minima at finite energy densities, again sur-
rounded by linear energy barriers.

Note that it is because of this type of landscape that local decoding is so efficient! Takes the form of a
bitflip Monte Carlo where we randomly flip local bits and accept if it lowers the energy.
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B.2.5 Constructions of Classical Expanders

Construction 1 (Gallager, 1960s). We build a regular (c, b) regular random bipartite graph as the Tanner
graph. b is the bit degree and c is the check degree (apart from fixing b, c the graph is random). The

number of edges in the graph is:
N, =nb =mc (B.26)

The rate of the code is:

kyn-m_, b (B.27)
n n C

the inequality follows from the fact that k = n — m if all constraints m are independent. We can show that
with high probability, % —1- %, and d o« n.

Construction 2 (Sipser-Spielman). Consider Tanner codes 7 (G,Cp) (note - different from Tanner
graphs). These have two ingridients:

¢ A sufficiently expandering underlying graph of fixed degree s
* A sufficiently good “local code” Cy with (n; = s,kr,dr) on every vertex.

Examples are taking the Cayley tree/hyperbolic tesselation and associating the Hamming code to the
vertices:
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So long as rp > % (rate of local code is high enough) and d;, > A; (rate of local code is high enough, with
Ay capturing a rate of expansion), then:

[n,k,d] = [n,0(n),0(n)] (B.28)

Caveat - the model that we’ve drawn above with the Hamming codes are an illustration, and the
actual proofs for good LDPC codes require much larger codes. But, these models do reproduce a lot of
phenomenology that is only provable for larger codes.

How do we pick the underlying graphs? We consider graphs with expansion properties quantified by
the Cheeger constant. Given a graph G(V, E), we define the Cheeger constant as:

h(G):min{||aSS||:SCV,|S|<Z} (B.29)

where 0S € E are the set of edges connecting S to its complement. We can also consider the spectral
expansion: eigenvalues of the adjacency matrix:

SZ/\lz)LzZ)\g,... (B30)

A large spectral gap is characterized by a better expansion:

A — Ay < 2h(G) (B.31)
for Ramanujan graphs:
Ay <2vs—1 (B.32)

and these are graphs with the best possible spectral expansion properties. We can construct these with:
* Random regular graphs
* Cayley graphs of particular groups (PSL(2, Z/qZ))
* Tilings of the hyperbolic plane which are {p,q} regular
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Given these sufficiently expanding graphs (quantified by Ay, h(G)) and the sufficiently good local code,
we have:

,— % >2r —1 (B.33)
d _dp—Ad; dr\?
B.34
n s—Ay s S (B:34)
Thus we obtain the desired conditions: i
re > E/dL > A (B.35)

and this gives us the “good” code properties of [n,k,d] = [n,©(n), ®(n)].
Let us give an intuitive picture: How do we go from one codeword to another?

e We start from an all-zero state and start flipping bits. As we continue to flip bits, we get that the
internal checks are happy, but then the next layer outward of checks become unhappy. We continue
to flip bits, pushing the unhappiness towards the boundary.

® Large local code distance = many bits around each vertex must be flipped = the global code
distance (distance between two global codewords) is large.

® Large local code rate = many possibilities to satisfy local codes = global code also has many
possibilities to satisfy, hence good global rate.
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So - by going from Euclidean to non-Euclidean graphs, we were able to get from the k = 1,d = n
Ising/repetition code (which saturated the BPT bound) and find classical codes which have k,d = ®(n).
These codes have been known for many decades, and are used for telecommunications!

B.3 Quantum codes

Now, we want to move onto qLDPC codes. We start with a discussion of quantum codes generally, and we
will generally stay within the realm of CSS Stabilizer codes (codes which are described by Pauli stabilizers,
where the Paulis do not mix X and Z type).

We consider n physical qubits with Paulis X;,Y;, Z; for i € {1,...,n}. The code subspace is the +1
eigenspace of commuting X, Z parity checks:

A; = X1X2X3...,B1 = Z1Z275.. .. (B.36)
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The quantum code is made up of C; = {Cy,C;} = {{Av}v, {Bp} }, where the codewords are the 2F
p

dimensional code-subspace that satisfy/are the +1 eigenvalues of all the X and Z checks. Equivlaently,
we can phrase the codewords as the degenerate ground states of the commuting stabilizer Hamiltonian:

Hy=-) Ay—) B, (B.37)
v p
with [Ay, Bp] = 0.

B.3.1 The toric code

The canonical toric code (Kitaev '97) is defined on a square lattice, with n physical qubits living on the
edges, and toroidal/periodic boundary conditions. The Hamiltonian is given by the sum of the star and
plaquette terms:

Hrc=-) A.—) B, (B.38)
v 4

The ground state of the toric code is the equal-weight superposition of loops on the dual lattice:

|Yioop) = +| Cra ) *

+ = in z basis

This is because:
Avllploop> = BP|lploop> = |lploop> (B.39)

for all i, p. This can be seen from the fact that B, leaves loop configurations invariant (either does not
intersect any loops, or touches the loops an even number of times, so either way the product of Zs gives
1) and A; simply permutes loop configurations on the dual lattice.

The four degenerate ground states of the toric code Hamiltonian are labelled by whether a non-
contractible loop goes around the torus or not. These loops are Wilson loops that commute with all
checks but are not generated by any of the checks. Thus we get k = 2 logical qubits.
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The Wilson loops (1-form symmetries) act as the logical operators for the code:

[Li)=

21,75 = W}, W2 (B.40)
X1, Xp = Wy, W3 (B.41)

w! W2

You can verify that they follow the appropriate commutation relations as logical Pauli operators, and
the Wi/2 operators correctly transform between the different ground states.

Note that the 4 degenerate ground states are macroscopically distinct (because they are distinguished
by the macroscopic Wilson loop operator which diverges in the system size), and protect against d ~
V/n errors of both X and Z type (bit and phase flips). The ground states are locally indistinguishable,
corresponding to the topological order that the states possess.

Note that topological order appears naturally as the deconfined phase of a (discrete) gauge theory, Z,
in the case of the toric code. We have deconfined charge (e) and flux (m) excitations (pairs of which can
be generated by Z or X strings), with non-trivial (anyonic) statistics.
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To summarize where we are - we showed that in the classical case, we had the correspondence of SSB
with a classical repetition code. We considered the Ising Hamiltonian:

H=-) C=- % ZiZ, (B.42)
a ij

the 2 degenerate ground states being the 2 codewords of the classical code. We had local bits T =1" and
1 =" The logical X = []; X; corresponded to the Ising symmetry. This was a k = 1,d = n code that
saturated the classical BPT bound.

In the quantum case, we have a correspindence of topological order with a quantum code. We consid-
ered the toric code Hamiltonian:

Hic=—-Y A, —Y B, (B.43)
v p

the 4 degenerate ground states being the codewords of the code. We encoded 2 logical qubits, distin-
guished by extensive Wilson loop operators. Such Wilson loop operators also were identified with the
logical operators of the code, with:

71,72y = WL, W? (B.44)

X1, X, = WL, W2, (B.45)
This was a k = 2,d ~ \/n bound that saturated the quantum BPT bound.

B.3.2 quantum LDPC Codes

Good classical LDPC codes were discovered in the 1960s, while good qLDPC codes were not found until
quite recently (2020). What took so long/what was the challenge? Let us recall that a quantum CSS code
comprises of two classical codes:

Hy=-) A—-Y B,=—) [] X-Y 1] % (B.46)
N P v aeélT(z;) P acé(p)
O
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One might intuitively think that making a good qLDPC codes would be as simple as taking two good
classical LDPC codes and picking them to be H,/IH,. The difficulty is that we can’t naively pick X/Z
checks to come from good classical LDPC codes and then have all of those checks mutually commute.
Specifically, a good C; will not have small logical X operators, and hence the Cy code cannot be LDPC.

We then need some additional structure - it is already present in the figure above. We need [A;, By] = 0
and so 6,61 = 0; this corresponds to a 2-dimensional chain complex.

Thus, the name of the game is to start with classical code (a 1-dimensional chain complex) and then
compose them in such a way that we get a higher dimensional algebraic structure corresponding to a good
qLDPC code.

If we look at 2111.03654, 2202.13641, they discuss lifted product constructions, and other ways of
“multiplying” two classical codes in such a way to get good qLDPC. The picture in our mind is that we
are building up a higher-dimensional (abstract) manifold by taking products of two lower-dimensional
manifolds.

B.3.3 Introduction to homology theory

Homology is a very useful language which provides a unified description of all CSS stbailizer codes,
including toric codes and fracton models in any dimension or manifold (whether Euclidean or not). The
code defines a notion of geometry through the chain complex. Note that this geometry may be different
from the geometry of the underlying lattice.

Dan Browne has a nice set of lecture notes on Homology theory which can be found here.

Definition: Chain complexes

A chain complex is a sequence of vector spaces with linear “boundary maps” J in between:

Vb

c

6
NS A - S 7 (B.47)
with D, the dimension of the overall chain complex. The maps obey the composition condition:

8p6p41 =0 (B.48)

Note that the homology theory we discuss will be the combination of topology (cellulation of a mani-
fold) + group theory (for us, F, = {0, 1} since we only worry about qubits).

We consider a cellulation ofa 2-dimensional manifold. The 2-cells are plaquttes, the 1-cells are edges,
and the O-cells are vertices.
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From this, we can define an n-chain:

Definition: n-chain

Given a cellulation, an n-chain is the assignment of a group element to every # cell.

The set of n-chains forms avector space V;, over [F, (under vector addition modulo 2), with a basis
vector associated to each n-cell. The identity vector is the zero vector/chain. An example of a 2-chain,
1-chain, and 0-chain are given below.

0700
OO0 /|1 0

e s (
1011

1 Fa e 0

T | T U |1 U
11100

O——t—T1+71°06
O] 1|10

The boundary maps 0, are linear maps from n-chains to n — 1 chains. For example 0, takes us from
2-chains (on plaquettes) to 1-chains (on edges):

| 0,

az(P] +p) = 6(p1) + a(Pz}

0,

| ——_ This edge counted
twice. 0 mod 2.

And 097 takes us from 1-chains (on edges) to 0-chains (on vertices):
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al(el + 82) = f)|(€]) + d](e?)

e
—® ] \| This vertex
counted twice.
0 mod 2.
The composition of boundary maps conditions is satisfied, with:
010, =0 (mod 2) (B.49)
this is illustrated in the simple example below:
0y 0,
2-chain 1-chain 0-chain
€ Vz [ V[ e Vﬂ

and is easy to see intuitively from the fact that the edges around any set of plaquettes involve vertices
that are hit by two edges (to form corners).

Definition: n-boundaries and cycles

The n-boundary group B, C V, is the set of n-chains which are boundaries of (# + 1) chains.
The n-cycle group C,, C V;, is the set of n-chains whose boundary is zero.

€ B, € C

Note that every boundary is a cycle (which follows from the fact that the composition of two boundary
maps is zero), but not every cycle is a boundary.

36



Definition: Homological equivalence

Two chains are homologically equivalent if they are equivalent up to the addition of a boundary.

As an example, we can see that the stright line chain is the homologically equivalent to the straight
line with a kink:

B.3.4 The Toric Code and Homology/Cohomology

With the mathematical machinery established, let us return to the toric code. First, on the torus we note
that there are four equivalence classes of 1-chains. This is characterized by the 1st homology group:
_G

H, = ? =7y X 2y (B.SO)
1

In the homology language, the Z-part of the toric code can be described as follows:
* Qubits live on 1-cells (edges)

® Z operators live on 1-chains

By (boundaries of 1-chains) correspond to charge syndromes

B; (boundaries of 2-chains/plaquettes) corresponds to the subgroup of Z-stabilizers

Cycles C; commute with all vertex operators

H; = C;/B; defines logical Z operators - homological equivalence is equivalence under multiplica-
tion by Z stabilizers.
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What about the X part of the stabilizer? To this end, we consider the dual to homology, co-homology.
We consider the dual lattice, wherein we can define co-chains, co-boundaries, co-cycles, and co-homological
equivalence analgously to the primal lattice.

We can consider the inner product between co-n-chains and n-chains. For example (co-1-chain, 1-chain) €
F, counts the number of crossings modulo 2. In the same way that Z-operators live on 1-chains, X-
operators live on co-1 chains, and their commutation relations are encoded homologically, with:

(B.51)

We can view the 2D Ising model with the same lens:

¢ The bits live on 0-cells/vertices
® Z operators live on 0-chains

* By corresponds to subgroup of Z-stabilizers

38



e Cycles C; are the redundancies of Z-checks; if we have a cycle, we have a product of Z checks that
does not act on any vertex.
O I O C O
O D

O O O C
O 19, 9 9 O
O O O O O
O O @) @) O

What is the upshot of this? A chain complex simultaneously defines two classical codes and a quantum
code, and we get from the classical to the quantum via gauging.

“plaquette “edges” “vertices”

Local B _ T *
redundancies Checks Bits %cl - (—gX
S utaamanmncas i ba s ANt a e A aEa e gauge
Local A
Bits Checks  pedundancies cl = %Z
%cl %q %d
ojo|o|©O
o|jo$0|© E}
ojo]o|©o ;
olololo A,

The bits, checks (“hyper-edges” - because checks can be more than 2-body terms), and redundancies
(“hyper-plaquettes”) of the classical code define a notion of geometry (distinct from the geometry of the
underlying graph). Although the physical lattice properties/geometry has been appreciated in condensed
matter, the code geometry will turn out to be just as important. We will discuss this more in the next
lecture.

B.4 Gauging and Boundary Maps

In the last lecture, we will discuss:

¢ Gauging in terms of boundary maps - what is the property of the classical code living on the chain
complex which is being gauged?

® Product constructions as a way to build higher level (e.g. 2D) chain complexes from lower dimen-
sional (e.g. 1D) ones.
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e Product constructions to enrich codes with symmetries (such as subsystem symmetries), starting
from simpler codes.

B.4.1 Gauging the 1D Ising Model

Let us review the notion of a boundary map. Bits define an n-dim vector space V = F}. There is a basis
vector for each bit {|i) }., and each vector b = (010100...b,)T picks out a subset of bits.

Checks define an m-dimensional vector space V; = IFj'. There is a basis vector for each check {|a)} ,
and each vector |c) = (01110...cy)" identifies a subset of checks. The map 9 : IFj' — FFJ is the transpose
of the parity check matrix, and what it does is d1|c) = |b) where |b) is the subset of bits in the support of
the checks |c). The transpose map 9] : Fj — IF4" (which is just the parity check matrix) does the opposite,
mapping from bits to checks 9] [b) = |c), where |c) are the subset of bits triggered by the bits |b), i.e. the
syndrome.

If we look at the 1-D Ising model, we have bits on 0-cells (sites) and checks on 1-cells (edges). We can
consider the boundary map 01:

1 1 1
01
OO —— O Qe O——O—— _ e—0 0 O0—0 00—
1 1 1 1 1 1 1
9
OO s e - O—O0—O0—0—"0—"0—

The redundancy is a collection of checks which does not act on any bit (here the product of all checks).
ker(d;) defines a basis for the vector space of redundancies.
We can also consider the transpose map 97 :

of o—0—e—0—0—0
O—O==QmeeO—O—O0—— —
11 1

of oo o 0 0 o —
OmeeO—O—O==O0—0——  —b—
1 1 1 1 1
o—o—o—o—o—o—Lo—o—o—o—o—o—

The symmetry of the model is a collection of (flipped) bits which does not trigger any checks. ker(d7)
defines a basis for the vector space of symmetries.

We can now observe that this transformation is nothing more than a Kramers-Wannier duality! An
excitation in the original code becomes a degree of freedom in the transpose code, once we swap the bit
and the checks.

o Ukw T
—O R OB OEO®O— i 202 0 202 0 o

a i a i
C cr

m checks (6): C, = 07 407 m bits 77

n bits o? n checks (67) A; = ft¥ 4
Symmetry []; 07" Redundancy []; A; =1
Redundancy [],C, =1 Symmetry []; T/
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Note that to define the unitary between the two subspaces, we have to work in the symetric subspace.
Then:
dim(HI™) = 2nF = 2k — dim(HY™) (B.52)

Gauging generally is exactly this - we want to turn symmetry defects (e.g. domain walls) into dy-
namical degrees of freedom. Another way to think about it is to “make global symmetries local”. As
we discussed, we can use the transpose ¢ <+ ¢! to get a new model with the bits and checks swapped.
The KW unitary Ugw maps between the symmetric subspaces of H, HT. The last step to get a full gauge
theory in terms of the gauge degrees of freedom is to remove this constraint to map between symmetric
subspaces.

Note that for the 1D Ising model, this prescription does not yield a non-trivial gauge theory (it just
gives us the 1D Ising model back, with | <+ h swapped). Thus we need something extra to get a non-trivial
gauge theory out; in particular, we require the degrees of freedom to be extended, rather than point like
(loop-like in the simplest case).

B.4.2 Gauging the 2D Ising Model

How do we get these extended DoFs? What we will want to do is to take a classical code, but embed it into
a chain complex which is larger than just having checks and bits. In particular, let’s consider a 2D Ising
model, and add to our chain complex a V, vector space corresponding to local (few-body, not necessarily
geometrically) reduncies of checks.

“plaquettes” “edges” “vertices”

4
\

\/520510
vy | \

ocal* @ bits
redusgzncies checks bits B checks
A redundancies
Then:
9162 =0 (B.53)

and ker(d1) defines a basis for the vector space of redundancies (collections of checks that do not flip any

bits), with:

B; =1Im(d,) C ker(d1) = C;

(B.54)

and ker(élT ) defines a basis for the vector space of symmetries (collections of flipped bits which do not

trigger any checks).

5~
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In the 2D Ising model, each plaquette corresponds to a local redundancy [],c, Ca = +1. Thus the
domain walls in the model are loop like. This gives rise to the thermal stability of the Ising model, as well
as the fact that it yields a non-trivial gauge theory upon gauging. In particular, gauging the 2D Ising model
gives us a Zj-gauge theory, which corresponds to the toric code. Pictorially, the uniform superposition
over loop configuration in the ground state of the toric code arises from gauging the loop-like degrees of
freedom in the Ising model.

The beauty of the formalism is that - even though we used the Ising model here as an example - the
formalism only cares about the (boundary) maps and so the gauging procedure applies to LDPC codes
and codes on arbitrary geometries.

When we look at the KW duality for the 2D Ising model, we go from the 2D Ising model C with one
global (Z;) symmetry of the Ising model with many local redundancies to the toric code CT with one
global redundancy (obtained by multiplying out all star operators/checks [], A, = I) and many local
symmetries (the B, plaquettes).

Doing the KW duality, we go from the Ising Hamiltonian:

HIsing =—]J Z U.lzo.]z - gZCT,x (B.55)
W

where local redundancies = domain walls form closed loops, to the TC Hamiltonian:

Hrc=—] ) Zij—h ZAlgx) (B.56)
(i) ‘

where local symmetries being enforced = B}, = +1 (no vortex excitation).

@ bits

If we want to allow for vortex excitation, we follow the standard minimal coupling prescription:

1. Couple interactions to gauge fields (Tf(ff — (Tfajz ® Zjj. This takes the global Ising symmetry and
promotes it to a local symmetry.

2. Add local gauge invariant terms —K}, By, —h }_ (if) Xij. The latter makes the background gauge

fields dynamical and allows them to fluctuate (lifting the no vortex excitation condition). The former
is needed for the toric code, and comes from the redundancy of the original Ising model. By the
time we take local products, all matter fields/c cancel out, leaving us with just the B,.
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3. Enforce the local Gauss law Afx)al-x =1

So, promoting our Hamiltonian to:
H:—Zﬁ—hZ&rJZﬁ@ﬁ—Z% (B.57)
" (if) ij) P

we get a full gauge theory for Z; matter coupled to Z, gauge fields.

= phase
o)
20
<
:::3/ 0.5 .
~ 3 confined
decon- phase
fined ‘ '
Hye 0.5 1.0
h (magnetic fluct.) @ matter qubits
Fradkin, Shenker: PRD 1979 B gauge qubits

The Ising model was a fruitful example - though we were using it as a guide, boundary maps proviede
a completely general gauging prescription.

“plaquettes” “edges” “vertices”
V, Vi Yo
— T
T _
5 =6, 0, =0y

We have the composition relations:
516, =0=16,61 =0 (B.58)

which implies that [H;, Hx] = 0 as we require.
Note that the dimension of the code (characterized by the dimension of the chain complex D.) does
not necessarily coincide with the physical lattice dimension of the code D, for example in the 2D plaquette

Ising model (where we can embed a 1-D. chain complex) or 3D Ising model (where we can embded a
2-D, chain complex).
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B.5 Product Constructions

Now, given some classical codes, there are “factories” - systematic constructions we can use to construct
quantum codes.

As a first step, considering a given graph structure we can consider constructions of classical code (e.g.
Ising, Tanner, or Laplacian (sort of related to Tanner codes)):

Once we have this, we can start taking products of the classical codes C4,Cp. We can now start
discussing what these products correspond to physically.

e There are check products, which create subsystem symmetries (which play a large role in fracton
models).

¢ Tensor product, which can create local redundancies,

* A cubic product (which takes in 3 classical codes) and creates a quantum code with both local
redundancies and subsystem symmetries.

* Cellular automota product

AN Y ERANE TR LN Y

* — % @ — ¢ €y —>Cub—> €
/ %
€p Subsystem B Local / Local
symmetries redundancies € redundancies
‘@—’. ‘H c and
Subsystem
symmetries
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B.5.1 The Tensor Product

We consider the simplest product construction, the tensor product; we can use this to construct a 2D
system out of two 1D systems, e.g. building up the 2D Ising model out of 2 copies of the 1D Ising model.

X

The tensor product creates local redundancies, increasing the dimension of the chain complex by one
D. — D, +1.

B.5.2 Check product

We can instead consider the check product (which multiplies checks together), which cretes subsystem
symmetries - here we see an example of 2 copies of 1D Ising used to construct the Plaquette Ising model:

* O O O=0 O

The check product creates subsystem symmetries, and leaves D, unchanged.
More generally, we can take any 1-D, code, lay them out on a line (in 1 spatial dimension), and take
each of these products, where the checks/logicals look like:
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B.5.3 The cubic product
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In the tensor product construction, the code parameters transform as:

na,ka,da]l ® [np, kg, dg] = [nanp, kakpg,dadp)

€p
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in the check product construction, the code parameters transform as:
[na,ka,da] [np, kg, dg] = [nang, kang +nakp —kakp,min(da,dp)]

Let us explain this one. The definition of the new logicals in the check product construction follows by
taking the logicals along each row/column, and then subtracting out the newly added redundancies. The
symmetries of the bigger code only act on the lower dimensional planes inherited from the input codes,
which is precisely the subsystem symmetry that we get in the new code.

We can also consider the cubic product, which is essentially taking 3 1-D, classical codes and doing a check
product along every plane. In this case we get local redundancies and subsystem symmetries, promoting
D, — D. +1.

redundancies




B.5.4 Gauging classical codes to get quantum codes

Now that we have classical codes with redundancies, we can gauge them to get the quantum codes that
we want! The below diagram shows the output of this factory of product construction + gauging:

Euclidean ¢ non-Euclidean
3 2 |
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) 5
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B.5.5 Hypergraph product code

In the CS literature, a very common construction for quantum codes is the “hypergraph product code.”
Usually, it is formulated coding-theoretically in terms of parity check matrices. But with our physical code
factory, we can now interpret it as taking the tensor product of two codes C4,Cp to form C4 ® Cp, and
then gauging it to get a CSS code, with X/Z codes given by:

Cx = (Ca®Cp)T, Cz=(ChLeCE)" (B.61)
dx = min{da,dg}, dz =min {dg,dg} (B.62)
and overall rate:
ko = kakh + klkg (B.63)
~

Hypergraph product code

%A\
e

g

® —>C,Q@Cy—> & —> Css

We said that the toric code could be obtained by gauging the 2D Ising model, which itself could
be obtained by taking the product of two Ising models - thus we can understand the toric code as the
hypergraph product of two 1D Ising models/repetition codes. The Z logicals are derived from the global
redundancies of the 1D Ising model (and the fact that they can be deformed arises from multiplying via a
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check of the 1D Ising model), while the X logicals are derived from the global symmetries of the 1D Ising
model. The deconfined point-like (anyonic e/m) excitations arise from the domain walls of the 1D Ising
model.

The input code parameters being [#, 1, 1] enforces that under the HGP we get code parameters [1?,2, n].

Remark: When we think about the input classical LDPC codes as spin glasses, the excitations are very
restricted. When we build a quantum code out of them, we get a mixture of a topological order and a spin
glass.

B.5.6 Quantum codes in higher D. chain complexes

Indeed, we can even go to higher D, chain complexes, e.g. with the toric code, where D, = 4:

5 83.=6 5.=0% 5
Vi = 7 VA Vo (B.64)
N~ N~ ~— ~—
local red. Z checks Z-checks qubits X-checks local red. X checks

now the X, Z checks have local redundancies, so their excitations become loop like - this yields a thermally
stable quantum memory.

B.5.7 The path to Good qLDPC codes

We saw how taking two repetition codes/1D Ising models with k = 1,d = n (saturating the classical BPT
bound) and product + gauging gave the 2D toric code with k = 2,d ~ /n (saturating the quantum BPT
bound). If we do this construction with two good classical LDPC codes with k,d = ©(n), we get a qLDPC
code with k = ©(n),d ~ /n. This isnt all the way to a good code, but is already quite an improvement.
How do we now boost the d ~ /n to d ~ n? We have to dress this product in a clever way. This
was first done by Hastings/Haah/O’Donnell in 2009.03921 where they generalize the homological code
product to a fiber bundle, which yielded 13/% scaling, with a probabilistic construction. Soon after that,
Breukmann and Eberhardt constructed a k = @(n*/°) and d = Q(n*/®) code via a balanced product in
2012.09271 - this requires input codes with some enhanced symmetry (permutation of bits that leave the
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code invariant - obtained from the Cayley graph of the code). The symmetry is then modded out after
taking the product (reducing the number of bits), which boosts the distance (actually the relative distance
d/n by reducing n). This balanced product code is pictorially depicted below:

Balanced product code

Hypergraph product code

%’A\
@_-’gai@%ﬂgms""fc """"""""""" ')gcss
@ -
B

Key point: boost relative distance d/n by reducing n
(a)
FO—20—0—0—0 - &,
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(b)
- @O 0—0--@ -

Suppose we had translation symmetry by 2/1 lattice site in 2 1D models. Then, we can identify the 2D
system (given its symmetry) as an effectively 1D system with long-range interactions.

This balanced product codes were used by Pantaleev, Kalachev to construct good qLDPC codes in
2111.03654 and were also used to construct good locally testable classical LDPC codes (a property of their
energy barriers). It turns out that every good qLDPC code is a gauge dual of a locally testable code.

Remark: Good qLDPC codes also obey the “NLTS” property 2111.03654, which is a very strong form
of TO - if we define trivial/non-trivial states by the circuit depth, if we are below some T, any state
cannot be prepared by a finite depth circuit. This is very different from the toric code - e.g. the 4D toric
code is thermally stable but does not have this NLTS property; indeed the eigenstates below T, are hard
to prepare but we can do a sort of “tiling” argument where we prepare small patches of toric codes on
tiles of a larger system. The energy penalty scales with the surface/volume ratio, which can be tuned by
the size of the tiling, allowing us to create an arbitrarily low energy state (not an eigenstate) efficiently/in
finite time. In the good qLDPC setting, because the ratio of surface area to volume is constant, this kind
of construction is not possible.

Another comment - ambiguous questions about spin glasses in the Euclidean case resolve much nicely
in the expander case when we have this nice scaling of surface area to volume.
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This construction gives us a web/zoo of dualities from products and gauging/Higgsing®, organized
in terms of increasing chain complex dimension:

H
Dclhmond <-—- us:r:p'I MI = Honeycomb cluster <—- Newman-Moore 1D Ising —) 1D Cluster 2D Plaquette Ising -—) Square cluster
Fractal SPT Fractal SPT Fractal SSB SSB . Sl.rl' Subsystem SSB Subsystem SPT
@ )
Haah's code <~ Fractal Ising 'sm «“— 3D ftractal code  Lieb cluster <~ 2D Ising ==—> 2D TC 3D Plaquette Ising =—> X-cube D
Type 2 fracton Type *1.5” fracton 0O-form x 1-form SPT Top. Order Subsystem SSB Type 1 fracton

RBH < 3D gauge theory ml;lng —> (1,230 TC D,

1-form x 1-form SPT

(224D TC << 4D gauge theory 4D Ising ——> (134D TC P
Thermally stable

And if we were to replace the 1D Ising model at the root of this tree with a D, = 1 classical expander
code, we would get constructions of non-Euclidean analogs of all of these phases/models!

The conceptual upshot of the work is the introduction of a code factory that can take in a graph as
input and then produce interesting quantum codes through a physical process:

The code factory in action

1—%, ~
A *__) %A * %B /EI_, gclusl.l:r
(> 2— %, e

® > % —/G—>%IG

T—’ Gc—> T >‘5’{~/ "’css
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B.6 Conclusions

* LDPC codes furnish an interesting new classic of stat mech models for many-body physics, leading
to novel phenomena in non-Euclidean geometries.

We can understand qLDPC codes as generalized gauge theories with generalized KW dualities.

* We can recast product constructions in the literature in temrs of physical terms (symmetries, redun-
dancies, excitations). We get a unified descriptiuon of code via homology.

* We can use chain complexes to define SPTs on general graphs, and obtain qLDPC codes by measur-
ing these. (did not get to in detail)

* Tractable classical and quantum spin glasses. (did not get to in detail)

4After we have a Tanner graph, we can put a cluster state on that graph, this gives an SPT, and it is exactly the SPT we would
need to measure to get a quantum code
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C Chao Yin NUS Talk Notes

Based on Chao Yin’s talk “Robust many-body localized and error-correcting phases of matter in low-
density parity-check codes” here, based on 2405.12279, 2411.01002. Andrew Lucas also gives a talk on
these topics which can be found here.

C.1 Introduction - LDPC Codes in Theory and Practice

LDPC codes are a family of error correcting codes that are used everywhere - e.g. in encoding in-
formation transmitted from your cellphone to data stations. Originally comes from the computer sci-
ence/information theory side of things. But as the 2024 Nobel may suggest, it may be fruitful to consider
connections to physics!

Error correction actually comes up naturally in physics. One needs to look no further than the Ising
model and the classical repetition code:

Ising Model Classical Repetition code
1 000
Hamiltonian Hy = }; % Parity check matrix H = 0110
Terms are 2-local Parity checks Z;Z; 1 with weight 2
Ground states z = 0",1" 2k = 2 codewords
Symmetry operator []; X; Logical operator of the code
SSB [n, k, d] Error correcting code with large code distance d = n

An LDPC code really in some sense is just a generalization of the Ising example. We consider the
Hamiltonian:
1

w3 T -z

parity check C icC

(C1)

with the LDPC condition that |[C| = O(1) (the weight of the parity checks is constant) and each bit is in
O(1) checks. We can think of the LDPC Hamiltonian as a O(1)-degree interaction graph. We can also
think about this as a bipartite graph known as a Tanner graph, where the LDPC condition corresponds to
the Tanner graph having bounded degree.

\

22> ) 3

M 2o~ ;
K4

t s —

(pecls Bits

A “good” LDPC codes with d, k = O(n) exists on an “expander graph” which is a graph that is locally
tree-like + has long loops that make the graph highly connected - cannot be embedded in finite dimension.

Good quantum LDPC codes were discovered in 2022, see 2111.03654. Such codes have interesting
physics, and have been used to prove the NLTS (no low-energy trivial state) theorem® 2206.13228.

SStatement: Existence of (k-local) Hamiltonians such that any low-energy (en for € a constant) state requires a quantum circuit
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qLDPC ideas have seen experimental realizations, e.g. Rydberg atoms (Lukin), Trapped ion processors
(Quantinuum), Hyperbolic superconducting lattices (Houck), Optical Cavities with all-to-all interactions
(Schleier-Smith) which can relax the locality condition native to most physical systems.

This talk will discuss two facets of the physics of LDPC codes. First, we will discuss robust many-
body eigenstate localization that arises from a classical LDPC code + a quantum perturbation, discussed
in 2405.12279. The argument arises from an extensive energy barrier + detuning. Then, we will discuss
the stability of qLDPC codes to quantum perturbations, as discussed in 2411.01002. We will discuss what
properties are required for stability beyond being “good” codes.

C.2 Story 1 - Many-Body Localization
C.2.1 ETH and its violations

We consider a quantum many-body system that starts in some pure product state, and evolves under its
own Hamiltonian U(t) = e~*. The folklore is that at long times, if we look at the local density matrices,
0 A Pthermal- The underlying mechanism is the eigenstate thermalization hypothesis, peigenstates = Pthermal
(for local probes). This is the QM analog of notions of ergodicity/scrambling and gives rise to quantum
statistical mechanics. But it is a negative in the sense that it doesn’t permit interesting long-time behavior
- so counterexamples to this would be interesting! If they existed, perhaps we could use them to store or
process information.
Indeed, there are known counterexamples to ETH:

¢ Integrability, wherein we have many conserved quantitites
¢ Hilbert space fragmentation into Krylov subspaces that do not interact with each other.
¢ Anderson localization due to disorder.

But all three of these are fairly fine-tuned examples. E.g. with Hilbert space fragmentation, if we introduce
any kind of connection between the subspaces, the eigenstates would mix and we would start to see ETH.
Or with integrability if the symmetries are not preserved then we would see ETH etc.

So as a non-finely tuned example, we consider many-body localization. Even if we look at couplings
between various states, if we look at the eigenstates, they are still localized in some corner of the Hilbert
space. E.g. some exponential suppression around the |0") state (where the “weight” is concentrated, and
then the weight is supressed as ~ e~" in the number of bitflips). It is hoped that some systems may
achieve this, with the most widely studied system being the 1-D disordered spin chain. Dating back to
Anderson, we have developed deep physics theories arguing for MBL. But recent numerics 2408.04338
have called into question whether this actually persists in the thermodynamic limit or is a finite size effect.
The analytical proofs generally require on non-generic assumptions or the limit of very strong disorder.
So, can we come up with a system where we can prove MBL more generically /unambiguously?

C.2.2 Classical LDPC Codes as MBL candidates

We consider good codes with “local testability”:

|[Hx| >« min |x — z| (C.2)
codeword z
i.e. that the energy of a codeword should be at least proportional to the minimal distance between code-
word. The low energy states of locally testable codes thus have low error. Here x is a bitstring /computational
basis state. Why is this condition called local testability? Suppose I give you a codeword or a codeword

of depth Q(logn) to prepare. Proof overview - constant rate and linear distance quantum codes have expansion properties of
their check matrices, which implies their approximate code words are clustered. It can be shown for such codes that the classical
distributions of the low-energy states of these Hamiltonians are clustered and also well-spread/not concentrated, which gives rise
to the circuit lower bound.
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with a finite number of errors. Then, we want to check local parts of the bitstring to check which of the
two cases it is - if this condition is obeyed, then local checks are sufficient to verify whether x is a codeword
or not.

What does local testability buy us? The energy landscape of this “nice” classical code is such that the
codewords are far-spaced apart/require the surmounting of an O(N) energy barrier. This is exactly the
MBL condition we were looking for. It is thought that spin glass models have similar features, but LDPC
setting is a bit simpler/cleaner; we do not require frustration or long-range couplings (? - I am confused
by this that somehow the non-local properties of good LDPC codes are not leveraged).

'S .
energy of H,

far from codewords

N,

,, Hamming
7 distance

codeword 1 codeword 2 codeword 3

Consider the Hamiltonian:

H=Hy+V+H, (C.3)
with Hy a (classical) LDPC Hamiltonian,
€
H;, = —) h;Z C4
L \/N ; 1“1 ( )

and V any O(1)-local quantum Hamiltonian with ||[V|| < eN. h; is a detuning parameter, and is ii.d.
Gaussian random with 0-mean and 1-variance. So, V + H is a generic few-body perturbation.
Then we have the theorem.

Theorem: MBL for LDPC codes

If € < Cp, then with high probability 1 —2~N, any eigenstate |¢) at low energy E < CoN is localized
in one well z():

|1 = Pyl | <27V (C5)

thus we have a robust ETH at low temperature! As a corollary, starting in one well, the state does not
escape for any time .
Proof (sketch).

1. A nice LDPC code exists with exponentially many (required for the localization to be an exponentially
small subspace) deep wells. Known from classical coding theory.

2. At low energy, the extensive energy barriers suppress couplings (off-diagonals) among wells (diago-
nals):

° H = H> —|— Zwellz HZ Wlth||H>‘lOW E>H < €N

3. This energy difference is much smaller than the typical energy difference 2N from detuning. Thus,
from a PT argument we can see that the H- will not mix energy eigenstates.
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This proof is somewhat analogous to the proof of Anderson localization.

» Hopping eV < energy difference 2~ N

* ||V|| ~ eN < energy barrier ~ N

* High energy states are thermal - mobility edge

A bit more detail on the third step of the proof (detuning = no degeneracy < e™).
¢ Let us focus on Hj vs the other wells H,.

e iid. Gaussian h; implies that we have a Gaussian hg == ﬁ Y h, with Hp o<hyY; Z;.

Suppose I have an “unlucky” resonance between wells, so that the eigenstates may be delocalized. Then,
let us increase hg slightly, causing the spectrum to shift:

e Eg increases with maximal slope (}; Z;) =~ N (Feynman-Hellmann)
¢ E,,» of other wells have slope < N — D/2

The degeneracy probability is then < 22N . €N < 27N with 22N the number of energy pairs.

resonance

<

well z = 0 other wells

,,,,,,,,,,,,,,,,,,

C.3 Story 2 - Stability of quantum LDPC codes
C.3.1 Stability to local and nonlocal perturbations

We will show that the error correcting ground states of qLDPC codes are stable against generic perturba-
tions, and discuss some extra properties required for the stability to hold (beyond being “good” codes).
As a warm-up, let us consider the prototypical toric code (Kitaev, quant-ph/9707021):

Hre=-Y A~ Y (C6)

p

this is a commuting stabilizer Hamiltonian definined on a torus, and is a QEC with parameters [[L?,2, L]].
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The stabilizer group is generated by the stars A, and plaquettes B, in the Hamiltonian, and consists
of all contractible 7, X loops.

- - . - -
> -0 @ . .
* - *
lg--9- .
e o e
. . .
- - -

The logical operators X1, /1, Xp,Z, are not in the stabilizer group but commute with all stabilizers.
They are non-contractible Z/X loops going around the torus.

We know that the toric code represents a stable phase of matter; we can consider the perturbed toric
code:
H=Hrc+V (C7)

with:
V=—h) Xi—h;) Z (C.8)
i

1

wherein we obtain the phase diagram (Vidal, 0807.0487):

where we get a stable toric code phase (I) with topological order (vs. magnetically ordered phases
II/1II, wherein the charges (e)/fluxes (m) condense). Topological order/finite dimensional codes with
local topological order is generically known to be stable under generic local perturbations (Bravyi, Hastins,
Michalakis 1001.0344):
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Hy

€«

wherein the gap between the encoded and the ground states is (1), the energy splitting is expo-
nentially small in the system size L, and perturbed and unperturbed ground states are connected via a
quasi-local unitary. We may then ask about stability to nonlocal perturbations, as well as the stability of
good qLDPC codes (as opposed to the TC which has asymptotically zero rate). This has been explored
in prior works, e.g. 2405.19412 (Lavasani, Fullans, Albert, Barkeshli) which shows stability in some cases
and 2406.15757 (Li, O'Dea, Khemani) which gives physical arguments for stability. However, whether the
family of good qLDPC codes is stable or not was not resolved.

Theorem: Stability of good qLDPC codes

Suppose O(1)-local V' = ¥; V; with ¥; v touches a given qubit|| Vill < 0.1. Then, if a qLDPC (stabilizer)

code has “check-soundness”, it is stable with e~X(4) splitting (which is exponential so long as
d~n)
This is known to apply to:

1. All known good qLDPC codes
2. hypergraph-product expander codes with d ~ /n (Tillich and Zemor 0903.0566)

H, Hy+V

Implications:

* Robust violation of third law of thermodynamics (as conjectured by 2405.19412) - this is because in
the ground state subspace we have robustily many exponential degeneracies/extensive entropy.

* The toric code is not only stable against spatially local perturbations (1001.0344), but also stable
against spatially nonlocal perturbations!

¢ Classical LDPC codes (with check soundness) can be stable against symmetric perturbations - gen-
eralizing the known result that the Ising Hamiltonian is stable against symmetric (X) perturbations
but not Z perturbations.

* We get stronger locality bounds on the quasi-local unitary U, which is reported on in 2502.02652

C.3.2 Does QEC imply stability?

For the remainder of the talk, we elaborate on the check-soundness condition. To open this discussion, we
ask; does QEC imply stability generally? Well, we know that error correction implies that ground states
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are locally indistinguishable:
plﬁ)cal — pbocal (C.9)

thus for local V' = Y ; V; then first order perturbation theory yields (¢,|V;|¢n) o d,y or equivalently
PVP « P - the V; cannot take us to different parts of the ground state subspace. For higher/k-order
perturbation theory, PV; ... ViP « P unless V; ... V) forms a logical, which requires k ~ L, implying an
e~ L energy splitting. This argument seems to favour the stability of QEC codes.

But! Even V =} stabilizers may destroy the gap. Consider the “Ising” toric code:

Hy=—3 Ao~ By, — ) ByBy (C.10)
¢ (pr')

where the sum runs over neighbouring plaquettes. In this case, we get the same ground states of the toric
code. However, the Ising toric code is unstable against:

V=e) B, (C.11)
p

Because the B, = —1 becomes more energetically favourable:

H Hy+V
[{’H ) A PASIIIASS

so, QEC is not sufficient for stability.

C.3.3 Local Topological Order

What people have considered is the notion of local topological order (1001.0344), which is a stronger
version of the error correction condition that is sufficient for stability.

Definition: Local topological order

For any ball region B, let B = B UNeigh(B). The LTO condition is then that for any ball with r < L
(with L, say, the code distance), the local ground states P are indistinguishable, with:

57


https://arxiv.org/abs/1001.0344

This is a stronger version of the error correction condition, as if we take B to be the whole system we
recover the error correction condition. This rules out scenarios like the “Ising” TC because the B, = +1
subspaces are distinguishable locally. Note that for stabilizer codes that any stabilizer Op is a product of
checks in B.

C.3.4 Generalizing LTO - check soundness

How do we generalize LTO to qLDPC codes/expander graph settings? The generalization is not straight-
forwards. First, its worth noting that these ball regions are not good, because we can only consider balls
with L < log N due to expansion properties. But, we cannot control perturbations V1V, ...V} at order
k > log N. So, we can only get an inverse polynomial energy splitting, rather than exponential.

Other suggestion - could we consdier general regions with bounded volume instead of diameter? No
- LTO does not hold for such general regions, and we can even just consider the toric code:

gtabilizerin'S

[] cheeks

for w syndrome X

Does this imply that we must fill holes in infinite dimensions? This seems quite daunting. Instead, we
consider an algebraic construction.

Definition: Check soundness

A code has check soundness f, if each weight-x (x < d) stablizer can be expanded as a product of
< f(x) checks.

The (2D) toric code has f(x) ~ x2, because the weight x loop stabilizer can be expanded as a product
of ~ x2 checks on the interior of the loop. For LTO in d dimensions, we have that f(x) ~ x“.

The best case is a linear check soundness with f(x) ~ x - the LDPC conditions oif constant stabilizer
weight and qubit degree ensure that linear is the best we can do.

Interestingly, the linear check soundness is equivalent to the local testability of the corresponding
classical LDPC code. Morally, this is because local testability means that low energy states are low error
states (as a map from checks (low energy) to bits (low error)). Linear check soundness is the other way
around, where a small stabilizer implies a small number of checks (as a map from bits (small stabilizer) to
checks (small number of checks)). Check soundness thus becomes a natural figure-of-merit for diagonising
qLDPC codes.
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Stability holds for better-than-quadratic f(x) ~ x?>~¢, or any polynomial f(x) in finite dimensions.
Indeed, all known good qLDPC constructions satisfy this.
As a non-example, we note that the Ising TC does not have check soundness, because:

By, = Bpo(BpoBpy) - - (Bp, 1 Bp,) (C.13)
If we consider a generic perturbed Hamiltonian:
H=Hy+V=-— Zchecks +e€ Zlocal stabs (C.14)

check-soundness implies that each local stabilizer is associated to a small number of checks. For a state
to gain a lower energy E from violating stabilizers, it needs to violate many checks such that the energy
penalty from Hy is > E.

Illl 114)*“

Thus the gap is stable.

C.4 Conclusion + Outlook

In the first part of the talk, we showed ergodicity breaking from energy barriers, proving robust localiza-
tion for classical LDPC codes.

e Can we give a proof for finite-dimensional models with long-range interactions?
e Can we break ergodicity up to long timescales? Quantum metastability (2408.05261)

In the second part, we showed that quantum LDPC codes represent stable error-correcting phase of
matter.

* What does the classification of these error correcting phases look like?

* Are excited states similarly stable? This might tell us that qLDPC codes are stable quantum memo-
ries.

¢ NLTS property has been proven for qLDPC codes... can we show that there is true quantumness at
finite temperature? This relates to the longstanding open quantum PCP conjecture.
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