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1 Motivation

• Systems are hard to solve! Even “simple” models like Ising (in 3D), Hubbard (in 2D) escape exact
solutions...

• Going to infinite coordination can give us a better mathematical handle, and could give us intu-
ition/insight about what happens in “real” models (more realistic coordination matters), insights
into the nature of phase transitions.

• Many realms of application:

– Superconductors (very long coherence length/cooper pair width on the lengthscale of atoms)

– Modelling of nuclei (Lipkin model of nucleus)

– Van der Waals gases

– Long range interactions ∼ r−p for sufficiently small p, e.g. 1-D Ising model with p < pc = 2
behaves like Infinite coordinated version.

– Fireflies and syncing of light phases; all-to-all Kuramoto model (https://home.iscte-iul.pt/
~jaats/myweb/papers/new_kuras.pdf https://heptar.ch/6IT1/#sec-5) of:

θ̇i = ωi +
K
N

N

∑
j=1

sin(θj − θi) (1.1)

– Mean field (Sherrington-Kerrpatrick) model for spin glases (first solvable model! and confu-
sions about negative entropy lead to RSB, Parisi’s nobel prize) - mean field solutions can be
complicated/rich!

– Superradiance (N atoms coherently interacting with light to emit a high intensity pulse).

• Personal motivations; studying quantum dynamics and phase transitions on a hyperbolic lattice.
There there is a sense of “infinite dimensionality” - if we take one definition of dimensionality for
hypercubic lattices:

lim
N→∞

ln cN
ln N

= d (1.2)

with cN the number of sites that are N steps from a given site, for a Bethe lattice/infinite Cayley

tree we have cN = q (q−1)N−1
q−2 ∼ qN for coordination number q, which is faster than Nd (so “infinite

dimensional”) - even though the coordination number q is finite in this case (so not quite the same
limit we are taking of q → ∞ in the models we consider in this talk), is there perhaps something we
can learn about our system from these mathematically tractable models?
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2 Warm-Up: Mean Field Theory and Ising Models

2.1 What is MFT?

What is mean field theory? In condensed matter we think of it often as replacing an interaction term with
an average/molecular field to replace a many-body problem into a solvable single body problem

(heuristic sketch)
In Landau-Ginzberg theory, we write down some expression for the free energy as dependent on an

order parameter (as opposed to microscopic details), e.g. magnetization. Mean field theory is obtained
by looking at the minima of such free energy (saddle point approximation), neglecting fluctuations of the
order parameter.

2.2 Mean-Field Solutions to Ising

For example consider the Ising model with energy:

H = −J ∑
⟨ij⟩

sisj − B ∑
i

si (2.1)

Replace sisj using deviation from average m = ⟨si⟩:

sisj = [(si − m) + m][(sj − m) + m] = (si − m)(sj − m) + m(sj − m) + m(si − m) + m2 ≈ m(si + sj)− m2

(2.2)
so:

Hm f = −J ∑
⟨ij⟩

[m(si + sj)− m2]− B ∑
i

si =
1
2

JNqm2 − (Jqm + B)∑
i

si (2.3)

Replaced the interactions with an effective single-spin interaction Beff = (Jqm + B).
Partition function:

Z = ∑
{si}

e−βE[si ] = ∑
m

e−βF(m) =
∫

dme−βN f (m) (2.4)

Replace spins with mean value ⟨s⟩ = m:

E = −J ∑
⟨ij⟩

m2 − B ∑
i

m =⇒ E
N

= −1
2

Jqm2 − Bm (2.5)

with q the coordination number. Magnetization of configuration is:

m =
N↑ − N↓

N
=

2N↑ − N
N

(2.6)

So:

log Ω = log
N!

N!(N − N↑)!
=⇒ log Ω

N

≈
Stirling log 2 − 1

2
(1 + m) log(1 + m)− 1

2
(1 − m) log(1 − m) (2.7)

So:

f (m) ≈ E − TS = −Bm − 1
2

Jqm2 − T
(

log 2 − 1
2
(1 + m) log(1 + m)− 1

2
(1 − m) log(1 − m)

)
(2.8)

Minimizing:
∂ f
∂m

= 0 =⇒ m = tanh(βB + βJqm) (2.9)
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Self-consistency condition for m.
Taylor expanding for small m:

f (m) ≈ −T log 2 − Bm +
1
2
(T − Jq)m2 +

1
12

Tm4 (2.10)

Sign of quadratic term tells us whether we have one minima at m = 0 or degenerate minima ±m0, giving
gritical temperature:

Tc = Jq (2.11)

with:

m0 =

√
3(Tc − T)

T
(2.12)

(c.f. vg − vl ∼ (Tc − T)1/2 in Van der Waals)
Heat Capacity:

c =
1
N

β2 ∂2

∂β2 log Z =

{
0 T → T+

c

3/2 T → T−
c

(2.13)

Introducing external magnetic field:

f (m) ≈ −Bm +
1
2
(T − Jq)m2 +

1
12

Tm4 (2.14)

at T = Tc we have:
m ∼ B1/3 (2.15)

(c.f. vg − vl ∼ (p − pc)1/3 in van der waals)
and for T ≥ Tc but close we have:

f (m) ≈ −Bm +
1
2
(T − Tc)m2 =⇒ m ≈ B

T − Tc
=⇒ χ =

∂m
∂B

=
1

T − Tc
(2.16)

and approaching from other side we see:

χ ∼ |T − Tc|−1 (2.17)

In Landau-Ginzberg theory, we write down the free energy:

F[m(x)] =
∫

ddx f [ϕ(x)] =
∫

ddx
[

1
2

αϕ2 +
1
4

uϕ4 +
1
2

K(∇ϕ)2 + . . .
]

(2.18)

and solve/approximate the functional integral:

Z =
∫

Dϕe−βF[ϕ(x)] (2.19)

Looking at functional derivative/saddle point approximation:

δF
δϕ(x)

= αϕ + uϕ3 − γ∇2ϕ (2.20)

Setting to zero, we get:
γ∇2ϕ = αϕ + βϕ3 (2.21)

Gives rise to same structure as previous mean field theory approach.
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2.3 Comparison with Infinite range

Consider now the infinite-range Ising model, where every neighbour talks to each other. We then take the
coupling to be uniformly J

N between all spins, so:

H = − J
2N ∑

i,j
sisj − B ∑

i
si (2.22)

Defining the magnetization as:

m = ∑
i

si
N

=⇒ mN = ∑
i

si (2.23)

we can write the Hamiltonian purely in terms of m:

H = − J
2N

(
∑

i
si

)2

− h ∑
i

si = − J
2N

(Nm)2 − BNm (2.24)

so:
E
N

= −1
2

Jm2 − Bm (2.25)

This is exactly the E
N we had before!

So while we did an approximation in the Ising case for the energy of a configuration by replacing every
spin with its mean in the mean-field approximation, here the approximation is exact. This is one example
where the two coincide (and it is intuitive that it would - if the system is all-to-all with equal coupling
then the average literally is equivalent to the microscopic spin degrees of freedom) but its worth noting
that this is not always the case - example to be given towards the end of the talk. Have to be careful with
intuition!

2.4 Critical Exponents

Scaling of quantities at phase transitions:

c =
dE
dT

∼ c±|T − Tc|−α (2.26)

(at B = 0, as T → Tc):
m ∼ (Tc − T)β (2.27)

χ =
∂m
∂B

∣∣∣∣
B=0

∼ |T − Tc|−γ (2.28)

(at fixed T, take B → 0)
m ∼ B1/δ (2.29)

Also, we can look at correlation function:

〈
ϕ(x)ϕ(y)

〉
=

{
1

rd−2+η r ≪ η

e−r/η r ≫ η
(2.30)

where:
ξ ∼ |T − Tc|ν (2.31)

MFT predicts (universality!):

α = 0, β =
1
2

, γ = 1, δ = 3, η = 0, ν =
1
2

(2.32)

The ones for correlation functions being computed by doing the path integral at quadratic order (wherein
it is solvable/Gaussian), i.e. only consider quadratic order contributions to the free energy.
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2.5 Critical Dimensions

Saw how q → ∞ seems to make MFT exact. When else is it useful? Usual considerations are in terms of
spatial dimensions of the system:

• dupper
c is the dimension where the transition changes to mean-field like (e.g. dupper

c = 4 for ϕ − 4
theory). To see this, we want fluctuations/correlations to be small, i.e.

〈
ϕ2
〉
≫
〈
ϕ
〉
, so:

R =

∫ ξ
0 ddx

〈
ϕ(x)ϕ(0)

〉∫ ξ
0 ddxm2

0

∼ 1
m2

0ξd

∫ ξ

0
dr

rd−1

rd−2 ∼ ξ2−d

m2
0

(2.33)

with MFT exponents:
m0 ∼ |T − Tc|1/2, ξ ∼ |T − Tc|−1/2 (2.34)

so:
R ∼ |T − Tc|

d−4
2 (2.35)

which is small only for d > 4, setting the upper critical dimension. Notably for the Ising model the
d = 2, 3 critical exponents disagree with MFT.

• dlower
c is the dimension below which there is no phase transition (e.g. all 1D systems have dlower

c ≥ 1
due to entropic arguments (domain walls of energy ϵ that does not scale with L, entropy ∆S = −ϵ/T,
L/a positions for domain wall so ∆S = kB log(L/a). So if T > 0 and L large, the entropy gain
dominates), all 2D systems with continuous order parameters have dlower

c ≥ 2 due to Mermin-
Wagner (If we had SSB, then we would have massless Goldstone Bosons/fluctuations which are
strong enough to destroy the SSB))

3 Review: Large-size critical behavior of infinitely coordinated sys-
tems

(Botet and Jullien, Phys. Rev. B 28, 3955 (1983))
Consider q = N infinitely coordinated systems. Usually we think about the limit where N → ∞,

but here they argue for (and then check analytically/numerically) a scaling argument for the scaling of
thermodynamic quantities with system size N.

3.1 Scaling Argument

Consider correlation length:
ξ ∼ |T − Tc|−ν (3.1)

and a thermodynamic quantity which is singular at the transition:

A ∼ |T − Tc|a (3.2)

Scaling hypothesis:
A ∼ |T − Tc|aFa(L/ξ) (3.3)

where Fa(x → ∞) = const in the thermodynamic limit, and Fa(x → 0) ∼ xωa = −a/ν for A to be analytic
at T = Tc for L finite, so:

A
∼

T = Tc Lωa ∼ L−a/ν (3.4)

This hypothesis is valid for d < dupper
c . However - L, d lose their meaning in systems with infinite coordi-

nation. We replace ξ with Nc/a coherence number, which we suppose diverges:

Nc
∼

N = ∞ |T − Tc|−ν∗ (3.5)
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In the short-range case Nc is the sites in volume ξd, here it is just a tool. Thermodynamic quantities scale
as:

A
∼

N = ∞ |T − Tc|aMF (3.6)

so we modify scaling hypothesis:
A ∼ |T − Tc|aMF F∗

a (N/Nc) (3.7)

with F∗
a (x → ∞) = const. and F∗

a (x → 0) = xωa , ωa = −aMF/ν∗. So then at T = Tc:

AT=Tc ∼ Nωa ∼ N−aMF/ν∗ (3.8)

They then argue ν∗ via comparing with a system at d = dc and L = N1/dc . For L → ∞, this short range
system has MF behaviour. If we assume (a) that the scaling argument applies at the critical dimension and
(b) the infinite and finitely coordinated system has the same scaling exponents, then Nc ∼ ξdc and so:

ν∗ = νMFdc (3.9)

Note: Scaling is not quite correct at d = dc (logarithmic corrections due to corrections), could argue
that the fluctuations dissapear in the infinite range limit (and they check this in the examples). So:

A
∼

T = Tc Nωa = N− aMF
νMFdc (3.10)

3.2 Analytical (dupper
c = 4) Examples

• For infinite range classical Ising model compute m analytically (taking the energy we wrote down
earlier as a starting point), finding that:

m2 ∼ |Tc − T|
Tc

(
N
Nc

)−1/2
×

∫
. . .
(

N
Nc

)−1/2

∫
. . .
(

N
Nc

)−1/2 (3.11)

which is precisely the scaling form of Fα(x) and αMF = 1
2 . Nc has an exponent ν∗ = 2, consistent

with ν∗ = νMFdupper
c with νMF = 1/2 and dupper

c = 4 for short-range Ising.

• Infinite range Heisenberg model:

H = − J
N ∑

i ̸=j
Si · Sj (3.12)

Same analysis (Z only differs by terms of O( 1
N ) and only driven by thermal (not quantum) fluctua-

tions so dupper
c = 4 is the same).

• Spherical Model:

H = − J
N

(
∑

i
σi

)2

(3.13)

with:

∑
i

σ2
i =

N
4

(3.14)

again, similar conclusions (dupper
c = 4, this model has many of the same features phase-wise as

infinite range Ising).
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3.3 Mixed Numerical/Analytical Example: Anisotropic XY model in transverse field

H = − 1
NS ∑

i<j
(XiXj + γYiYj)− Γ ∑

i
Zi (3.15)

d-dimensional quantum model has same critical behaviour in temperature as classical Ising in d + 1, with
gap ∆ is the inverse of the coherence length in the classical example, so:

∆ ∼ L−1 (3.16)

and dc = 3. Believed that for γ = 1/isotorpic case that this equivalence does not hold, and z = 2 - classical
model in d + 2 dimensions? So dc = 2.

They calculate the magnetization/gap analytically with MF analysis and numerically otherwise.

m2 =
1

NS
⟨0|
(

∑
i

Xi

)2

|0⟩ (3.17)

m2 =
1

NS
⟨0|
(

∑
i

Xi

)2

+

(
∑

i
Yi

)2

|0⟩ (3.18)

3.4 Mean-Field Analysis (N = ∞)

For mean-field, they rewrite:

H = − 1
2Ns

(
J2
x + γJ2

y − Kx − γKy

)
− ΓJz (3.19)

with:
Jx = ∑

i
Xi, Ki = ∑

i
X2

i (3.20)

Wherein we can neglect the K terms as N = ∞:

H = − 1
2J

(J2
x + γJ2

y)− ΓJz (3.21)

Consider to be one spin of size NS, treat classically and minimize:

E(θ, ϕ) = − J
2
(sin2 θ cos2 ϕ + γ sin2 θ sin2 ϕ)− ΓJ cos θ (3.22)

and calculate m = Jx/J = sin θ cos ϕ, yielding:

m∞ = (1 − Γ2)1/2 Γ < 1 (3.23)

m∞ = 0 Γ > 1 (3.24)

and the isotropic case gives the same result. ∆ can be obtained the gap with the frequency of the motion
of the large spin. Replacing Jz by its mean field value, we find:

∆∞ = 0 Γ ≤ 1 (3.25)

∆∞ = [(Γ − 1)(Γ − γ)]1/2 Γ ≥ 1 (3.26)

so:
∆∞ ∼ (Γ − Γc)

sMF (3.27)

with smf = 1/2 for γ ̸= 1, smf = 1 for γ = 1.
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3.5 Numerics

Spin-1/2 makes the Kα terms simple constants (as just identities) so we can use the “Mean-field limit” for
finite N. Studied in large N criticality (N ∼ 150), since H only connects |j, m⟩ states with |j, m ± 2⟩ states,
diagonalization of (N/2)× (N/2) matrices. Numerically they find:

∆ ∼ exp(−aN), m − m∞ ∼ N−1 Γ < 1 (3.28)

∆ ∼ N−1/3, m ∼ N−1/3 Γ = 1 (3.29)

∆ − ∆∞ ∼ N−1, m ∼ N−1/2 Γ > 1 (3.30)

They then check against the found critical exponents against the general scaling relations and find
them to be in agreemnet numerically. They also check S = 1 and find agreement, S = 3/2 less clear due
to system size limitations. Remark - these numerical results are confirmed analytically 20 years later by
Dusuel/Vidal, in next section.

3.6 γ = 1 Analytics

For the γ = 1 case, the Hamiltonian is diagonal in the j, m basis adn they can write down the eigenvalues,
magnetization, gap immediately. They then find magnetizations ∆ = N−1 and m = m∞ + O(1/N) with
MF recovered with N → ∞. Scaling forms are consistent if νMF = 1/2 like Ising is assumed and dc = 2.

They also provide a numerical analysis of a quantum model with Yang-Lee edge singularity, i.e. TFIM
with complex/imaginary field:

H = − J2
x

2J
− ΓJz − ihJx (3.31)

3.7 Takeaways

Simple argument for scaling! Has been checked for O(n = 1), O(n = ∞) classical models with dc = 4 and
numerically in quantum models (XY models). Could be applied to complicated models to derive critical
dimension via scaling arguments. Interpretations of numerical results in parameters regions where infinite
coordination physics is expected, e.g. if studying systems with r−p interactions which behave like infinite
coordination, or systems with high q...

4 Analytical Arguments for Scaling (Dusuel and Vidal PRL 93, 237204
(2004))

Analytical Arguments for the Scaling Behaviour as postulated by Botet/Jullien (e.g ∆ ∼ N−1/3) is con-
firmed by a combination of O(1/N) expansion (Holstein-Primakoff), continuous unitary transformation
+ scaling argument. LMG in spin operators is given by:

H = − J
N ∑

i<j
(XiXj + YiYj)− h ∑

i
Zi = − J

N
(1 + γ)(S2 − S2

z − N/2)− 2hSz −
J

2N
(1 − γ)(S2

+ + S2
−) (4.1)

Analyze this via Holstein-Primakoff into bosonic operators:

SZ = S − a†a = N/2 − a†a (4.2)

S+ = S†
− = (2S − a†a)1/2a = N1/2(1 − a†a/N)1/2a (4.3)

8



and then expand Taylor expand the square roots (as you may have done in a condensed matter class to
solve the ferromagnetic Heisenberg model), obtaining an expansion in 1

N :

H = H0 + H+
2 + H−

2 (4.4)

H0 = ∑
α,δ∈N

h(δ)0,α Aα

Nα+δ−1 (4.5)

H+
2 = ∑

α,δ∈N

h(δ)2,α(a†)2 Aα

Nα+δ
(4.6)

Aα = (a†)αaα (4.7)

They combine this with a continuous unitary technique to diagonalize order by order in O( 1
N ), letting l

be a scaling parameter and:
H(l) = U†(l)HU(l) (4.8)

wherein we have the flow equation:

∂l H(l) = [η(l), H(l)], η(l) = −U†(l)∂lU(l) (4.9)

such that H(l = ∞) is diagonal (original proposal for anti-Herm generator η(l) is η(l) = [Hd(l), Hod(l)]
(diagonal/off diagonal parts) but they use η(l) = H+2(l) − H−

2 (l)), Expectation values of eigenstates
of H for operators Ω can be evaluated by solving ∂lΩ(l) = [η(l), Ω(l)] and they use this to confirm
∆(N) ∼ N−1/3, as well as the scaling of the ground state energy, magnetization, two-point functions.

E0(N) ∼ −1 − 1 − γ

2n
+

ae

N4/3 (4.10)

2 ⟨Sz⟩
N

∼ 1 +
1
N

+
az

N2/3 (4.11)

4
〈

S2
x

〉
N2 ∼ axx

N2/3 (4.12)

4
〈

S2
y

〉
N2 ∼

ayy

N4/3 (4.13)

4 ⟨Sz⟩
N2 ∼ 1 +

2
N

+
azz

N2/3 (4.14)

5 Adiabatic Dynamics (Caneva, Fazio, and Santoro, J. Phys.: Conf. Ser.
143 012004 (2009))

Caneva, Fazio, and Santoro, J. Phys.: Conf. Ser. 143 012004 (2009)
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5.1 Model and review

Look at LMG model, but study its dynamics at the phase transition (mean-field like, but adiabatic dynam-
ics are interesting):

We study (spin-1/2):

H = − 2
N ∑

i<j
(XiXj + γYiYj)− Γ ∑

i
Zi (5.1)

Rewrite using Sx = ∑i Xi (and so on):

H = − 1
N
[S2

x + γS2
y]− ΓSz (5.2)

commutes with S2, does not couple different parity states as [H, S2] = [H, πiZi] = 0. For γ = 1 it is also
that [H, Sz] = 0.

Second order Qphase transition at γc = 1 characterized by mean field.

m∞ = (1 − Γ2)1/2 Γ < 1 (5.3)

m∞ = 0 Γ > 1 (5.4)

and the isotropic case gives the same result. ∆ can be obtained the gap with the frequency of the motion
of the large spin. Replacing Jz by its mean field value, we find:

∆∞ = 0 Γ ≤ 1 (5.5)

∆∞ = [(Γ − 1)(Γ − γ)]1/2 Γ ≥ 1 (5.6)

Gap scaling:
∆N − ∆∞ ∼ N−1/3 γ ̸= 1 (5.7)

∆N − ∆∞ ∼ N−1 γ = 1 (5.8)

Scaling behaviour for identification of dynamic regimes. Note that teh relevant gap is not the equilib-
rium gap between the ground/first excited state, but scaling is identical.

5.2 Adiabatic Dynamics

Γ ≫ 1 at tin = −∞ to Γ = 0 at t = 0:
Γ(t) = −t/τ (5.9)

for t ∈ (tin, τ].
Simulation is simplified by this fact; GS for Γ ≫ 1 is fully up polarized, so belongs to S = N/2. Since S

is a constant of motion, we can restrict to this subpace, and look at |N/2, Sz⟩ basis for Sz = −N/2, . . . N/2,
wherein the Shrodinger evolution:

|ψ(t)⟩ =
N/2+1

∑
j=1

u2j−1(t)|N/2,−N/2 − 2 + 2j⟩ (5.10)

amounts to:

i
du2j−1

dt
= ∑

k
Aj,ku2k−1(t) (5.11)

Odd amplitudes drop out due to parity conservation, so only need to consider (N/2 + 1) × (N/2 + 1)
symmetric matrix A to simulate.
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Adiabaticity can be quantified via residual energy (depends on τ - slower the time, smaller the residual
energy):

Eres = Efin − Egs = ⟨ψ(tfin)|H(tfin)|ψ(tfin)⟩ − Egs (5.12)

or via incomplete magnetization:
minc = mgs − m(t) (5.13)

with:
m2 =

4
N2 ⟨ψ|S

2
x + S2

y|ψ⟩ (5.14)

For γ = 0, both are related and only depend on the average value of S2
x.

5.3 Numerics

N = 1024 spins, τ ∼ 103 − 104. The adiabaticity (as quantified by Eres and minc) is roughly independent
of γ as long as γ ̸= 1 where the system acquires XY-symmetry, so we take γ = 0.

Three different regimes - fast quenches involve all instantaneous levels (i.e. strongly not adiabatic), with
Eres close to maximal and not N-dependent. For larger τ, second intermediate regime with Eres ∼ τ−3/2.
Further larger values of τ gives Eres ∼ τ−2.

Probability of exciting system into first excited state is given by Landau-Zener formula (probability of
exciting a system through an avoided level crossing where ∆E = αt and a gap of 2∆ at t = 0. i.e.:

H(t) =

(
αt
2 H12

H∗
12 − αt

2

)
(5.15)

):
PLZ ≈ e−α∆2τ (5.16)

The ∆ that appears here is not the gap between the GS/first excited state, but between the GS and the
second excited state.

The maximum system size for a defect free quench can be estimated as:

1
Nfree

∼
(
|ln Pex|

α

)3/2
1

τ3/2 (5.17)

The residual energy per site is then (TODO - what??)

Eres

N
∼ 1

N2
N

Nfree
N ∼ const.

τ3/2 (5.18)

What about the last regime where Eres
N ∼ τ−2? This is the usual error in adiabatic evolution (usual?? -

Ok, I’ve now looked at https://www.prl.res.in/~library/gpdf/e-books/Springer_e-books/Quantum%
20Annealing%20and%20Other%20Optimization%20Methods%202005.pdf Simulated Quantum Annealing
by Real-time evolution 4.3.2 and it basically appears to be (a) fairly universal behaviour numerically and
(b) Derivable analytically, though their proof is not very physically intuitive/quick), Can we see this via:

Hpert =

(
0 H12

H∗
12 0

)
(5.19)

where |H12|
h̄ = ∆

2 = ω12 is the rabi frequency, duration of the adiabatic change is |H12|
α = τ so we want

ω12τ ∼ τ2 ≫ 1 i.e. 1 ≫ 1
τ2 for adiabaticity?), but they also try to give a physical explanation via Landau-

Zener.
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They also explain this via Landau-Zener, but requires some modification. The two-level LZ theory
applies to fast enough quenches, but deviations arise for larger τ. This is because there is more than
one avoided crossing. The timescale for jumping is probability of asymptotic jump with the slope at the
crossing point:

Γjump ∼ P(∞)

P′(Γcross)
(5.20)

and Γjump ∼ exp(τ) for τ ≫ 1, so consecutive transitions are not independent.
They thus consider a three level system, where instead of a final time of t f = ∞ they have a finite

evolution at Γ f = t f /τ = 2, with Hamiltonian:

H =

−∆1Γ Ω1 0
Ω1 ∆1Γ Ω2
0 Ω2 ∆3Γ + a3

 =

−∆1t/τ Ω1 0
Ω1 ∆1t/τ Ω2
0 Ω2 ∆3t/τ + a3

 (5.21)

modifing the LZ transition probability for t f finite:

Pex(τ) ∼ PLZ(τ)︸ ︷︷ ︸
e−πΩ2

1τ/∆1

+(1 − 2PLZ)
1

16Γ4
1

τ2

∆2
1
(1 + ∆2

1
Ω2

1
Γ2

f )
3
∼ 1

τ2 (5.22)

Where t f → ∞ recovers the usual probability (How?).
For intermediate τ the third
∆3 controls the slope of the crossing, a3 controls the position of the crossing. For moderate slope and

far crossings, Pex is unaffected (reduces to the 2-level case), for τ large/highly adiabatic, both the slope
and location modifies the effective duration of FTLZ/finite-time Landau-Zener, “the transposition of the
effect in the LMG model is simply to stop the probability from relaxing towards the asymptotic value
when the system has reached the second avoided crossing.” - in any case the 3-level analysis seems to
reproduce the τ−2 behaviour.

5.4 Takeaway

• Adiabatic dynamics has three regimes; τ small for which strongly non-adiabatic (many transitions), τ
intermediate (lowest critical dynamically accessible gap dominates the evolution, so 2-level dynamics
with ∼ τ−3/2), τ large (strongly adiabatic, general feature of adiabatic dynamics, they also explain
through multi-level + finite time LZ model).

5.5 Quantum Criticality in Infinite-Range Ising (Curro, Danesh, and Singh, Phys.
Rev. B 110, 075112 (2024))

(Curro, Danesh, and Singh, Phys. Rev. B 110, 075112 (2024)) They study the infinite-range quantum TFIM
and show devitations from MFT! So can’t necessarily trust the averaging intuition.

Infinite-range quantum Ising model:

H = − J
2N

(
∑

i
Zi

)2

− B ∑
i

Xi (5.23)

with J = 1. Mean-field theory approach to replace with:

Hmf = −mzZ − BX (5.24)
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and then determine mz = ⟨Z⟩ self-consistently, but the properties of this model differ from the mean-field
behaviour. In this paper, they leverage that the Hamiltonian only depends on:

Sz = ∑
i

Zi, Sx = ∑
i

Xi (5.25)

which both commute with the total spin:

S2 = ∑
i

S2
i = ∑

i
(X2

i + Y2
i + Z2

i ) (5.26)

So this is conserved under the dynamics; can fragment into total-spin s ∈ [0, 1, . . . 2s + 1] sectors, with
dimHs = 2s + 1. We can diagonalize each numerically efficiently (and in the paper they compute spectral
properties for thousands of spins).

They study energy gaps ∆1, ∆2 between the ground and first/second excited states, differs from MF
behavior (though the linear-to-zero transition is predicted). For ∆2 MF ∆2 does not go below 2J, but the
quantum simulation shows ∆2 → 0 as a cascade of states comes down and becomes zero energy as N → ∞
at QCP. A plot of the gaps confirms that ∆ ∼ N−1/3 in the thermodynamic limit. MFT overestimates ∆1/∆2
by J/2J, using perturbation theory in the large-field limit.

They also use quantum Fischer information to study the quantum criticality, namely the entanglement
of the state at the QCP (c.f. mean field theory gives a product state, so no QFI):

FQ(Ô) = 2 ∑
i,j

(pi − pj)
2

pi + pj
|⟨i|Ô|j⟩|2 (5.27)

Where they take Ô = Sz. fq = FQ/N diverges at the QCP as N → ∞, with fQ ∼ T−1, fQ ∼ |h − hc|−1/2 as
T → 0, h → hc = 1 consistent with γ − zν = 1/2 with γ = 1/2, z = 1, ν = 1/2.

Susceptibilities: Transverse magnetization approximately fits mean field behaviour (though misses
enhancement near the critical point as h → h−1

x ) and longitudinal magnetization is consistent with MFT.
They also study heat capacity and transverse magneitzation at finite temperature.
They apply this to Thuliam Vanadate materials (where they see rapid spin-spin decoherence in NMR

experiments from quantum critical fluctuations - inconsistent with mean field behaviour, but consistent
with QCP).
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