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Motivation - What is hyperbolic space?

Image Credits: Reefguide; Wikipedia; D. Dunham (Transformation of Hyperbolic Escher Patterns)
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Motivation - General Survey

Image Credits: Wikipedia; Org. Lett. 2017, 19, 9, 2246-2249; arXiv:1703.00590; Quantum 5, 585 (2021)
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Motivation - Specific Questions

Euclidean: Established relationships between adiabaticity/phases/gaps/correlations.

Image Credit: Phys. Rev. B 82, 155138
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Motivation - Specific Questions

Correlations and Energetics: Euclidean intuitions can be broken...
▶ No Goldstone bosons [Lauman et. al, Phys. Rev. B (2009)]
▶ Non-divergent correlation length at phase transition [Nagaj et. al, Phys. Rev. B (2008)]

Efficient preparability of states?

Image Credit: Phys. Rev. B 77, 214431
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Setting - TFIM on Cayley Tree/Bethe Lattice

H = −J
∑
⟨ij⟩

ZiZj − g
∑
i bulk

Xi−gbdy
∑

i boundary

Xi

Image Credit: arXiv:1406.2819
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Techniques - Tensor Networks

A[j]

po1

o2

i

Rotational symmetry =⇒ O(L) tensors for L rings (∼ 2L(!) qubits!)
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Techniques - Dynamics via MPO

Trotterized exp(βH) or exp(itH) can be applied to simulate time evolution
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Techniques - Expectation Values

Canonical form makes computing local expectation values efficient/stable.

Image Credit: arXiv:2210.111308 25



Results - Phase Diagram
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Results - Phase Diagram
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Results - Static Spatial Correlations (Cat State Growth)
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Results - Static Spatial Correlations (Cat State Growth)
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Results - Static Spatial Correlations (Algebraic Decay)
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logZ(r) vs. log(r) at crit (J = 0.448, g = 1, gbdy = 0.1)
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Tells us about ⟨Z0Z(r)⟩c = ⟨Z0Z(r)⟩ − ⟨Z0⟩⟨Z(r)⟩ = ⟨Z0Z(r)⟩ = C⟨Z(r)⟩.

Algebraic, not exponential (as in Bethe case)!
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Results - Spectrum from Dynamic Correlations (Z)

⟨↑| e−βHZe−βH |↑⟩ =
∑
nm
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Results - Spectrum from Dynamic Correlations (Z)
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Results - Interplay of gaps and correlations

Hastings-type bounds [arXiv/1008.5137]: Gap∆ =⇒ ⟨AB⟩c ≤ O(e−∆)

Technical subtlety; bound on:

⟨AB⟩c = ⟨ψ0|AB |ψ0⟩ − ⟨ψ0|AP0B |ψ0⟩

with:

P0 =
∑
a

|ψa
0⟩⟨ψa

0 |

With P0 terms, the decay looks exponential (theorem is safe!) but the “physical”
correlator decays algebraically.
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Results - Spectrum from Dynamic Correlations (Y )
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Motivation - Measurement-Based State Prep

LRE states in constant time (GHZ [Briegel & Raussendorf, PRL (2001)], Toric code
[Raussendorf, Brayvi & Hastings, PRA (2005)],. . . )
Extended to non-stabilizer states, variable correlation length states, e.g.:

|Ψβ⟩ = exp(βHTC) |0⟩⊗N ∼ exp

(
β
∏
s

Xs

)
|0⟩⊗N

(many works... [arXiv/2404.16083, 2404.16360, 2404.16753, 2404.17087, 2405.09615])

Image credit: PRXQuantum 3, 040337
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Motivation - Preparing Critical States

What about critical states? E.g. (via map to Ising):

|Φβ⟩ = exp

β∑
⟨ij⟩

ZiZj

 |+⟩⊗N

The landscape:

▶ 1-D: No transition, but easily preparable [Sahay and Veressen, PRXQuantum (2025)]
▶ 2-D Square: Transition, but not easily preparable [Zhu et al, PRL (2023)]
▶ Trees: Transition to “boundary sensitive” phase [Eggarter, PRB (1974), Wang et al. PRB

(2025)] + preparable!
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Techniques - Preparing exp
(
β
∑

⟨ij⟩ ZiZj
)
|+⟩⊗N (Step 1)

With tanh(β) = e−2α; both are diag(eβ, e−β, e−β, eβ).
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Techniques - Preparing exp
(
β
∑

⟨ij⟩ ZiZj
)
|+⟩⊗N (Step 2)
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Techniques - Preparing exp
(
β
∑

⟨ij⟩ ZiZj
)
|+⟩⊗N (Step 3)

3/4-qubit spiders connected via Bell measurements

Push errors to boundary, then single layer of cleanup!
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Observing the (unconventional) phase transition

Predicted transition at βc = 1
2 ln
(

q
q−2

)
≈ 0.55 can be observed from the QFI of the

state:

QFIβ(
∑
i

Zi) = ⟨
∑
ij

ZiZj⟩β − ⟨
∑
i

Zi⟩2β

101 102 103 104 105 106 107 108 109

N

103

106

109

1012

1015

1018

F(
n
Z n

)
QFI vs. N for Cayley tree at varied 

= 0.1
= 0.2
= 0.3
= 0.4
= 0.5
= 0.6
= 0.7
= 0.8
= 0.9
= 1.0
= 1.1
= 1.2

linear
quadratic
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Conclusions/Highlights

(Simple) spin systems in hyperbolic space can host unintuitive fundamental phenomena
▶ Boundary sensitive phase diagrams
▶ New interplays of gaps and correlations!

Protocols for (elusive) efficient construction of critical states!
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