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MOTIVATION - WHAT IS HYPERBOLIC SPACE?

Image Credits: Reefguide; Wikipedia; D. Dunham (Transformation of Hyperbolic Escher Patterns)
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MoTIVATION - GENERAL SURVEY
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Image Credits: Wikipedia; Org. Lett. 2017, 19, 9, 2246-2249; arXiv:1703.00590; Quantum 5, 585 (2021)



MOoTIVATION - SPECIFIC QUESTIONS
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m Euclidean: Established relationships between adiabaticity/phases/gaps/correlations.

Image Credit: Phys. Rev. B 82, 155138




MOoTIVATION - SPECIFIC QUESTIONS
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m Correlations and Energetics: Euclidean intuitions can be broken...

» No Goldstone bosons [Lauman et. al, Phys. Rev. B (2009)]

» Non-divergent correlation length at phase transition [Nagaj et. al, Phys. Rev. B (2008)]
m Efficient preparability of states?

Image Credit: Phys. Rev. B 77, 214431
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SETTING - TFIM oN CAYLEY TREE/BETHE LATTICE
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Image Credit: arXiv:1406.2819



TECHNIQUES - TENSOR NETWORKS
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m Rotational symmetry = O(L) tensors for L rings (~ 2L(!) qubits!)




TECHNIQUES - DYNAMICS VIA MPO
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m Trotterized exp(SH) or exp(it H) can be applied to simulate time evolution



TECHNIQUES - EXPECTATION VALUES
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m Canonical form makes computing local expectation values efficient/stable.

- s



REsuLTSs - PHASE DIAGRAM
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REsuLTSs - PHASE DIAGRAM
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REsULTSs - STATIC SPATIAL CORRELATIONS (CAT STATE GROWTH)
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REsULTSs - STATIC SPATIAL CORRELATIONS (CAT STATE GROWTH)
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REsULTSs - STATIC SPATIAL CORRELATIONS (CAT STATE GROWTH)
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REsULTSs - STATIC SPATIAL CORRELATIONS (CAT STATE GROWTH)

ZZ). between edge sites vs. common ancestor from edge (ZZ), between edge sites vs. common ancestor from edge
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REsULTSs - STATIC SPATIAL CORRELATIONS (CAT STATE GROWTH)
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REsULTSs - STATIC SPATIAL CORRELATIONS (CAT STATE GROWTH)




REsULTSs - STATIC SPATIAL CORRELATIONS (ALGEBRAIC DECAY)

log Z(r) vs. log(r) at crit (J = 0.448, g = 1, gpay = 0.1)
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m Tells us about (ZoZ(r)). = (ZoZ(r)) — (Zo){Z (1)) = (ZoZ(1)) = C{Z(r)).
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REsULTSs - STATIC SPATIAL CORRELATIONS (ALGEBRAIC DECAY)

log Z(r) vs. log(r) at crit (J = 0.448, g = 1, gpay = 0.1)
x = 10,8 = 40,dt = 0.01, vary L
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m Tells us about (ZoZ(r)). = (ZoZ(r)) — (Zo){Z (1)) = (ZoZ(1)) = C{Z(r)).

m Algebraic, not exponential (as in Bethe case)!
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RESULTS - SPECTRUM FROM DYNAMIC CORRELATIONS (Z)
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RESULTS - SPECTRUM FROM DYNAMIC CORRELATIONS (Z)
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RESULTS - SPECTRUM FROM DYNAMIC CORRELATIONS (Z)
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RESULTS - SPECTRUM FROM DYNAMIC CORRELATIONS (Z)
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m Gapless at boundary transition, Gapped at boundary transition(?)




RESULTS - INTERPLAY OF GAPS AND CORRELATIONS

m Hastings-type bounds [arXiv/1008.5137]: Gap A = (AB), < O(e™)

m Technical subtlety; bound on:
(AB)c = (Y| AB |ho) — (to| APy B |tbo)

with:

Py =Y [ogXusl

m With P, terms, the decay looks exponential (theorem is safe!) but the “physical”
correlator decays algebraically.




REsULTS - SPECTRUM FROM DYNAMIC CORRELATIONS (Y')
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MOTIVATION - MEASUREMENT-BASED STATE PREP
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Image credit: PRX Quantum 3, 040337




MOTIVATION - MEASUREMENT-BASED STATE PREP
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m LRE states in constant time (GHZ [Briegel & Raussendorf, PRL (2001)], Toric code
[Raussendorf, Brayvi & Hastings, PRA (2005)]....)

Image credit: PRX Quantum 3, 040337




MOTIVATION - MEASUREMENT-BASED STATE PREP

0000...

m LRE states in constant time (GHZ [Briegel & Raussendorf, PRL (2001)], Toric code
[Raussendorf, Brayvi & Hastings, PRA (2005)]....)
m Extended to non-stabilizer states, variable correlation length states, e.g.:

[¥5) = exp(BHrc) [0)2Y ~ exp (ﬁHXs> 0y

(many works... [arXiv/2404.16083, 2404.16360, 2404.16753, 2404.17087, 2405.09615])

Image credit: PRX Quantum 3, 040337




MOTIVATION - PREPARING CRITICAL STATES

m What about critical states? E.g. (via map to Ising):
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m The landscape:




MOTIVATION - PREPARING CRITICAL STATES

m What about critical states? E.g. (via map to Ising):

Bs) =exp| B ZiZ; | |+)*N
(i5)

m The landscape:
» 1-D: No transition, but easily preparable [Sahay and Veressen, PRX Quantum (2025)]




MOTIVATION - PREPARING CRITICAL STATES
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MOTIVATION - PREPARING CRITICAL STATES

m What about critical states? E.g. (via map to Ising):

Bs) =exp| B ZiZ; | |+)*N
(i5)

m The landscape:
» 1-D: No transition, but easily preparable [Sahay and Veressen, PRX Quantum (2025)]
» 2-D Square: Transition, but not easily preparable [Zhu et al, PRL (2023)]
» Trees: Transition to “boundary sensitive” phase [Eggarter, PRB (1974), Wang et al. PRB
(2025)] + preparable!




TECHNIQUES - PREPARING exp (/3 D (i) Z,;Zj) -+ (STeP 1)

-l

m With tanh(f) = e~2%; both are diag(e?,e™?,e75, €f).
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TECHNIQUES - PREPARING €xp (/3 Z(i]> Z,iZj) H)@N (STEP 2)




TECHNIQUES - PREPARING €xp (/3 Z(zﬂ Z,I;Zj) |+

m 3/4-qubit spiders connected via Bell measurements

m Push errors to boundary, then single layer of cleanup!




OBSERVING THE (UNCONVENTIONAL) PHASE TRANSITION

m Predicted transition at 5, = %ln(qTqQ) ~ 0.55 can be observed from the QFI of the
state:
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CONCLUSIONS/HIGHLIGHTS

m (Simple) spin systems in hyperbolic space can host unintuitive fundamental phenomena

» Boundary sensitive phase diagrams
» New interplays of gaps and correlations!

m Protocols for (elusive) efficient construction of critical states!
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