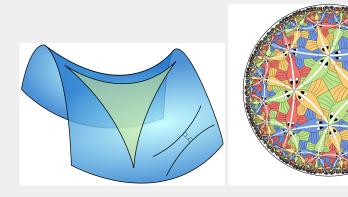
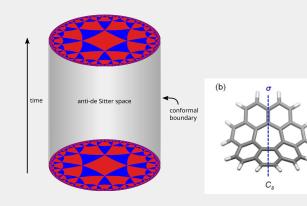
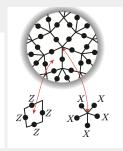
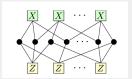
Quantum Phases of Matter in Hyperbolic Space

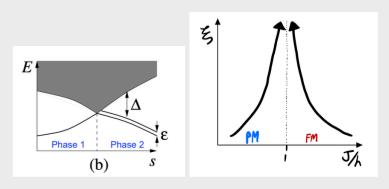

LEIBNIZ UNIVERSITY HANNOVER TALK

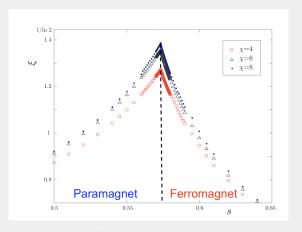
RIO WEIL, RUBEN VERESSEN


Department of Physics, The University of Chicago Priziker School of Molecular Engineering, The University of Chicago


OCTOBER 1, 2025

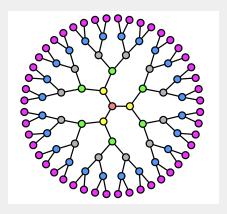

MOTIVATION - WHAT IS HYPERBOLIC SPACE?


MOTIVATION - GENERAL SURVEY

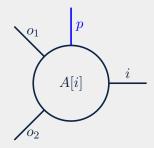


MOTIVATION - SPECIFIC QUESTIONS

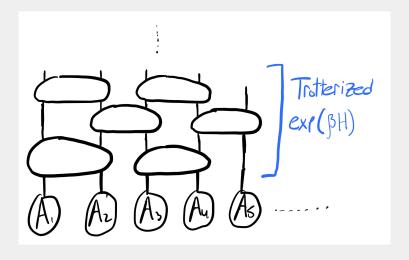
■ Euclidean: Established relationships between adiabaticity/phases/gaps/correlation lengths.


MOTIVATION - SPECIFIC QUESTIONS

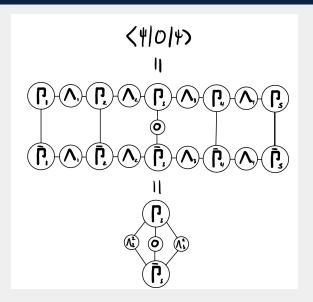
- Hyperbolic lattices: Intuitions called into question...
 - ► Indications of strangeness: No Goldstone bosons on Bethe lattice, non-divergent correlation lengths...
- Efficient preparability of states?


Image Credit: Phys. Rev. B 77, 214431

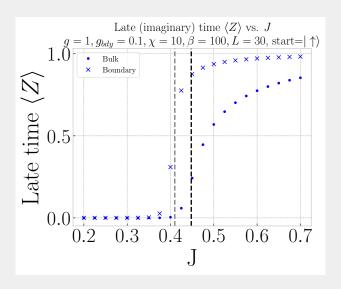
SETTING - TFIM ON CAYLEY TREE/BETHE LATTICE


$$H = -J \sum_{\langle ij \rangle} Z_i Z_j - g \sum_{i \text{ bulk}} X_i - g_{\text{bdy}} \sum_{i \text{ boundary}} X_i$$

Techniques - Tensor Networks

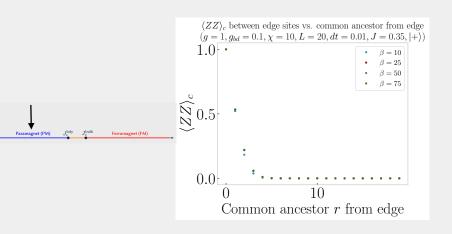

 \blacksquare Rotational symmetry $\implies O(L)$ tensors for L rings ($\sim 2^L$ (!) qubits!)

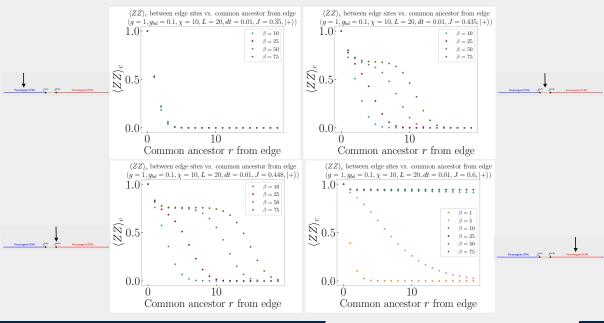
Techniques - Dynamics via MPO


■ Trotterized $\exp(\beta H)/\exp(itH)$ can be applied to simulate time evolution

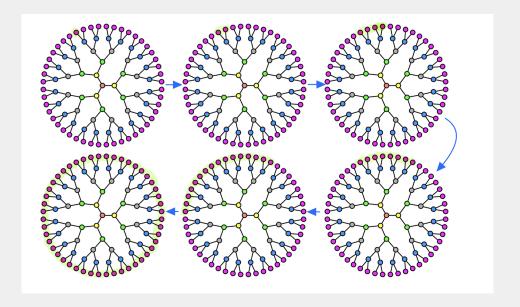
Techniques - Expectation Values

■ Canonical form makes computing local expectation values efficient/stable.

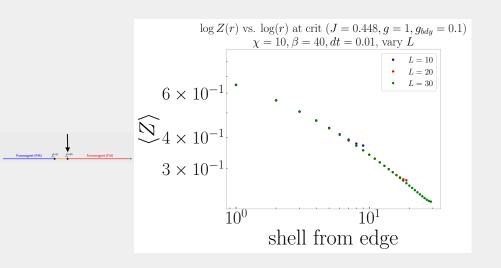

RESULTS - PHASE DIAGRAM


RESULTS - PHASE DIAGRAM

Results - Static Spatial Correlations (Cat State Growth)



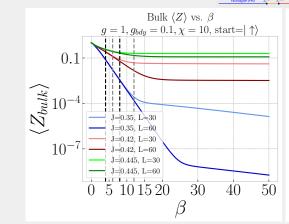
RESULTS - STATIC SPATIAL CORRELATIONS (CAT STATE GROWTH)

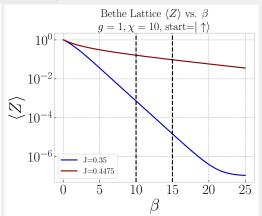


2.2

Results - Static Spatial Correlations (Cat State Growth)

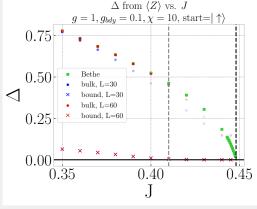
Results - Static Spatial Correlations (Algebraic Decay)

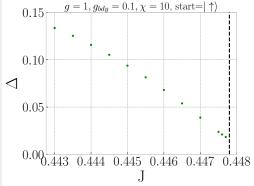



Results - Spectrum from Dynamic Correlations (Z)

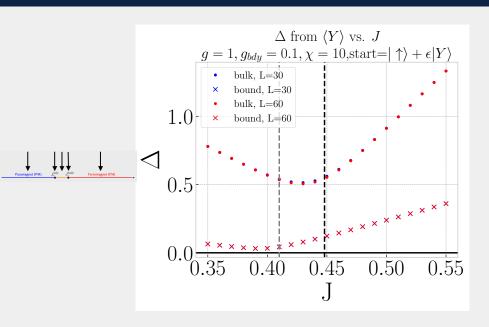
$$\left\langle \uparrow \right| e^{-\beta H} Z e^{-\beta H} \left| \uparrow \right\rangle = \sum_{mm} e^{-\beta (E_n + E_m)} \left\langle \uparrow \right| m \right\rangle \left\langle n \right| \uparrow \right\rangle \left\langle m \right| Z \left| n \right\rangle \approx e^{-\beta (0 + \Delta)} \left\langle \uparrow \right| 0 \right\rangle \left\langle 1 \right| \uparrow \right\rangle \left\langle 0 \right| Z \left| 1 \right\rangle$$

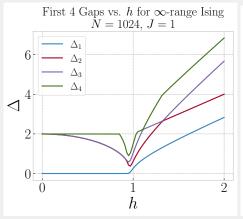

Results - Spectrum from Dynamic Correlations (Z)

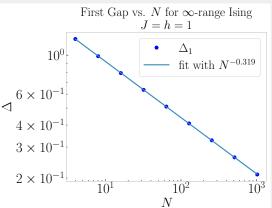

$$\langle \uparrow | e^{-\beta H} Z e^{-\beta H} | \uparrow \rangle = \sum_{nm} e^{-\beta (E_n + E_m)} \langle \uparrow | m \rangle \langle n | \uparrow \rangle \langle m | Z | n \rangle \approx e^{-\beta (0 + \Delta)} \langle \uparrow | 0 \rangle \langle 1 | \uparrow \rangle \langle 0 | Z | 1 \rangle$$



Results - Spectrum from Dynamic Correlations (Z)

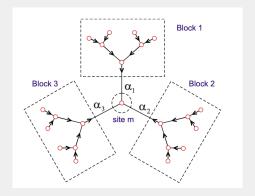





■ Gapless at boundary transition, Gapped at boundary transition(?)

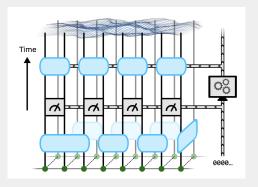
Results - Spectrum from Dynamic Correlations (Y)

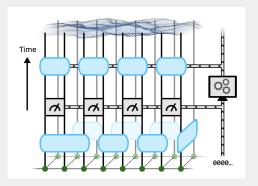
RESULTS - COMPARISON TO INFINITE-RANGE CASE



$$H = -\frac{J}{N} \sum_{i,j} Z_i Z_j - h \sum_i X_i = -\frac{J}{2N} \left(\sum_i Z_i \right)^2 - h \sum_i X_i$$

■ Exact diagonalization of "superspin"


NEXT STEPS - DMRG ON A TREE


■ Does imaginary time evolution give the true GS? Check with DMRG.

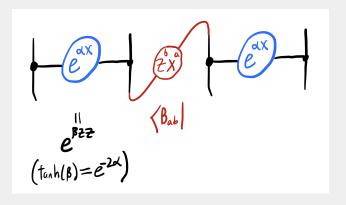
,

Next Steps - Measurement-Based State Prep

Next Steps - Measurement-Based State Prep

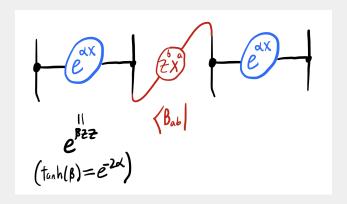
- LRE states in constant time (GHZ, Toric code...)
- Extended to non-stabilizer states, variable correlation length states, e.g.:

$$|\Psi_{\beta}\rangle = \exp(\beta H_{\rm TC}) |0\rangle^{\otimes N} \sim \exp\left(\beta \prod_{s} X_{s}\right) |0\rangle^{\otimes N}$$


Image credit: PRX Quantum 3, 040337

NEXT STEPS - MEASUREMENT-BASED STATE PREP ON A TREE

■ Efficient preparation of quantum critical states? E.g. $|\Phi_{\beta}\rangle = \exp\Big(\beta \sum_{\langle ij \rangle} Z_i Z_j\Big) |+\rangle^{\otimes N}$


NEXT STEPS - MEASUREMENT-BASED STATE PREP ON A TREE

■ Efficient preparation of quantum critical states? E.g. $|\Phi_{\beta}\rangle = \exp\Bigl(\beta \sum_{\langle ij \rangle} Z_i Z_j\Bigr) |+\rangle^{\otimes N}$

NEXT STEPS - MEASUREMENT-BASED STATE PREP ON A TREE

■ Efficient preparation of quantum critical states? E.g. $|\Phi_{\beta}\rangle = \exp\Big(\beta \sum_{\langle ij \rangle} Z_i Z_j\Big) |+\rangle^{\otimes N}$

- The landscape:
 - ► 1-D: Preparable (but no transition)
 - ► 2-D Square: Not preparable (frustration)
 - Hyperbolic trees (sweet spot?)

Conclusions

- Hyperbolic lattices are unintuitive, but useful!
- Boundary-sensitive phase diagram
- Energy/Correlations of bulk and boundary
- Lack of loops:
 - ► Efficient simulation (tensor networks)
 - ► Efficient measurement-based state prep(?)