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Motivation - What is hyperbolic space?

Image Credits: Wikipedia; D. Dunham (Transformation of Hyperbolic Escher Patterns)
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Motivation - General Survey

Image Credits: Wikipedia; Org. Lett. 2017, 19, 9, 2246-2249; arXiv:1703.00590; Quantum 5, 585 (2021)
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Motivation - Specific Questions

Euclidean: Established relationships between adiabaticity/phases/gaps/correlation
lengths.

Image Credit: Phys. Rev. B 82, 155138
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Motivation - Specific Questions

Hyperbolic lattices: Intuitions called into question...
▶ Indications of strangeness: No Goldstone bosons on Bethe lattice, non-divergent correlation

lengths...
Efficient preparability of states?

Image Credit: Phys. Rev. B 77, 214431
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Setting - TFIM on Cayley Tree/Bethe Lattice

H = −J
∑
⟨ij⟩

ZiZj − g
∑
i bulk

Xi−gbdy
∑

i boundary

Xi

Image Credit: arXiv:1406.2819
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Techniques - Tensor Networks

A[i]

po1

o2

i

Rotational symmetry =⇒ O(L) tensors for L rings (∼ 2L(!) qubits!)
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Techniques - Dynamics via MPO

Trotterized exp(βH)/ exp(itH) can be applied to simulate time evolution
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Techniques - Expectation Values

Canonical form makes computing local expectation values efficient/stable.

Image Credit: arXiv:2210.11130 8 22
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Results - Phase Diagram
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Results - Phase Diagram
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Results - Static Spatial Correlations (Cat State Growth)
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Results - Static Spatial Correlations (Cat State Growth)
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Results - Static Spatial Correlations (Algebraic Decay)
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Results - Spectrum from Dynamic Correlations (Z)

⟨↑| e−βHZe−βH |↑⟩ =
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nm
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Results - Spectrum from Dynamic Correlations (Z)
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Results - Spectrum from Dynamic Correlations (Y )
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Results - Comparison to Infinite-Range Case
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Next Steps - DMRG on a tree

Does imaginary time evolution give the true GS? Check with DMRG.

Image Credit: Phys. Rev. B 82, 205105
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Next Steps - Measurement-Based State Prep

LRE states in constant time (GHZ, Toric code. . . )
Extended to non-stabilizer states, variable correlation length states, e.g.:

|Ψβ⟩ = exp(βHTC) |0⟩⊗N ∼ exp

(
β
∏
s

Xs

)
|0⟩⊗N

Image credit: PRXQuantum 3, 040337
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Next Steps - Measurement-Based State Prep on a Tree

Efficient preparation of quantum critical states? E.g. |Φβ⟩ = exp
(
β
∑

⟨ij⟩ ZiZj

)
|+⟩⊗N

The landscape:
▶ 1-D: Preparable (but no transition)
▶ 2-D Square: Not preparable (frustration)
▶ Hyperbolic trees (sweet spot?)
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Conclusions

Hyperbolic lattices are unintuitive, but useful!

Boundary-sensitive phase diagram

Energy/Correlations of bulk and boundary
Lack of loops:
▶ Efficient simulation (tensor networks)
▶ Efficient measurement-based state prep(?)
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