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Motivating Questions

1. How do we characterize quantum computational speedup?

▶ One route - Measurement-BasedQuantum Computing

2. What can we do with NISQ (Noisy Intermediate-Scale Quantum) devices?

▶ Fun playground for physicists!
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1D Resource States - Defining Computational Order

x̂
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ẑ

|ψrot⟩
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ẑ

|ψ⟩

β

Ability to perform arbitrary single qubit unitaries (rotations) with high fidelity.
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1D Resource States - 2 Examples and Interpolation

Universal Resource: Cluster State |C⟩

Ground state of
Hcluster = −

∑
i Zi−1XiZi+1

Useless Resource: Product State |+⟩⊗N

Ground state of
Hproduct = −

∑
iXi

Computational order ground states |Ψ(α)⟩ of:

H(α) = − cos(α)
∑
i

Zi−1XiZi+1 − sin(α)
∑
i

Xi
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1D Resource States - SPT Phases & Decoherence

Answer (for infinite systems):

|C⟩ |+⟩
α

|Ψ(α)⟩
0 π/2π/4

Z2 × Z2 Cluster phase Trivial phase

Computational power is uniform in symmetry-protected topological (SPT) phases.

The catch: Decoherence away from cluster state.

Recently: New formalism for analyzing power in finite resource states.
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1D Resource States - String Order & Decoherence

Desired logical rotation exp
(
−iβ2P

)
becomes a probabilistic channel:

V =
1 + ν

2
exp

(
−iβ

2
P

)
+

1− ν

2
exp

(
i
β

2
P

)

ν is the computational order parameter, equivalent to σ the string order parameter.

X X X X X X X X X X X X

β

σ = ⟨Z X I X I X Z⟩
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1D Resource States - Decoherence Management I

X X X X X X X X X X X X

β

· · ·

vs.

X X X X X X X X X X

dβ

· · ·

dβ dβ∆ ≫ ζ

Error is O(β2) -m subdivisions reduces error, with ϵ ∝ (1− σ2)β
2

m for small angles.

Infinite case: Split as far apart (∆ ≫ ζ) and as much as needed⇒ computational phases.

Finite case: Tradeoff of rotation splitting and independence.
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1D Resource States - Decoherence Management II

X X X X X X

β
m

β
m

β
m

β
m

β
m

β
m

β
m∆ = 2

Optimal strategy: Assuming SOPs of state have convex decay, split as much as possible.
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Proposed Experiments

1. Computational order = String order

2. Decoherence management I - Divide and conquer

3. Decoherence management II - The counterintuitive regime
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Experiment 0 - Ground State Anstatz

Recall H(α):

H(α) = − cos(α)
∑
i

Zi−1XiZi+1 − sin(α)
∑
i

Xi

We consider the following variational ansatz:

|ψ(θ)⟩ =
N−1⊗
i=2

Ti(θ) |C⟩ =
N−1⊗
i=2

(cos(θ)Ii + sin(θ)Xi) |C⟩

Motivated by symmetry, perturbation theory, and efficiency.
For a given value of α, find |ψ(θ)⟩ which minimizes:

⟨ψ(θ)|H(α) |ψ(θ)⟩ = − cos(α)
N∑
i=1

⟨Ki = Zi−1XiZi+1⟩θ − sin(α)
N∑
i=1

⟨Xi⟩θ
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Experiment 0 - VQE for Ground state

|+⟩

|+⟩ U(θ)
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|+⟩ U(θ)
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|+⟩ U(θ)

...

...

Xi

Zi−1

Xi

Zi+1

Algorithm for finding ⟨Xi⟩θ / ⟨Ki⟩θ :
1. Prepare the cluster ring |CN ⟩.
2. Probabilistically implement (non-unitary)
Ti(θ) = cos(θ)Ii + sin(θ)Xi on each site.

3. Measure Xi orKi = Zi−1XiZi+1 on the
prepared state to obtain ⟨Xi⟩θ / ⟨Ki⟩θ .

Then, various tricks with symmetry,
half-teleportation, translation invariance...
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Experiment 0 - VQE Simplifications

|+⟩
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|+⟩ U(θ)

...

...

O(n)

∼= |+⟩ U(θ)

O(1)!
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Experiment 0 - State Preparation (Results)
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Experiment 0 - State Preparation (Results)
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Experiment 1 - How to measure computational and string order

X X X

β

σ = ⟨Z3 X4 Z5⟩

|+⟩

X/Y

(from V): ⟨X⟩+ = cos(β), ⟨Y ⟩+ = ν sin(β) =⇒ ⟨Y ⟩+
⟨X⟩+

= ν tan(β)

ν from MBQC, σ (for free) from VQE!
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Experiment 1 - The Circuit Picture

Cluster C. O. Measurement
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Experiment 1 - Computational order = String order (Results)
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Experiment 1 - Computational order = String order (Results)
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Experiment 2 - How to measure divide and conquer

X X X X X X X

β|+⟩

X/Y

X X X X X X

β
2

β
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X/Y

X X X X X

β
3

β
3

β
3|+⟩

X/Y

Measure loss in purity LOP(β) = 1− ⟨X(β)⟩2 − ⟨Y (β)⟩2 in the three cases.
For small angles β, verify LOP ∼ 1

m (from V).
Fun bonus: No postselection!
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Experiment 2 - Divide and conquer (Results)
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Experiment 2 - Divide and conquer (Results)
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Experiment 3 - Resource state

VQE ansatz |ψ(θ)⟩ has no length scale!

For this experiment we consider the simplest state with length scale:

|Ω(ϕ)⟩ = RX2(ϕ)RX3(ϕ)RXN−2(ϕ)RXN−1(ϕ)
N−3∏
i=2

RXXi,i+2(ϕ) |C⟩

String order parameters have convex decay, with:

σ(d) =

{
cos2(ϕ) d = 2

cos4(ϕ) d > 2

22 26
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Experiment 3 - How to measure the counterintuitive regime
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Experiment 3 - The counterintutive regime (Results)
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Experiment 3 - The counterintutive regime (Theory)
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Conclusions

1. Have demonstrated COP = SOP

2. Have demonstrated 1/m scaling of decoherence withm-splitting of rotations

3. Experimental data is inconclusive, and theory suggests that small-scale probing is not
possible.

Thank you! Any questions?
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