

Characterizing resource states and efficient regimes of measurement-based quantum computation on NISQ devices

Stewart Blusson Quantum Matter Institute **Ryohei Weil**¹, Arnab Adhikary¹, Dmytro Bondarenko¹, Amritabha Guha¹, Robert Raussendorf^{1,2}

¹Department of Physics and Astronomy & Stewart Blusson Quantum Matter Institute, University of British Columbia ²Institut für Theoretische Physik, Leibniz Universität Hannover

ryoheiweil@phas.ubc.ca

Computationally Universal Phases of Matter

• Motivating Question: Can we experimentally demonstrate computation throughout the cluster phase and optimal decoherence management techniques?

Measurement-based quantum computation

Managing Logical Decoherence

String Order = Computational Order

• Investigating ground states of:

 $H(\alpha) = -\cos(\alpha)\sum_{i} Z_{i-1} X_i Z_{i+1} - \sin(\alpha)\sum_{i} X_i$

for infinite chains, ground states for $\alpha < \pi/4$ belong to the $\mathbb{Z}_2 \times \mathbb{Z}_2$ cluster phase.

 Away from the cluster state, symmetry-breaking measurements induce logical decoherence. Action of Z-rotation at site j is given by:

$$\mathcal{V}_{j}[\beta] = \frac{1+\nu}{2} \exp\left(-i\frac{\beta}{2}Z_{j}\right) + \frac{1-\nu}{2} \exp\left(i\frac{\beta}{2}Z_{j}\right)$$

• v is the computational order parameter. Characterizes the logical fidelity of the rotation, and analytically equivalent to the string order parameter:

 $\sigma_j = \langle Z_j X_{j+1} X_{j+3} \dots X_{n-3} X_{n-1} Z_n \rangle$ which can be measured to quantify *finite* MBQC resource states.

• Experiment: Observation of decreased loss in purity from splitting rotation

• Experiment: Prepare ground states, input logical state $|+\rangle$, perform symmetrybreaking rotation, and independently measure $\sigma = \langle ZXIXZ \rangle$ and $\frac{\langle Y \rangle_{log}}{\langle X \rangle_{log}} = \nu \tan(\beta)$

to experimentally compare string order with computational order.

State Preparation via VQE

- Variational ansatz for ground states of $H(\alpha)$; first-order perturbation theory gives: $|\Psi(\theta)\rangle = \bigotimes_i (\cos(\theta)I_i + \sin(\theta)X_i)|\mathcal{C}\rangle$
- Respects $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry, reproduces (a form of) the phase transition, and exact for small system size. Minimizing $\langle \Psi(\theta) | H(\alpha) | \Psi(\theta) \rangle$ w.r.t. θ yields target state.
- Symmetry and teleportation tricks reduce VQE circuits from $2n 2 \rightarrow 1\&2$ qubits!

Error mitigation

Imperfect control

1-qubit gates

Dissipation

References

[1] Raussendorf, Robert and Wang, Yang and Adhikary, Arnab. Measurement-based quantum computation in finite one-dimensional systems: string order implies computational power. arXiv preprint, arXiv:2210.05089, November 2022.
[2] Adhikary, Arnab and Wang, Yang and Raussendorf, Robert Counter-intuitive yet efficient regimes for measurement based quantum computation on symmetry protected spin chains. arXiv preprint, arXiv:2307.08904, July 2023.

[3] Adhikary, Arnab. Symmetry protected measurement-based quantum computation in finite spin chains. MSc. Thesis, University of British Columbia, August 2021.

[4] Weil, Ryohei. A Simulation of a Simulation: Algorithms for Symmetry-Protected Measurement-Based Quantum Computing Experiments. BSc. Thesis, University of British Columbia, June 2022.