References

Managing Logical Decoherence

[1] Raussendorf, Robert and Wang, Yang and Adhikary, Arnab. Measurement-based quantum computation in finite one-dimensional systems: string order implies computational power. arXiv preprint, arXiv:2210.05089, November 2022. [2] Adhikary, Arnab and Wang, Yang and Raussendorf, Robert Counter-intuitive yet efficient regimes for measurement based quantum computation on symmetry protected spin chains. arXiv preprint, arXiv:2307.08904, July 2023. [3] Adhikary, Arnab. Symmetry protected measurement-based quantum computation in finite spin chains. MSc. Thesis, University of

British Columbia, August 2021.

[4] Weil, Ryohei. A Simulation of a Simulation: Algorithms for Symmetry-Protected Measurement-Based Quantum Computing Experiments. BSc. Thesis, University of British Columbia, June 2022.

1Department of Physics and Astronomy & Stewart Blusson Quantum Matter Institute, University of British Columbia 2Institut für Theoretische Physik, Leibniz Universität Hannover

ryoheiweil@phas.ubc.ca

Characterizing resource states and efficient regimes of measurement-based quantum computation on NISQ devices

Stewart Blusson Quantum Matter Institute

Ryohei Weil¹, Arnab Adhikary¹, Dmytro Bondarenko¹, Amritabha Guha¹, Robert Raussendorf^{1,2}

Computationally Universal Phases of Matter

Measurement-based quantum computation

• Away from the cluster state, symmetry-breaking measurements induce logical decoherence. Action of Z -rotation at site j is given by:

Error mitigation

• ν is the computational order parameter. Characterizes the logical fidelity of the rotation, and analytically equivalent to the string order parameter:

State Preparation via VQE

- Variational ansatz for ground states of $H(\alpha)$; first-order perturbation theory gives: $|\Psi(\theta)\rangle = \otimes_i(\cos(\theta)I_i + \sin(\theta)X_i)|\mathcal{C}\rangle$
- Respects $\mathbb{Z}_2\times\mathbb{Z}_2$ symmetry, reproduces (a form of) the phase transition, and exact for small system size. Minimizing $\Psi(\theta)|H(\alpha)|\Psi(\theta)\rangle$ w.r.t. θ yields target state.
- Symmetry and teleportation tricks reduce VQE circuits from $2n 2 \rightarrow 182$ qubits!

 $\sigma_j = \langle Z_j X_{j+1} X_{j+3} ... X_{n-3} X_{n-1} Z_n \rangle$ • which can be measured to quantify *finite* MBQC resource states.

• Experiment: Prepare ground states, input logical state |+⟩, perform symmetrybreaking rotation, and independently measure $\sigma = \langle Z X I X Z \rangle$ and $\frac{\langle Y \rangle_{log}}{\langle Y \rangle}$ $X\rangle_{log}$ $= \nu \tan(\beta)$

• Motivating Question: Can we experimentally demonstrate computation throughout the cluster phase and optimal decoherence management techniques?

• Experiment: Observation of decreased loss in purity from splitting rotation

Loss in purity vs. Rotation angle β Comparison of one (red) and two (blue) rotations, $\alpha = \frac{n}{5}$ $0.7 \cdot$ Theory **Noisy Simulation** Experiment \bullet 0.5 $\langle \overline{X} \rangle^2$ $\begin{bmatrix} 0.4 \end{bmatrix}$ $\overline{}$ 0.3 - Sarah Range Street, S. S. Woods Loss in purity =
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$ 0.0 Ibm quebec 0.0 $1.0\,$ 1.2 1.4 Logical rotation angle β

String Order = Computational Order

• Investigating ground states of:

 $H(\alpha) = -\cos(\alpha) \sum_{i} Z_{i-1} X_i Z_{i+1} - \sin(\alpha) \sum_{i} X_i$

for infinite chains, ground states for $\alpha < \pi/4$ belong to the $\mathbb{Z}_2\times\mathbb{Z}_2$ cluster phase.

$$
\mathcal{V}_j[\beta] = \frac{1+\nu}{2} \exp\left(-i\frac{\beta}{2}Z_j\right) + \frac{1-\nu}{2} \exp\left(i\frac{\beta}{2}Z_j\right)
$$

to experimentally compare string order with computational order.

