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Motivation - NISQ and Grand Challenges

NISQ era - Shor, large-scale quantum simulation etc. inaccessible.

What are applications of such devices?
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Motivation - NISQ and Computational Phases of Matter

2020 - Identification of Symmetry-Protected Topological States on Noisy Quantum
Computers by Azses et al.
2023 - Better understanding of computational phases of matter in finite settings
▶ String order parameters
▶ Efficient regimes of computation
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States of Interest - The Cluster SPT Phase

Universal Resource: Cluster State |C⟩

Ground state of
Hcluster = −

∑
i Zi−1XiZi+1

Useless Resource: Product State |+⟩⊗N

Ground state of
Hproduct = −

∑
iXi

Of interest: ground states |ϕ(α)⟩ of:

H(α) = − cos(α)
∑
i

Zi−1XiZi+1 − sin(α)
∑
i

Xi

|C⟩ |+⟩
α

|ϕ(α)⟩
0 π/2π/4

Cluster phase Product phase
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Experiments - Simulating MBQC on IBM Devices

Cluster SPT Measurements

|0⟩ H T U1

|0⟩ H T U2

|0⟩ H T U3

|0⟩ H T U4

|0⟩ H T U5

1. Prepare ground states of interest.
2. Measure. . .

▶ String order parameter & Computational order parameter
▶ Effect of splitting rotations on logical decoherence
▶ Effect of splitting rotations as much as possible on logical decoherence
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Techniques - Error Mitigation

Two-Qubit Gates Measurement Readout

|0⟩ H T U1

|0⟩ H T U2

|0⟩ H T U3

|0⟩ H T U4

|0⟩ H T U4

Zero noise extrapolation to mitigate two-qubit gate errors

Measurement noise matrix estimation to mitigate readout errors
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Techniques - Variational State Preparation

|0⟩ H T U1

|0⟩ H T U2

|0⟩ H T U3

|0⟩ H T U4

|0⟩ H T U4

Determine T via variational energy minimization to get desired ground state of H(α):
1. Prepare local ansatz (from perturbation theory) |T (θ)⟩ =

⊗N−1
i=2 (cos θIi + sin(θ)Xi) |C⟩

2. Find θ which minimizes E(θ) = ⟨T (θ)|H(α) |T (θ)⟩.
Remark: T is non-unitary; can be handled via post-processing, or by invoking
symmetries to remove probabilistic implementation.
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Results
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