Investigating Computational Phases of Matter on NISQ devices

QCGC Workshop 2023

Rio Weil, Arnab Adhikary, Dmytro Bondarenko, Amrit Guha, Robert **RAUSSENDORF**

Department of Physics and Astronomy, The University of British Columbia Stuart Blusson Quantum Matter Institute, The University of British Columbia

January 17, 2023

Motivation - NISQ and Grand Challenges

Image Credit: Quanta Magazine

Motivation - NISQ and Grand Challenges

NISQ era - Shor, large-scale quantum simulation etc. inaccessible.

Image Credit: Quanta Magazine

Motivation - NISQ and Grand Challenges

- NISQ era Shor, large-scale quantum simulation etc. inaccessible.
- What are applications of such devices?

Image Credit: Quanta Magazine

1 and 2 and 2

Motivation - NISQ and Computational Phases of Matter

Image Credit: Azses et al.

Motivation - NISQ and Computational Phases of Matter

2020 - Identification of Symmetry-Protected Topological States on Noisy Quantum Computers by Azses et al.

Image Credit: Azses et al.

Motivation - NISQ and Computational Phases of Matter

2020 - Identification of Symmetry-Protected Topological States on Noisy Quantum Computers by Azses et al.

- 2023 Better understanding of computational phases of matter in finite settings
	- ▶ String order parameters
	- Efficient regimes of computation

Image Credit: Azses et al.

States of Interest - The Cluster SPT Phase

Universal Resource: Cluster State |C⟩

Ground state of $H_{\sf cluster} = -\sum_i Z_{i-1} X_i Z_{i+1}$ Useless Resource: Product State $\ket{+}^{\otimes N}$

 O O O O

Ground state of $H_{\text{product}} = -\sum_i X_i$

States of Interest - The Cluster SPT Phase

Useless Resource: Product State $\ket{+}^{\otimes N}$

$$
\circ \hspace{0.2cm} \circ \hspace{0.2cm} \circ \hspace{0.2cm} \circ \hspace{0.2cm} \circ
$$

Ground state of $H_{\text{product}} = -\sum_i X_i$

Of interest: ground states $|\phi(\alpha)\rangle$ of:

$$
H(\alpha) = -\cos(\alpha) \sum_{i} Z_{i-1} X_i Z_{i+1} - \sin(\alpha) \sum_{i} X_i
$$

States of Interest - The Cluster SPT Phase

Useless Resource: Product State $\ket{+}^{\otimes N}$ O O O

> Ground state of $H_{\text{product}} = -\sum_i X_i$

Of interest: ground states $|\phi(\alpha)\rangle$ of:

$$
H(\alpha) = -\cos(\alpha) \sum_{i} Z_{i-1} X_i Z_{i+1} - \sin(\alpha) \sum_{i} X_i
$$

1. Prepare ground states of interest.

- 1. Prepare ground states of interest.
- 2. Measure...

- 1. Prepare ground states of interest.
- 2. Measure...
	- ▶ String order parameter & Computational order parameter

- 1. Prepare ground states of interest.
- 2. Measure...
	- ▶ String order parameter & Computational order parameter
	- \blacktriangleright Effect of splitting rotations on logical decoherence

- 1. Prepare ground states of interest.
- 2. Measure...
	- ▶ String order parameter & Computational order parameter
	- \blacktriangleright Effect of splitting rotations on logical decoherence
	- ▶ Effect of splitting rotations as much as possible on logical decoherence

Techniques - Error Mitigation

- Zero noise extrapolation to mitigate two-qubit gate errors
- Measurement noise matrix estimation to mitigate readout errors

Techniques - Variational State Preparation

Techniques - Variational State Preparation

Determine T via variational energy minimization to get desired ground state of $H(\alpha)$:

- 1. Prepare local ansatz (from perturbation theory) $|T(\theta)\rangle=\bigotimes_{i=2}^{N-1}(\cos\theta I_i+\sin(\theta)X_i)\,|C\rangle$
- 2. Find θ which minimizes $E(\theta) = \langle T(\theta) | H(\alpha) | T(\theta) \rangle$.
- Remark: T is non-unitary; can be handled via post-processing, or by invoking symmetries to remove probabilistic implementation.

RESULTS

RESULTS

