

Stewart Blusson Quantum Matter Institute

Symmetry-protected measurement-based quantum computation on NISQ devices

Arnab Adhikary, Amritabha Guha, Ryohei Weil*, Dmytro Bondarenko, Robert Raussendorf

Stewart Blusson Quantum Matter Institute at the University of British Columbia

*ryoheiweil@phas.ubc.ca

Computationally Universal Phases of Matter

Motivating Question: Can we experimentally demonstrate computation throughout the cluster phase and optimal decoherence management techniques?

Measurement-based quantum computation

Error mitigation

Measurement Noise

$$M = \begin{bmatrix} p & 1-q \\ 1-p & q \end{bmatrix} \quad \text{[noisy]} = M \text{[ideal]}$$

Zero Noise Extrapolation

Rotation counter-rotation scheme

$\mathbb{Z}_2 \times \mathbb{Z}_2$ and decoherence management

Exist: SPTO computationally universal phases.

Circuits with post-processing

- $|GS(\alpha)\rangle = T(\alpha)|C\rangle$; choose $T(\alpha) = \bigotimes_i \sum (I \text{ or } X)_i$ by sacrificing unitarity. \bullet
- T non-unitary \implies Measurement in non-orthogonal basis.

Variational Quantum Eigensolver

- First-order perturbation theory yields $T(\alpha) = \bigotimes_i (\cos(\theta_\alpha)I_i + \sin(\theta_\alpha)X_i)$
- Exact for ≤ 6 qubits.

VQE circuits for optimizing $T(\alpha)$ simplify drastically to small low-depth circuits. Coefficients for $T(\alpha)$ vs. Interpolation α

- Example: Ground states of $H(\alpha) = -\cos(\alpha) \sum_{i} Z_{i-1} X_i Z_{i+1} \sin(\alpha) \sum_{i} X_i$ for $\alpha < \pi/4$ consist of the cluster phase, where computational power persists.
- States closer to the phase boundary induce more decoherence.
- Two levels of techniques to manage decoherence.

References

[1] Adhikary, A. Symmetry protected measurement-based quantum computation in finite spin chains. MSc. Thesis, University of British Columbia, August 2021.

[2] Weil, R. A Simulation of a Simulation: Algorithms for Symmetry-Protected Measurement-Based Quantum Computing Experiments. BSc. Thesis, University of British Columbia, June 2022

[3] Guha, A. Implementing measurement-based quantum computing schemes on NISQ devices with error mitigation. BSc. Thesis, University of British Columbia, August 2022.