The Physics of Snowmageddon

A back-of-The-envelope calculation for a very chilly Earth

Rio Weil
UBC Physics Circle
February 24, 2022

Vancouver Snowmageddon 2021

Image credit: Shutterstock

A SNOW-COVERED WORLD

Image credit: Snowpiercer film, Simon De Salvatore

A SNOW-COVERED WORLD

■ Question: Just how cold would a snowball Earth be?

Image credit: Snowpiercer film, Simon De Salvatore

A SNOW-COVERED WORLD

■ Question: Just how cold would a snowball Earth be?
■ Plan of attack: assume that Earth is at an equilibrium temperature with its surroundings. What does this tell us about the energy that flows in/out of the Earth?

A SNOW-COVERED WORLD

■ Question: Just how cold would a snowball Earth be?
■ Plan of attack: assume that Earth is at an equilibrium temperature with its surroundings. What does this tell us about the energy that flows in/out of the Earth?

$$
\begin{equation*}
P_{\text {in }}=P_{\text {out }} \tag{1}
\end{equation*}
$$

- P is power, and represents energy per unit time.

Image credit: Snowpiercer film, Simon De Salvatore

Image credit: Wikimedia commons

Radiation from the Sun

- From measurements of radiation wavelengths, we can obtain $T_{\text {sun }} \sim 5800 \mathrm{~K}$.
- Reminder: $x \mathrm{~K}$ is $x-273 \mathrm{C}^{\circ}$. We use Kelvin in physics.
- From measurements of radiation wavelengths, we can obtain $T_{\text {sun }} \sim 5800 \mathrm{~K}$.
- Reminder: $x \mathrm{~K}$ is $x-273 \mathrm{C}^{\circ}$. We use Kelvin in physics.
- We can sum up contributions from all wavelengths and multiply by the area of the sun to get the total power output:

$$
\begin{equation*}
P=\varepsilon \sigma A T^{4} \tag{2}
\end{equation*}
$$

- From measurements of radiation wavelengths, we can obtain $T_{\text {sun }} \sim 5800 \mathrm{~K}$.
- Reminder: $x \mathrm{~K}$ is $x-273 \mathrm{C}^{\circ}$. We use Kelvin in physics.
- We can sum up contributions from all wavelengths and multiply by the area of the sun to get the total power output:

$$
\begin{equation*}
P=\varepsilon \sigma A T^{4} \tag{2}
\end{equation*}
$$

- This is known known as the Stefan-Boltzmann law. Since the sun emits radiation like a perfect blackbody, $\varepsilon=1$ (and we can assume this for Earth as well) and so:

$$
\begin{equation*}
P=\sigma A T^{4} \tag{3}
\end{equation*}
$$

- Dimensional analysis!
- Dimensional analysis!
- First, what universal constants would naturally go into σ ?

Defining constant	Symbol	Units	"Purpose"
Hyperfine transition freq. of Cs	$\Delta \nu_{\mathrm{Cs}}$	s^{-1}	Fundamental time unit
Speed of light	c	$\mathrm{~m} \mathrm{~s}^{-1}$	Universal speed limit/speed of photons
(Reduced) Planck's constant	\hbar	Js	Defines small-scale energy
Elementary charge	e	C	Electron/proton charge
Boltzmann constant	k_{B}	JK^{-1}	Energy-temperature conversion factor
Avogadro constant	N_{A}	$\mathrm{~mol}^{-1}$	Molecules per mole

- So, we've identified the relevant fundamental constants to be c, \hbar, and k_{B}. Can we combine them to figure out what σ is given what units/dimensions we want?
- So, we've identified the relevant fundamental constants to be c, \hbar, and k_{B}. Can we combine them to figure out what σ is given what units/dimensions we want?

$$
P=\sigma A T^{4}
$$

Symbol	Units	Dimensions
c	$\mathrm{~m} \mathrm{~s}^{-1}$	$[L][T]^{-1}$
\hbar	Js	$[E][T]$
k_{B}	JK^{-1}	$[E][\Theta]^{-1}$

■ [$L]$ - length, $[T]$ - time, $[\Theta]$ - temperature, $[E]$ - Energy.

- P has units $\mathrm{W}=\mathrm{J} \mathrm{s}^{-1}, T^{4}$ has units K^{4}, and A has units m^{2}, so for the dimensions to be consistent, we would have:

$$
\begin{equation*}
\sigma \sim \frac{k_{B}^{4}}{c^{2} \hbar^{3}} \tag{4}
\end{equation*}
$$

- P has units $\mathrm{W}=\mathrm{J}^{-1}, T^{4}$ has units K^{4}, and A has units m^{2}, so for the dimensions to be consistent, we would have:

$$
\begin{equation*}
\sigma \sim \frac{k_{B}^{4}}{c^{2} \hbar^{3}} \tag{4}
\end{equation*}
$$

- The actual value turns out to be not so far off! Only off by a factor of 1.4 or so.

$$
\begin{equation*}
\sigma=\frac{2 \pi^{2}}{15} \frac{k_{B}^{4}}{c^{2} \hbar^{3}} \approx 5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4} \tag{5}
\end{equation*}
$$

- Let T_{S} be the temperature of the sun's surface, R_{S} be the radius of the sun, R_{E} be the radius of the Earth, and D be the distance between the sun and Earth.
- The power of solar radiation at the sun's surface is...

1. $P_{S}=\sigma\left(4 \pi R_{S}^{2}\right) T_{S}^{4}$
2. $P_{S}=\sigma\left(4 \pi R_{E}^{2}\right) T_{S}^{4}$
3. $P_{S}=\sigma\left(4 \pi D^{2}\right) T_{S}^{4}$
4. $P_{S}=\sigma\left(\pi R_{S}^{2}\right) T_{S}^{4}$
5. $P_{S}=\sigma\left(\pi R_{E}^{2}\right) T_{S}^{4}$
6. $P_{S}=\sigma\left(\pi D^{2}\right) T_{S}^{4}$

Image credit: Shutterstock

How much energy from the sun? - Solar Power (solution)

- Let T_{S} be the temperature of the sun's surface, R_{S} be the radius of the sun, R_{E} be the radius of the Earth, and D be the distance between the sun and Earth.
- The power of solar radiation at the sun's surface is...

1. $P_{S}=\sigma\left(4 \pi R_{S}^{2}\right) T_{S}^{4}$
2. $P_{S}=\sigma\left(4 \pi R_{E}^{2}\right) T_{S}^{4}$
3. $P_{S}=\sigma\left(4 \pi D^{2}\right) T_{S}^{4}$
4. $P_{S}=\sigma\left(\pi R_{S}^{2}\right) T_{S}^{4}$
5. $P_{S}=\sigma\left(\pi R_{E}^{2}\right) T_{S}^{4}$
6. $P_{S}=\sigma\left(\pi D^{2}\right) T_{S}^{4}$

Image credit: Shutterstock

- Let T_{S} be the temperature of the sun's surface, R_{S} be the radius of the sun, R_{E} be the radius of the Earth, and D be the distance between the sun and Earth.
- By the time this energy reaches the Earth, it is spread out over an area...

1. $4 \pi R_{S}^{2}$
2. $4 \pi R_{E}^{2}$
3. $4 \pi D^{2}$
4. πR_{S}^{2}
5. πR_{E}^{2}
6. πD^{2}

Image credit: Shutterstock

How much energy from the sun? - Energy shell (solution)

- Let T_{S} be the temperature of the sun's surface, R_{S} be the radius of the sun, R_{E} be the radius of the Earth, and D be the distance between the sun and Earth.
- By the time this energy reaches the Earth, it is spread out over an area...

1. $4 \pi R_{S}^{2}$
2. $4 \pi R_{E}^{2}$
3. $4 \pi D^{2}$
4. πR_{S}^{2}
5. πR_{E}^{2}
6. πD^{2}

Image credit: Shutterstock

- Let T_{S} be the temperature of the sun's surface, R_{S} be the radius of the sun, R_{E} be the radius of the Earth, and D be the distance between the sun and Earth.
- How much area of the solar radiation energy shell (from the previous question) does Earth take up? (Hint: What is the area of a shadow if I shine a light straight above a sphere?)

1. $4 \pi R_{S}^{2}$
2. $4 \pi R_{E}^{2}$
3. $4 \pi D^{2}$
4. πR_{S}^{2}
5. πR_{E}^{2}
6. πD^{2}

How much energy from the sun? - Effective Earth Area (solution)

- Let T_{S} be the temperature of the sun's surface, R_{S} be the radius of the sun, R_{E} be the radius of the Earth, and D be the distance between the sun and Earth.
- How much area of this solar radiation energy shell does Earth take up? (Hint: What is the area of a shadow if I shine a light straight above a sphere?)

1. $4 \pi R_{S}^{2}$
2. $4 \pi R_{E}^{2}$
3. $4 \pi D^{2}$
4. πR_{S}^{2}
5. πR_{E}^{2}
6. πD^{2}

Image credit: Shutterstock

How much power do we get from the sun? - Conclusion

- The power of solar radiation at the sun's surface is.... $P_{S}=\sigma 4 \pi R_{S}^{2} T_{S}^{4}$.
- The power of solar radiation at the sun's surface is.... $P_{S}=\sigma 4 \pi R_{S}^{2} T_{S}^{4}$.
- This energy is spread out over a shell of area $4 \pi D^{2}$.
- The power of solar radiation at the sun's surface is.... $P_{S}=\sigma 4 \pi R_{S}^{2} T_{S}^{4}$.
- This energy is spread out over a shell of area $4 \pi D^{2}$.
- Earth takes up πR_{E}^{2} of this shell.
- The power of solar radiation at the sun's surface is.... $P_{S}=\sigma 4 \pi R_{S}^{2} T_{S}^{4}$.
- This energy is spread out over a shell of area $4 \pi D^{2}$.
- Earth takes up πR_{E}^{2} of this shell.
- Combining this, we get:

$$
\begin{equation*}
P_{i n}=P_{S} \frac{\pi R_{E}^{2}}{4 \pi D^{2}}=\frac{\sigma \pi R_{S}^{2} T_{S}^{4} R_{E}^{2}}{D^{2}} \tag{6}
\end{equation*}
$$

Image credit: Harvard University

Albedo - Why is α FOR SNOW so high?

- Why does so much light reflect off of snow?

Albedo - Why is α FOR SNOW so high?

- Why does so much light reflect off of snow?

■ Collection of lots of small crystals \Longrightarrow lots of oppurtunities for reflection!

Albedo - Refining Our Equation

So, we have...

- $\alpha \approx 0.8$ for snow.
- $\alpha \approx 0.3$ for the current Earth.
- Refining our earlier equation to account for albedo, we have:

$$
\begin{equation*}
P_{i n}=(1-\alpha) \frac{\sigma \pi R_{S}^{2} T_{S}^{4} R_{E}^{2}}{D^{2}} \tag{7}
\end{equation*}
$$

Putting it together

1. Estimate the steady state temperature T_{E} of the snow-covered Earth $(\alpha=0.8)$ with our model. Is your result reasonable?
2. Estimate the steady state temperature of the current (non-snow covered) Earth ($\alpha=0.3$) with our model. How does compare to the actual value of 288 K ? How could we improve our model?

$$
\begin{aligned}
P_{\text {in }} & =P_{\text {out }} \\
P_{\text {in }} & =(1-\alpha) \frac{\sigma \pi R_{S}^{2} T_{S}^{4} R_{E}^{2}}{D^{2}} \\
P_{\text {out }} & =A_{E} \sigma T_{E}^{4} \\
D & =1.47 \times 10^{11} \mathrm{~m} \\
R_{E} & =6.37 \times 10^{6} \mathrm{~m} \\
R_{S} & =6.96 \times 10^{8} \mathrm{~m} \\
T_{S} & =5800 \mathrm{~K} \\
\sigma & =5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}
\end{aligned}
$$

Combining the first three equations, we get:

$$
\begin{equation*}
A_{E} \sigma T_{E}^{4}=(1-\alpha) \frac{\sigma \pi R_{S}^{2} T_{S}^{4} R_{E}^{2}}{D^{2}} \tag{8}
\end{equation*}
$$

The earth has surface area $A_{E}=4 \pi R_{E}^{2}$, so:

$$
\begin{equation*}
4 \pi R_{E}^{2} \sigma T_{E}^{4}=(1-\alpha) \frac{\sigma \pi R_{S}^{2} T_{S}^{4} R_{E}^{2}}{D^{2}} \tag{9}
\end{equation*}
$$

Solving for T_{E} and cancelling out like terms, we get:

$$
\begin{equation*}
T_{E}=\sqrt[4]{\frac{(1-\alpha) R_{S}^{2} T_{S}^{4}}{4 D^{2}}} \tag{10}
\end{equation*}
$$

Plugging in numbers for R_{s}, T_{S}, and D, we get $T_{E} \sim 188 \mathrm{~K}$ for the snowball Earth and $T_{E} \sim 258 \mathrm{~K}$ for the current Earth.

Comparing the predicted versus the actual values, we observe an underestimate. One reason is we didn't take into account the atmosphere and how it acts to retain heat. Another possible consideration for our model is that ice has lower albedo than snow, and it might be unrealistic for the total ice-age Earth to be covered completely in snow (some/much of it may be glacial ice).

Image credit: Science Source

