Investigating Computational Phases of Matter on NISQ devices

SBQMI RETREAT 2022

RIO WEIL, ARNAB ADHIKARY, DMYTRO BONDARENKO, AMRIT GUHA, ROBERT RAUSSENDORF

DEPARTMENT OF PHYSICS AND ASTRONOMY, THE UNIVERSITY OF BRITISH COLUMBIA STUART BLUSSON QUANTUM MATTER INSTITUTE, THE UNIVERSITY OF BRITISH COLUMBIA

SEPTEMBER 27, 2022

MOTIVATION (EXPERIMENT) - NISQ AND GRAND CHALLENGES

MOTIVATION (EXPERIMENT) - NISQ AND GRAND CHALLENGES

- NISQ era Applications like Shor, large-scale quantum simulation inaccessible.
- What are interesting things we can do with such devices?

MOTIVATION (THEORY) - COMPUTATIONAL PHASES OF MATTER

MOTIVATION (THEORY) - COMPUTATIONAL PHASES OF MATTER

■ Can we classify states capable of quantum computation via local measurements?

CHARACTERIZING COMPUTATIONAL POWER - SPTO AND ORDER PARAMETERS

CHARACTERIZING COMPUTATIONAL POWER - SPTO AND ORDER PARAMETERS

■ Finite systems - Measure a (computational) order parameter.

CHARACTERIZING COMPUTATIONAL POWER - SPTO AND ORDER PARAMETERS

- Finite systems Measure a (computational) order parameter.
- Project goal:
 - 1. Prepare states in SPT phase on NISQ devices.
 - 2. Measure their computational order parameter.

THE THREE-STEP CIRCUIT

Techniques - Error Mitigation

Techniques - Variational Quantum Optimization

- Determine T via variational energy minimization to get desired ground state of H_0 :
 - 1. Prepare states $|T(\theta)\rangle$
 - 2. Find θ which minimizes $E(\theta) = \langle T(\theta) | H_0 | T(\theta) \rangle$.

/

OUTLOOK

■ Demonstration of techniques for decoherence management.

Оитьоок

- Demonstration of techniques for decoherence management.
- lacktriangle Requires larger systems, better (nonlocal) approximation for T.

OUTLOOK

- Demonstration of techniques for decoherence management.
- lacktriangle Requires larger systems, better (nonlocal) approximation for T.
- Investigating other computational phases of matter on NISQ devices.