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Motivating Questions

1. What is the source of quantum advantage?

I Measurement-Based �antum Computing - coming up!

2. What can we do with NISQ (Noisy Intermediate-Scale �antum) devices?

I Active research area... and this project!
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A One-Slide Review of MBQC
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1D Resource States - Defining Computational Power

x̂

ŷ

ẑ

|ψrot〉

Rz(β)

x̂

ŷ

ẑ

|ψ〉

β

Ability to perform arbitrary single qubit unitaries - rotations.
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1D Resource States - Extremes and Interpolation

Universal Resource: Cluster State |C〉

Ground state of
Hcluster = −

∑
i Zi−1XiZi+1

Useless Resource: Product State |+〉⊗N

Ground state of
Hproduct = −

∑
iXi

�estion: Power of ground states |φ(α)〉 of:

H(α) = − cos(α)
∑
i

Zi−1XiZi+1 − sin(α)
∑
i

Xi?
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1D Resource States - Phase Diagram & Decoherence

Answer (for infinite systems):

|C〉 |+〉
α

|φ(α)〉
0 π/2π/4

Cluster phase Product phase

Computational power is a property of (symmetry-protected topological) phases.

The catch: Decoherence away from cluster state.

Recently: New formalism for analyzing power in finite resource states.
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1D Resource States - A test of computational power

β

X

−β
X

Demonstration: The rotation-counter rotation scheme.

1. Prepare |φ(α)〉, and input |+〉.
2. Apply β rotation, and −β counterrotation, separated by ∆ = 2.

3. Measure
〈
X
〉
: computational power.
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1D Resource States - Predicted Results
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1D Resource States - Decoherence Management I

X X X X X X X X X X X X

β

· · ·

vs.

X X X X X X X X X X

dβ

· · ·

dβ dβ∆� ζ

Error is O(β2) - Dividing the rotation reduces error!

Infinite case: Split as far apart (∆� ζ) and as much as desired.

Finite case: Tradeo� of rotation spli�ing and independence.
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1D Resource States - Decoherence Management II

X X X X X X

β
7
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7
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β
7∆ = 2

Optimal strategy: Split as much as possible (∆ = 2), even if “counterintuitive”.
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From Theory to Experiment - Desiderata

1. Computational power test - Rotation-counter rotation scheme (reproducing 〈X〉 vs. α)

2. Decoherence management I - Divide and conquer

3. Decoherence management II - The counterintuitive regime
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From Theory to Experiment - IBM Architecture

�bit

Connection

Prepare Cluster Chain
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From Theory to Experiment - Local Complementation

Cluster chain

=

Cluster ring

Takeaway: Playing tricks to simulate a ring with a chain.
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From Theory to Experiment - Producing Ground States

Recall H(α) and corresponding ground state |φ(α)〉:

H(α) = − cos(α)
∑
i

Zi−1XiZi+1 − sin(α)
∑
i

Xi

There exists unitary U(α) such that:

|φ(α)〉 = U(α) |C〉

Further, we can exchange unitarity for a simpler representation:

U(α) ∼= T (α) = only Is and Xs

Finally, we can assume T is local, so:

T (α) =
N⊗
i=1

(aIi + bXi)

With these simplifications, T (α) can be found via classical optimization, for small rings.
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From Theory to Experiment - Simulating MBQC

4-Chain L.C. T (α) Measurement

|0〉 H U1 T Rz(β) H

|0〉 H U2 T H

|0〉 H U3 T Rz(−β) H

|0〉 H U4 T H

|0〉⊗4 |Cchain〉
∣∣Cring

〉
|φ(α)〉
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The Alluded Algorithm - The Roadblock & The Trick

Problem: T (α) is non-unitary in general. But quantum gates are unitary.

Solution: Redraw some brackets:

p(j) = |〈j|φ(α)〉|2 = |〈j| [T (α) |C〉]|2 = |[〈j|T (α)] |C〉|2 =
∣∣∣〈T †(α)j

∣∣∣C〉∣∣∣2
Conclusion: Don’t implement T (α) at all. Instead, measure T †(α) |j〉 on |C〉 instead!

Takeaway: Problem Decomposition.
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The Alluded Algorithm - Revised Goal

4-Chain L.C. T (α) Measurement

|0〉 H U1 T adjust meas. basis to T †(α) |j1〉

|0〉 H U2 T adjust meas. basis to T †(α) |j2〉

|0〉 H U3 T adjust meas. basis to T †(α) |j3〉

|0〉 H U4 T adjust meas. basis to T †(α) |j4〉

The Task: Develop algorithm to make circuits and post-process measurement outcomes,
obtain results as if T (α) had been implemented.
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The Alluded Algorithm - The Orthogonality Problem

|v+〉

|v−〉

T †(α)

T †(α) |v+〉

T †(α) |v−〉
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The Alluded Algorithm - Solving the Orthogonality Problem

T †(α) |v+〉

T †(α) |v−〉

(T †(α) |v−〉)⊥

(T †(α) |v+〉)⊥

Resolution: Sequence of multiple experiments, combining/processing the outcomes.
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Initial Results - Simulation
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Initial Results - Experiment
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Making the Experiment “More Quantum” - Using VQE

Current setup: coe�icients for T (α) found classically, and T (α) applied classically via
post-processing.

More quantum mechanical (and more generalizable): Find T (α) on a quantum computer.

Method: Variational �antum Eigensolver

Prepare Ansatz
|ψ(θ)〉 = T ′(θ) |C〉

Measure E(α, θ):
〈ψ(θ)|H(α) |ψ(θ)〉 Update θ

Repeat until E(α, θ) minimized

Minimization (for a given α) yields θ for which T ′(θ) = T (α).
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Making the Experiment “More Quantum” - VQE Ansatz

Recall the target form of T (α) which satisfies |φ(α)〉 = T (α) |C〉:

T (α) =

4⊗
i=1

(aIi + bXi)

Natural Ansatz:

|ψ(θ)〉 = T ′(θ) |C〉 =

4⊗
i=1

T ′i (θ) |C〉 =

(
4⊗
i=1

cos(θ)Ii + sin(θ)Xi

)
|C〉

Per-site energy to minimize:

〈Ei〉θ = − cos(α) 〈Ki = Zi−1XiZi+1〉θ − sin(α) 〈Xi〉θ
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Making the Experiment “More Quantum” - VQE Circuits

|+〉

|+〉 U(θ)

|+〉

|+〉 U(θ)

|+〉

|+〉 U(θ)

|+〉

|+〉 U(θ)

X1Z1

X2

Z3

Algorithm for finding 〈Xi〉θ / 〈Ki〉θ :
1. Prepare the cluster ring |C4〉.
2. Probabilistically implement (non-unitary)
T ′i (θ) = cos(θ)Ii + sin(θ)Xi on each site.

3. Measure X1 or K2 = Z1X2Z3 on the
prepared state to obtain 〈Xi〉θ / 〈Ki〉θ .
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Making the Experiment “More Quantum” - Cascading Simplification

X1

X

X

X

|+〉

|+〉 U(θ)

|+〉

|+〉 U(θ)

|+〉

|+〉 U(θ)

|+〉

|+〉 U(θ)

Large + Ine�icient

∼=
X

|+〉 U(θ)

Small + Simple!
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Making the Experiment “More Quantum” - Simplification Idea I

"Erroneous" outcome

"Erroneous" outcome

|+〉

|+〉 U(θ)

|+〉

|+〉 U(θ)

|+〉

|+〉 U(θ)

|+〉

|+〉 U(θ)

|+〉 Z

|+〉 U(θ)

|+〉 X

|+〉 U(θ)

|+〉 Z

|+〉 U(θ)

|+〉

|+〉 U(θ)

Corrected by ZXZ

(Some) errors can be corrected by pushing through cluster stabilizers ZXZ .
Gain: Error probability doesn’t increase exponentially with ring size, is instead constant.
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Making the Experiment “More Quantum” - Simplification Idea II

Simplification of “Unit cell” of VQE Circuit:

Xs

. . .

|+〉 U(θ)

|+〉 . . .

Xs

. . .

|+〉 Zs U(θ)

|+〉 . . .

. . . Zs H . . .

|+〉 Zs U(θ)

�bits disentangle... or are removed completely.

Gain: Circuits of 2n qubits reduce to constant small sizes. Preparing the state is
ine�icient, but measuring the state (intriguingly) is not.
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Making the Experiment “More Quantum” - VQE Results
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Making the Experiment “More Quantum” - Fourier Fits
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Making the Experiment “More Quantum” - VQE Coefficients
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Making the Experiment “More Quantum” - Experiment, Again
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Outlook & Conclusion

Shi� to larger systems to demonstrate techniques for decoherence mitigation.

Impact: First experimental demonstration of robustness of quantum computational
power. Understanding quantum advantage, and a use case for NISQ devices.

Image Credit: �anta Magazine
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