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1. What is the source of quantum advantage?
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MOTIVATING QUESTIONS
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1. What is the source of quantum advantage?
P> Measurement-Based Quantum Computing - coming up!

2. What can we do with NISQ (Noisy Intermediate-Scale Quantum) devices?
P Active research area... and this project!

Image Credit: Erik Lucero/Google
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1D RESOURCE STATES - DEFINING COMPUTATIONAL POWER

Ability to perform arbitrary single qubit unitaries - rotations.
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1D RESOURCE STATES - EXTREMES AND INTERPOLATION

Universal Resource: Cluster State |C) Useless Resource: Product State |+)%"

oO—0O—C0O—-—0 O O O O
Ground state of Ground state of
Hpuster = — Zz ZileiZiJrl Hproduct = - Zz Xi

Question: Power of ground states |¢p(«a)) of:

H(Oé) = — COS(O&) Z ZileiZ'H»l — sin(a) Z Xﬂ
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1D RESOURCE STATES - PHASE DIAGRAM & DECOHERENCE

Answer (for infinite systems):

Cluster phase Product phase
C) +) ()
0 /4 /2 «

m Computational power is a property of (symmetry-protected topological) phases.
m The catch: Decoherence away from cluster state.

m Recently: New formalism for analyzing power in finite resource states.




1D RESOURCE STATES - A TEST OF COMPUTATIONAL POWER

Demonstration: The rotation-counter rotation scheme.
1. Prepare |¢(«)), and input |+).
2. Apply  rotation, and — 3 counterrotation, separated by A = 2.

3. Measure (X ): computational power.

.




1D RESOURCE STATES - PREDICTED RESULTS
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1D RESOURCE STATES - PREDICTED RESULTS
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LB
(T 9-)-CI-I-)-CI-D-()-CI- O (0-

m Error is O(3?) - Dividing the rotation reduces error!
m Infinite case: Split as far apart (A > () and as much as desired.

m Finite case: Tradeoff of rotation splitting and independence.

9



1D RESOURCE STATES - DECOHERENCE MANAGEMENT |1

m Optimal strategy: Split as much as possible (A = 2), even if “counterintuitive”.




FROM THEORY TO EXPERIMENT - DESIDERATA

1. Computational power test - Rotation-counter rotation scheme (reproducing (X) vs. c)
2. Decoherence management | - Divide and conquer

3. Decoherence management Il - The counterintuitive regime




FROM THEORY TO EXPERIMENT - IBM ARCHITECTURE
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FROM THEORY TO EXPERIMENT - IBM ARCHITECTURE

Qubit —

Prepare Cluster Chain

2

Connection —>




FROM THEORY TO EXPERIMENT - LOCAL COMPLEMENTATION

Cluster chain Cluster ring
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FROM THEORY TO EXPERIMENT - LOCAL COMPLEMENTATION

Cluster chain Cluster ring

Takeaway: Playing tricks to simulate a ring with a chain.




FROM THEORY TO EXPERIMENT - PRODUCING GROUND STATES

Recall H(«) and corresponding ground state |¢(a)):

H(Oé) = — COS(Oé) Z Zi—lXiZi-i-l — sin(a) Z Xz

i




FROM THEORY TO EXPERIMENT - PRODUCING GROUND STATES

Recall H(«) and corresponding ground state |¢(a)):

H(Oé) = — COS(Oé) Z Zi—lXiZi-i-l — sin(a) Z Xz

i

There exists unitary U(«a) such that:




FROM THEORY TO EXPERIMENT - PRODUCING GROUND STATES

Recall H(«) and corresponding ground state |¢(a)):

H(Oé) = — COS(Oé) Z Zi—lXiZi-i-l — sin(a) Z Xz

i
There exists unitary U(«a) such that:
|6()) = U() |C)
Further, we can exchange unitarity for a simpler representation:

U(a) =2 T(a) = only Is and X's




FROM THEORY TO EXPERIMENT - PRODUCING GROUND STATES

Recall H(«) and corresponding ground state |¢(a)):

H(Oé) = — COS(Oé) Z Zi—lXiZi-i-l — sin(a) Z Xz
i i
There exists unitary U(«a) such that:
|6()) = U() |C)
Further, we can exchange unitarity for a simpler representation:
U(a) =2 T(a) = only Is and X's

Finally, we can assume 7' is local, so:

N

T(a) = ®(a[i +bX;)

=1

With these simplifications, T'(«v) can be found via classical optimization, for small rings.



)
J
aa)
=
o
Z
=
<
-
=)
=
wn
1
=
V4
58]
=
o
L
o
X
L
©)
=
&
©]
L
ag
o
=
Q
o
L

ISRcRERE!
= "
HEIREIREINER
| 1 m
& E 5l |
e 2 |
SENCRENEY
S NENEREL
m .....................
by
0 _
4" "




THE ALLUDED ALGORITHM - THE RoADBLOCK & THE TRICK

Problem: T'(«) is non-unitary in general. But quantum gates are unitary.
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THE ALLUDED ALGORITHM - THE RoADBLOCK & THE TRICK

Problem: T'(«) is non-unitary in general. But quantum gates are unitary.

m Solution: Redraw some brackets:

p(i) = [GI8@) = 1G] (e [P = [GI T@) |0) = [{Tt(@)i|c)[

m Conclusion: Don’t implement T'(«) at all. Instead, measure T (a) |j) on |C) instead!

m Takeaway: Problem Decomposition.




THE ALLUDED ALGORITHM - REVISED GOAL

Measurement

adjust meas. basis to T () |j;)
adjust meas. basis to T () |j2)
adjust meas. basis to T () |j3)
adjust meas. basis to T () |j4)

The Task: Develop algorithm to make circuits and post-process measurement outcomes,
obtain results as if T'(«) had been implemented.



THE ALLUDED ALGORITHM - THE ORTHOGONALITY PROBLEM
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THE ALLUDED ALGORITHM - SOLVING THE ORTHOGONALITY PROBLEM
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THE ALLUDED ALGORITHM - SOLVING THE ORTHOGONALITY PROBLEM
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Resolution: Sequence of multiple experiments, combining/processing the outcomes.




INITIAL RESULTS - SIMULATION

(X) of encoded qubit vs. Interpolation a
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I
o
1

=
©
1

=
o
1

o
SN
1

Computational power

>
N
1

—— Prediction
{ Simulated Circuit Result

(X)

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation a - 2/m




INITIAL RESULTS - EXPERIMENT

(X) of encoded qubit vs. Interpolation a
(Simulation)
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MAKING THE EXPERIMENT “MORE QUANTUM” - UsING VQE

m Current setup: coefficients for T'(«) found classically, and T'(«) applied classically via
post-processing.
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MAKING THE EXPERIMENT “MORE QUANTUM” - UsING VQE

m Current setup: coefficients for T'(«) found classically, and T'(«) applied classically via
post-processing.

m More quantum mechanical (and more generalizable): Find T'(«) on a quantum computer.

m Method: Variational Quantum Eigensolver

Prepare Ansatz Measure E(a, 6):
[$0) =T'(0)1C) | | ($(0)] H(a) [¢(8)) ——{Update |

t

Repeat until E(a, §) minimized

m Minimization (for a given «) yields € for which 7"(0) = T'(«).



MAKING THE EXPERIMENT “MORE QUANTUM” - VQE ANSATZ

m Recall the target form of T'(a) which satisfies |¢(a)) = T'(a) |C):

4

T(e) = R)(al; + bX;)

i=1




MAKING THE EXPERIMENT “MORE QUANTUM” - VQE ANSATZ

m Recall the target form of T'(a) which satisfies |¢(a)) = T'(a) |C):

4

T(e) = R)(al; + bX;)

i=1

m Natural Ansatz:

4

4
$(6)) = T'(0)IC) = R TLO)IC) = <®cos<9>zi T smwm) )
=1

i=1




MAKING THE EXPERIMENT “MORE QUANTUM” - VQE ANSATZ

m Recall the target form of T'(a) which satisfies |¢(a)) = T'(a) |C):

4

T(e) = R)(al; + bX;)
=1
m Natural Ansatz:
4 4
[(0)) = T'(0) IC) = Q) T} (0) |C) = <® cos(0)I; + sin(@&) |C)
=1 =1

m Per-site energy to minimize:

<Ei>9 = — COS(a) <Kz = Zi—lXiZi-i-l)g — Sin(a) <Xl>0




MAKING THE EXPERIMENT “MORE QUANTUM” - VQE CIrcuITS
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Algorithm for finding (X5), / (K;):

1.
2.

Prepare the cluster ring |Cy).

Probabilistically implement (non-unitary)
T!(0) = cos(0)1; + sin() X; on each site.

. Measure X or K9 = Z1 X973 on the

prepared state to obtain (X;), / (K;),.



MAKING THE EXPERIMENT “MORE QUANTUM” - CASCADING SIMPLIFICATION
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MAKING THE EXPERIMENT “MORE QUANTUM” - CASCADING SIMPLIFICATION

R o i | X

R )_(__: ~ |+) —U(®)

i Etteteteteieite i . Small + Simple!
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m (Some) errors can be corrected by pushing through cluster stabilizers ZX Z.



MAKING THE EXPERIMENT “MORE QUANTUM” - SIMPLIFICATION IDEA |

I-+) U(o) "Erroneous" outcome
+) ¥ [~
L1+ v(o) H~:

m (Some) errors can be corrected by pushing through cluster stabilizers ZX Z.

m Gain: Error probability doesn’t increase exponentially with ring size, is instead constant.




MAKING THE EXPERIMENT “MORE QUANTUM” - SIMPLIFICATION IDEA Il

Simplification of “Unit cell” of VQE Circuit:
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MAKING THE EXPERIMENT “MORE QUANTUM” - SIMPLIFICATION IDEA Il

Simplification of “Unit cell” of VQE Circuit:

*
&
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m Qubits disentangle... or are removed completely.

m Gain: Circuits of 2n qubits reduce to constant small sizes. Preparing the state is
inefficient, but measuring the state (intriguingly) is not.




MAKING THE EXPERIMENT “MORE QUANTUM” - VQE RESULTS

(Xi)e and (K;)g for VQE Ansatz
vs. VQE parameter 6
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MAKING THE EXPERIMENT “MORE QUANTUM” - FOURIER FITS

Expectation Values for VQE Ansatz
vs. VQE parameter 6
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MAKING THE EXPERIMENT “MORE QUANTUM” - VQE COEFFICIENTS

Coefficients for T(a) vs. Interpolation a
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MAKING THE EXPERIMENT “MORE QUANTUM” - EXPERIMENT, AGAIN

(X) of encoded qubit vs. Interpolation a
(Experiment, w/ VQE Coefficients)
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OuTLoOK & CONCLUSION
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m Shift to larger systems to demonstrate techniques for decoherence mitigation.

Image Credit: Quanta Magazine
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OuTLoOK & CONCLUSION

m Shift to larger systems to demonstrate techniques for decoherence mitigation.

m Impact: First experimental demonstration of robustness of quantum computational
power. Understanding quantum advantage, and a use case for NISQ devices.

Image Credit: Quanta Magazine
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