A Simulation of a Simulation: Algorithms for Measurement-Based Quantum Computing Experiments ASQC V

Rio Weil

Robert Raussendorf, Arnab Adhikary, Dmytro Bondarenko, Amrit Guha Department of Physics and Astronomy, The University of British Columbia

June 14, 2022

1. Motivating Questions
2. A One-Slide Review of MBQC
3. 1D Resource States
4. From Theory to Experiment
5. The Alluded Algorithm
6. Initial Results
7. Making the Experiment "More Quantum"
8. Outlook \& Conclusion

9. What is the source of quantum advantage?
10. What can we do with NISQ (Noisy Intermediate-Scale Quantum) devices?

Motivating Questions

1. What is the source of quantum advantage?

- Measurement-Based Quantum Computing - coming up!

2. What can we do with NISQ (Noisy Intermediate-Scale Quantum) devices?

- Active research area... and this project!

Ability to perform arbitrary single qubit unitaries - rotations.

Universal Resource: Cluster State $|C\rangle$

$$
\begin{gathered}
\text { Ground state of } \\
H_{\text {cluster }}=-\sum_{i} Z_{i-1} X_{i} Z_{i+1}
\end{gathered}
$$

Universal Resource: Cluster State $|C\rangle$

Ground state of $H_{\text {cluster }}=-\sum_{i} Z_{i-1} X_{i} Z_{i+1}$

Useless Resource: Product State $|+\rangle^{\otimes N}$

○ ○ ○ ○

Ground state of

$$
H_{\text {product }}=-\sum_{i} X_{i}
$$

Question: Power of ground states $|\phi(\alpha)\rangle$ of:

$$
H(\alpha)=-\cos (\alpha) \sum_{i} Z_{i-1} X_{i} Z_{i+1}-\sin (\alpha) \sum_{i} X_{i} ?
$$

Answer (for infinite systems):
Cluster phase Product phase

- Computational power is a property of (symmetry-protected topological) phases.

Answer (for infinite systems):
Cluster phase
Product phase

$$
\begin{gathered}
|\phi(\alpha)\rangle \\
\alpha
\end{gathered}
$$

■ Computational power is a property of (symmetry-protected topological) phases.

- The catch: Decoherence away from cluster state.

Answer (for infinite systems):
Cluster phase Product phase

$$
|\phi(\alpha)\rangle
$$

α

■ Computational power is a property of (symmetry-protected topological) phases.

- The catch: Decoherence away from cluster state.
- Recently: New formalism for analyzing power in finite resource states.

Demonstration: The rotation-counter rotation scheme.

1. Prepare $|\phi(\alpha)\rangle$, and input $|+\rangle$.
2. Apply β rotation, and $-\beta$ counterrotation, separated by $\Delta=2$.
3. Measure $\langle\bar{X}\rangle$: computational power.
$\langle X\rangle$ of encoded qubit vs. Interpolation α

$\langle X\rangle$ of encoded qubit vs. Interpolation α

vS.

- Error is $O\left(\beta^{2}\right)$ - Dividing the rotation reduces error!

vS.

- Error is $O\left(\beta^{2}\right)$ - Dividing the rotation reduces error!
- Infinite case: Split as far apart $(\Delta \gg \zeta)$ and as much as desired.

VS.

- Error is $O\left(\beta^{2}\right)$ - Dividing the rotation reduces error!
- Infinite case: Split as far apart $(\Delta \gg \zeta)$ and as much as desired.
- Finite case: Tradeoff of rotation splitting and independence.

■ Optimal strategy: Split as much as possible $(\Delta=2)$, even if "counterintuitive".

1. Computational power test - Rotation-counter rotation scheme (reproducing $\langle\bar{X}\rangle$ vs. α)
2. Decoherence management I-Divide and conquer
3. Decoherence management II - The counterintuitive regime

$$
5_{0}^{20} \rightarrow 8-88 \rightarrow 88
$$

Takeaway: Playing tricks to simulate a ring with a chain.

From Theory to Experiment - Producing Ground States
Recall $H(\alpha)$ and corresponding ground state $|\phi(\alpha)\rangle$:

$$
H(\alpha)=-\cos (\alpha) \sum_{i} Z_{i-1} X_{i} Z_{i+1}-\sin (\alpha) \sum_{i} X_{i}
$$

From Theory to Experiment - Producing Ground States
Recall $H(\alpha)$ and corresponding ground state $|\phi(\alpha)\rangle$:

$$
H(\alpha)=-\cos (\alpha) \sum_{i} Z_{i-1} X_{i} Z_{i+1}-\sin (\alpha) \sum_{i} X_{i}
$$

There exists unitary $U(\alpha)$ such that:

$$
|\phi(\alpha)\rangle=U(\alpha)|C\rangle
$$

From Theory to Experiment - Producing Ground States
Recall $H(\alpha)$ and corresponding ground state $|\phi(\alpha)\rangle$:

$$
H(\alpha)=-\cos (\alpha) \sum_{i} Z_{i-1} X_{i} Z_{i+1}-\sin (\alpha) \sum_{i} X_{i}
$$

There exists unitary $U(\alpha)$ such that:

$$
|\phi(\alpha)\rangle=U(\alpha)|C\rangle
$$

Further, we can exchange unitarity for a simpler representation:

$$
U(\alpha) \cong T(\alpha)=\text { only } I \mathrm{~s} \text { and } X \mathrm{~s}
$$

From Theory to Experiment - Producing Ground States
Recall $H(\alpha)$ and corresponding ground state $|\phi(\alpha)\rangle$:

$$
H(\alpha)=-\cos (\alpha) \sum_{i} Z_{i-1} X_{i} Z_{i+1}-\sin (\alpha) \sum_{i} X_{i}
$$

There exists unitary $U(\alpha)$ such that:

$$
|\phi(\alpha)\rangle=U(\alpha)|C\rangle
$$

Further, we can exchange unitarity for a simpler representation:

$$
U(\alpha) \cong T(\alpha)=\text { only } I \mathrm{~s} \text { and } X \mathrm{~s}
$$

Finally, we can assume T is local, so:

$$
T(\alpha)=\bigotimes_{i=1}^{N}\left(a I_{i}+b X_{i}\right)
$$

With these simplifications, $T(\alpha)$ can be found via classical optimization, for small rings.

From Theory to Experiment - Simulating MBQC

Problem: $T(\alpha)$ is non-unitary in general. But quantum gates are unitary.

Problem: $T(\alpha)$ is non-unitary in general. But quantum gates are unitary.

- Solution: Redraw some brackets:

$$
\left.p(\mathbf{j})=|\langle\mathbf{j} \mid \phi(\alpha)\rangle|^{2}=|\langle\mathbf{j}|[T(\alpha)|C\rangle]|^{2}=|[\langle\mathbf{j}| T(\alpha)]| C\right\rangle\left.\right|^{2}=\left|\left\langle T^{\dagger}(\alpha) \mathbf{j} \mid C\right\rangle\right|^{2}
$$

Problem: $T(\alpha)$ is non-unitary in general. But quantum gates are unitary.

- Solution: Redraw some brackets:

$$
\left.p(\mathbf{j})=|\langle\mathbf{j} \mid \phi(\alpha)\rangle|^{2}=|\langle\mathbf{j}|[T(\alpha)|C\rangle]|^{2}=|[\langle\mathbf{j}| T(\alpha)]| C\right\rangle\left.\right|^{2}=\left|\left\langle T^{\dagger}(\alpha) \mathbf{j} \mid C\right\rangle\right|^{2}
$$

- Conclusion: Don't implement $T(\alpha)$ at all. Instead, measure $T^{\dagger}(\alpha)|\mathbf{j}\rangle$ on $|C\rangle$ instead!

Problem: $T(\alpha)$ is non-unitary in general. But quantum gates are unitary.

- Solution: Redraw some brackets:

$$
\left.p(\mathbf{j})=|\langle\mathbf{j} \mid \phi(\alpha)\rangle|^{2}=|\langle\mathbf{j}|[T(\alpha)|C\rangle]|^{2}=|[\langle\mathbf{j}| T(\alpha)]| C\right\rangle\left.\right|^{2}=\left|\left\langle T^{\dagger}(\alpha) \mathbf{j} \mid C\right\rangle\right|^{2}
$$

■ Conclusion: Don't implement $T(\alpha)$ at all. Instead, measure $T^{\dagger}(\alpha)|\mathbf{j}\rangle$ on $|C\rangle$ instead!

- Takeaway: Problem Decomposition.

The Alluded Algorithm - Revised Goal

The Task: Develop algorithm to make circuits and post-process measurement outcomes, obtain results as if $T(\alpha)$ had been implemented.

Resolution: Sequence of multiple experiments, combining/processing the outcomes.
$\langle X\rangle$ of encoded qubit vs. Interpolation α (Simulated)

$\langle X\rangle$ of encoded qubit vs. Interpolation α (Simulation)

- Current setup: coefficients for $T(\alpha)$ found classically, and $T(\alpha)$ applied classically via post-processing.
- Current setup: coefficients for $T(\alpha)$ found classically, and $T(\alpha)$ applied classically via post-processing.
- More quantum mechanical (and more generalizable): Find $T(\alpha)$ on a quantum computer.

■ Current setup: coefficients for $T(\alpha)$ found classically, and $T(\alpha)$ applied classically via post-processing.

- More quantum mechanical (and more generalizable): Find $T(\alpha)$ on a quantum computer.
- Method: Variational Quantum Eigensolver

- Minimization (for a given α) yields θ for which $T^{\prime}(\theta)=T(\alpha)$.
- Recall the target form of $T(\alpha)$ which satisfies $|\phi(\alpha)\rangle=T(\alpha)|C\rangle$:

$$
T(\alpha)=\bigotimes_{i=1}^{4}\left(a I_{i}+b X_{i}\right)
$$

- Recall the target form of $T(\alpha)$ which satisfies $|\phi(\alpha)\rangle=T(\alpha)|C\rangle$:

$$
T(\alpha)=\bigotimes_{i=1}^{4}\left(a I_{i}+b X_{i}\right)
$$

■ Natural Ansatz:

$$
|\psi(\theta)\rangle=T^{\prime}(\theta)|C\rangle=\bigotimes_{i=1}^{4} T_{i}^{\prime}(\theta)|C\rangle=\left(\bigotimes_{i=1}^{4} \cos (\theta) I_{i}+\sin (\theta) X_{i}\right)|C\rangle
$$

- Recall the target form of $T(\alpha)$ which satisfies $|\phi(\alpha)\rangle=T(\alpha)|C\rangle$:

$$
T(\alpha)=\bigotimes_{i=1}^{4}\left(a I_{i}+b X_{i}\right)
$$

■ Natural Ansatz:

$$
|\psi(\theta)\rangle=T^{\prime}(\theta)|C\rangle=\bigotimes_{i=1}^{4} T_{i}^{\prime}(\theta)|C\rangle=\left(\bigotimes_{i=1}^{4} \cos (\theta) I_{i}+\sin (\theta) X_{i}\right)|C\rangle
$$

- Per-site energy to minimize:

$$
\left\langle E_{i}\right\rangle_{\theta}=-\cos (\alpha)\left\langle K_{i}=Z_{i-1} X_{i} Z_{i+1}\right\rangle_{\theta}-\sin (\alpha)\left\langle X_{i}\right\rangle_{\theta}
$$

Algorithm for finding $\left\langle X_{i}\right\rangle_{\theta} /\left\langle K_{i}\right\rangle_{\theta}$:

1. Prepare the cluster ring $\left|C_{4}\right\rangle$.
2. Probabilistically implement (non-unitary) $T_{i}^{\prime}(\theta)=\cos (\theta) I_{i}+\sin (\theta) X_{i}$ on each site.
3. Measure X_{1} or $K_{2}=Z_{1} X_{2} Z_{3}$ on the prepared state to obtain $\left\langle X_{i}\right\rangle_{\theta} /\left\langle K_{i}\right\rangle_{\theta}$.

■ (Some) errors can be corrected by pushing through cluster stabilizers $Z X Z$.

- (Some) errors can be corrected by pushing through cluster stabilizers $Z X Z$.
- Gain: Error probability doesn't increase exponentially with ring size, is instead constant.

Simplification of "Unit cell" of VQE Circuit:

Simplification of "Unit cell" of VQE Circuit:

- Qubits disentangle...

Simplification of "Unit cell" of VQE Circuit:

- Qubits disentangle... or are removed completely.

Simplification of "Unit cell" of VQE Circuit:

- Qubits disentangle... or are removed completely.
- Gain: Circuits of $2 n$ qubits reduce to constant small sizes. Preparing the state is inefficient, but measuring the state (intriguingly) is not.
$\left\langle X_{i}\right\rangle_{\theta}$ and $\left\langle K_{i}\right\rangle_{\theta}$ for VQE Ansatz vs. VQE parameter θ

Expectation Values for VQE Ansatz
 vs. VQE parameter θ

Coefficients for $T(\alpha)$ vs. Interpolation α

$\langle X\rangle$ of encoded qubit vs. Interpolation α (Experiment, w/ VQE Coefficients)

Outlook \& Conclusion

■ Shift to larger systems to demonstrate techniques for decoherence mitigation.

Outlook \& Conclusion

■ Shift to larger systems to demonstrate techniques for decoherence mitigation.

- Impact: First experimental demonstration of robustness of quantum computational power. Understanding quantum advantage, and a use case for NISQ devices.

[^0]
[^0]: Image Credit: Quanta Magazine

