A SIMULATION OF A SIMULATION: Algorithms for Measurement-Based Quantum Computing Experiments ASQC V

RIO WEIL

Robert Raussendorf, Arnab Adhikary, Dmytro Bondarenko, Amrit Guha Department of Physics and Astronomy, The University of British Columbia

June 14, 2022

- 1. Motivating Questions
- 2. A One-Slide Review of MBQC
- 3. 1D Resource States
- 4. From Theory to Experiment
- 5. The Alluded Algorithm
- 6. Initial Results
- 7. Making the Experiment "More Quantum"
- 8. Outlook & Conclusion

MOTIVATING QUESTIONS

- 1. What is the source of quantum advantage?
- 2. What can we do with NISQ (Noisy Intermediate-Scale Quantum) devices?

Image Credit: Erik Lucero/Google

MOTIVATING QUESTIONS

- 1. What is the source of quantum advantage?
 - Measurement-Based Quantum Computing coming up!
- 2. What can we do with NISQ (Noisy Intermediate-Scale Quantum) devices?
 - Active research area... and this project!

A One-Slide Review of MBQC

Simulated Time

	Gate Model	MBQC
Evolution Method	Unitary Gates	Single-Qubit measurements
"Power Source"	Intermediate Gates	Initial State

A One-Slide Review of MBQC

	Gate Model	MBQC
Evolution Method	Unitary Gates	Single-Qubit measurements
"Power Source"	Intermediate Gates	Initial State

1D Resource States - Defining Computational Power

Ability to perform arbitrary single qubit unitaries - rotations.

Universal Resource: Cluster State $|C\rangle$

0-0-0-0

Ground state of $H_{\text{cluster}} = -\sum_{i} Z_{i-1} X_i Z_{i+1}$

Useless Resource: Product State $\ket{+}^{\otimes N}$

 \circ \circ \circ \circ

Ground state of $H_{\text{product}} = -\sum_i X_i$

Universal Resource: Cluster State $|C\rangle$

Ground state of $H_{\text{cluster}} = -\sum_i Z_{i-1} X_i Z_{i+1}$

Useless Resource: Product State $|+
angle^{\otimes N}$

$$\circ$$
 \circ \circ \circ

Ground state of $H_{\text{product}} = -\sum_i X_i$

Question: Power of ground states $|\phi(\alpha)\rangle$ of:

$$H(\alpha) = -\cos(\alpha) \sum_{i} Z_{i-1} X_i Z_{i+1} - \sin(\alpha) \sum_{i} X_i Z_i$$

Answer (for infinite systems):

• Computational power is a property of (symmetry-protected topological) phases.

Answer (for infinite systems):

- Computational power is a property of (symmetry-protected topological) phases.
- The catch: Decoherence away from cluster state.

Answer (for infinite systems):

- Computational power is a property of (symmetry-protected topological) phases.
- The catch: Decoherence away from cluster state.
- Recently: New formalism for analyzing power in *finite* resource states.

1D Resource States - A test of computational power

Demonstration: The rotation-counter rotation scheme.

- 1. Prepare $|\phi(\alpha)\rangle$, and input $|+\rangle$.
- 2. Apply β rotation, and $-\beta$ counterrotation, separated by $\Delta = 2$.
- 3. Measure $\langle \overline{X} \rangle$: computational power.

1D Resource States - Decoherence Management I

• Error is $O(\beta^2)$ - Dividing the rotation reduces error!

1D Resource States - Decoherence Management I

• Error is $O(\beta^2)$ - Dividing the rotation reduces error!

Infinite case: Split as far apart ($\Delta \gg \zeta$) and as much as desired.

1D Resource States - Decoherence Management I

- Error is $O(\beta^2)$ Dividing the rotation reduces error!
- Infinite case: Split as far apart ($\Delta \gg \zeta$) and as much as desired.
- Finite case: Tradeoff of rotation splitting and independence.

1D Resource States - Decoherence Management II

• Optimal strategy: Split as much as possible ($\Delta = 2$), even if "counterintuitive".

- 1. Computational power test Rotation-counter rotation scheme (reproducing $\langle \overline{X} \rangle$ vs. α)
- 2. Decoherence management I Divide and conquer
- 3. Decoherence management II The counterintuitive regime

FROM THEORY TO EXPERIMENT - IBM ARCHITECTURE

Qubit
$$\longrightarrow$$

FROM THEORY TO EXPERIMENT - IBM ARCHITECTURE

FROM THEORY TO EXPERIMENT - LOCAL COMPLEMENTATION

FROM THEORY TO EXPERIMENT - LOCAL COMPLEMENTATION

Takeaway: Playing tricks to simulate a ring with a chain.

Recall $H(\alpha)$ and corresponding ground state $|\phi(\alpha)\rangle$:

$$H(\alpha) = -\cos(\alpha) \sum_{i} Z_{i-1} X_i Z_{i+1} - \sin(\alpha) \sum_{i} X_i$$

Recall $H(\alpha)$ and corresponding ground state $|\phi(\alpha)\rangle$:

$$H(\alpha) = -\cos(\alpha)\sum_{i} Z_{i-1}X_iZ_{i+1} - \sin(\alpha)\sum_{i} X_i$$

There exists unitary $U(\alpha)$ such that:

 $|\phi(\alpha)\rangle = U(\alpha) |C\rangle$

Recall $H(\alpha)$ and corresponding ground state $|\phi(\alpha)\rangle$:

$$H(\alpha) = -\cos(\alpha) \sum_{i} Z_{i-1} X_i Z_{i+1} - \sin(\alpha) \sum_{i} X_i$$

There exists unitary $U(\alpha)$ such that:

 $\left|\phi(\alpha)\right\rangle=U(\alpha)\left|C\right\rangle$

Further, we can exchange unitarity for a simpler representation:

 $U(\alpha) \cong T(\alpha) =$ only *I*s and *X*s

Recall $H(\alpha)$ and corresponding ground state $|\phi(\alpha)\rangle$:

$$H(\alpha) = -\cos(\alpha) \sum_{i} Z_{i-1} X_i Z_{i+1} - \sin(\alpha) \sum_{i} X_i$$

There exists unitary $U(\alpha)$ such that:

 $\left|\phi(\alpha)\right\rangle = U(\alpha)\left|C\right\rangle$

Further, we can exchange unitarity for a simpler representation:

 $U(\alpha) \cong T(\alpha) =$ only *I*s and *X*s

Finally, we can assume T is local, so:

$$T(\alpha) = \bigotimes_{i=1}^{N} (aI_i + bX_i)$$

With these simplifications, $T(\alpha)$ can be found via classical optimization, for small rings.

FROM THEORY TO EXPERIMENT - SIMULATING MBQC

Solution: Redraw some brackets:

$$p(\mathbf{j}) = |\langle \mathbf{j} | \phi(\alpha) \rangle|^2 = |\langle \mathbf{j} | [T(\alpha) | C \rangle]|^2 = |[\langle \mathbf{j} | T(\alpha)] | C \rangle|^2 = \left| \left\langle T^{\dagger}(\alpha) \mathbf{j} \right| C \right\rangle \Big|^2$$

Solution: Redraw some brackets:

$$p(\mathbf{j}) = \left| \langle \mathbf{j} | \phi(\alpha) \rangle \right|^2 = \left| \langle \mathbf{j} | [T(\alpha) | C \rangle] \right|^2 = \left| [\langle \mathbf{j} | T(\alpha)] | C \rangle \right|^2 = \left| \left\langle T^{\dagger}(\alpha) \mathbf{j} \middle| C \right\rangle \right|^2$$

• Conclusion: Don't implement $T(\alpha)$ at all. Instead, measure $T^{\dagger}(\alpha) |\mathbf{j}\rangle$ on $|C\rangle$ instead!

Solution: Redraw some brackets:

$$p(\mathbf{j}) = |\langle \mathbf{j} | \phi(\alpha) \rangle|^2 = |\langle \mathbf{j} | [T(\alpha) | C \rangle]|^2 = |[\langle \mathbf{j} | T(\alpha)] | C \rangle|^2 = \left| \left\langle T^{\dagger}(\alpha) \mathbf{j} \right| C \right\rangle \Big|^2$$

Conclusion: Don't implement T(α) at all. Instead, measure T[†](α) |**j**> on |C> instead!
 Takeaway: Problem Decomposition.

The Alluded Algorithm - Revised Goal

The Task: Develop algorithm to make circuits and post-process measurement outcomes, obtain results as if $T(\alpha)$ had been implemented.

The Alluded Algorithm - The Orthogonality Problem

THE ALLUDED ALGORITHM - SOLVING THE ORTHOGONALITY PROBLEM

THE ALLUDED ALGORITHM - SOLVING THE ORTHOGONALITY PROBLEM

Resolution: Sequence of multiple experiments, combining/processing the outcomes.

INITIAL RESULTS - SIMULATION

INITIAL RESULTS - EXPERIMENT

Making the Experiment "More Quantum" - Using VQE

Current setup: coefficients for $T(\alpha)$ found classically, and $T(\alpha)$ applied classically via post-processing.

Making the Experiment "More Quantum" - Using VQE

- Current setup: coefficients for $T(\alpha)$ found classically, and $T(\alpha)$ applied classically via post-processing.
- More quantum mechanical (and more generalizable): Find $T(\alpha)$ on a quantum computer.

Making the Experiment "More Quantum" - Using VQE

- Current setup: coefficients for $T(\alpha)$ found classically, and $T(\alpha)$ applied classically via post-processing.
- More quantum mechanical (and more generalizable): Find $T(\alpha)$ on a quantum computer.
- Method: Variational Quantum Eigensolver

$$\begin{array}{c} \text{Prepare Ansatz} \\ |\psi(\theta)\rangle = T'(\theta) |C\rangle \end{array} \xrightarrow{\text{Measure } E(\alpha, \theta):} \\ \langle \psi(\theta) | H(\alpha) | \psi(\theta) \rangle \end{array} \xrightarrow{\text{Update } \theta} \\ \\ \text{Repeat until } E(\alpha, \theta) \text{ minimized} \end{array}$$

• Minimization (for a given α) yields θ for which $T'(\theta) = T(\alpha)$.

Making the Experiment "More Quantum" - VQE Ansatz

• Recall the target form of $T(\alpha)$ which satisfies $|\phi(\alpha)\rangle = T(\alpha) |C\rangle$:

$$T(\alpha) = \bigotimes_{i=1}^{4} (aI_i + bX_i)$$

Making the Experiment "More Quantum" - VQE Ansatz

• Recall the target form of $T(\alpha)$ which satisfies $|\phi(\alpha)\rangle = T(\alpha) |C\rangle$:

$$T(\alpha) = \bigotimes_{i=1}^{4} (aI_i + bX_i)$$

Natural Ansatz:

$$|\psi(\theta)\rangle = T'(\theta) |C\rangle = \bigotimes_{i=1}^{4} T'_{i}(\theta) |C\rangle = \left(\bigotimes_{i=1}^{4} \cos(\theta) I_{i} + \sin(\theta) X_{i}\right) |C\rangle$$

Making the Experiment "More Quantum" - VQE Ansatz

Recall the target form of $T(\alpha)$ which satisfies $|\phi(\alpha)\rangle = T(\alpha) |C\rangle$:

$$T(\alpha) = \bigotimes_{i=1}^{4} (aI_i + bX_i)$$

Natural Ansatz:

$$|\psi(\theta)\rangle = T'(\theta) |C\rangle = \bigotimes_{i=1}^{4} T'_{i}(\theta) |C\rangle = \left(\bigotimes_{i=1}^{4} \cos(\theta) I_{i} + \sin(\theta) X_{i}\right) |C\rangle$$

Per-site energy to minimize:

$$\langle E_i \rangle_{\theta} = -\cos(\alpha) \langle K_i = Z_{i-1} X_i Z_{i+1} \rangle_{\theta} - \sin(\alpha) \langle X_i \rangle_{\theta}$$

MAKING THE EXPERIMENT "MORE QUANTUM" - VQE CIRCUITS

Algorithm for finding $\langle X_i \rangle_{\theta} / \langle K_i \rangle_{\theta}$:

- 1. Prepare the cluster ring $|C_4\rangle$.
- 2. Probabilistically implement (non-unitary) $T'_i(\theta) = \cos(\theta)I_i + \sin(\theta)X_i$ on each site.
- 3. Measure X_1 or $K_2 = Z_1 X_2 Z_3$ on the prepared state to obtain $\langle X_i \rangle_{\theta} / \langle K_i \rangle_{\theta}$.

MAKING THE EXPERIMENT "MORE QUANTUM" - CASCADING SIMPLIFICATION

MAKING THE EXPERIMENT "MORE QUANTUM" - CASCADING SIMPLIFICATION

Making the Experiment "More Quantum" - Simplification Idea I

MAKING THE EXPERIMENT "MORE QUANTUM" - SIMPLIFICATION IDEA I

• (Some) errors can be corrected by pushing through cluster stabilizers ZXZ.

MAKING THE EXPERIMENT "MORE QUANTUM" - SIMPLIFICATION IDEA I

• (Some) errors can be corrected by pushing through cluster stabilizers ZXZ.

Gain: Error probability doesn't increase exponentially with ring size, is instead constant.

MAKING THE EXPERIMENT "MORE QUANTUM" - SIMPLIFICATION IDEA II

Simplification of "Unit cell" of VQE Circuit:

MAKING THE EXPERIMENT "MORE QUANTUM" - SIMPLIFICATION IDEA II

Simplification of "Unit cell" of VQE Circuit:

Qubits disentangle...

MAKING THE EXPERIMENT "MORE QUANTUM" - SIMPLIFICATION IDEA II

Simplification of "Unit cell" of VQE Circuit:

Qubits disentangle... or are removed completely.

Making the Experiment "More Quantum" - Simplification Idea II

Simplification of "Unit cell" of VQE Circuit:

- Qubits disentangle... or are removed completely.
- Gain: Circuits of 2*n* qubits reduce to constant small sizes. Preparing the state is inefficient, but measuring the state (intriguingly) is not.

MAKING THE EXPERIMENT "MORE QUANTUM" - VQE RESULTS

Making the Experiment "More Quantum" - Fourier Fits

MAKING THE EXPERIMENT "MORE QUANTUM" - VQE COEFFICIENTS

30

Making the Experiment "More Quantum" - Experiment, Again

Outlook & Conclusion

• Shift to larger systems to demonstrate techniques for decoherence mitigation.

Outlook & Conclusion

- Shift to larger systems to demonstrate techniques for decoherence mitigation.
- Impact: First experimental demonstration of robustness of quantum computational power. Understanding quantum advantage, and a use case for NISQ devices.