A SIMULATION OF A SIMULATION: Algorithms for Measurement-Based Quantum Computing Experiments APS NWS Meeting 2022

RIO WEIL

Robert Raussendorf, Arnab Adhikary, Dmytro Bondarenko, Amrit Guha University of British Columbia Email - ryoweil6@student.ubc.ca

June 4, 2022

- 1. Motivation
- 2. Why Measurement-Based Quantum Computing?
- 3. MBQC Resource States and Computational Power
- 4. From Theory to Experiment
- 5. The Alluded Algorithms
- 6. Results
- 7. Outlook & Conclusion

MOTIVATION - WHAT ARE QUANTUM COMPUTERS GOOD FOR?

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy." - Feynman, 1981

MOTIVATION - WHAT ARE QUANTUM COMPUTERS GOOD FOR?

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy." - Feynman, 1981

Also...

- Shor's Factoring Algorithm
- Grover's Search Algorithm

Image Credit: Caltech Magazine

MOTIVATION - OUTSTANDING QUESTIONS IN QUANTUM COMPUTING

- 1. What is the source of quantum advantage?
- 2. What can we do with NISQ (Noisy Intermediate-Scale Quantum) devices?

MOTIVATION - OUTSTANDING QUESTIONS IN QUANTUM COMPUTING

- 1. What is the source of quantum advantage?
 - Measurement-Based Quantum Computing coming up!
- 2. What can we do with NISQ (Noisy Intermediate-Scale Quantum) devices?
 - Active research area... and this project!

Why Measurement-Based Quantum Computing?

Simulated Time

	Gate Model	MBQC
Evolution Method	Unitary Gates	Single-Qubit measurements
"Power Source"	Intermediate Gates	Initial State

WHY MEASUREMENT-BASED QUANTUM COMPUTING?

Evolution Method	Unitary Gates	Single-Qubit measurement
"Power Source"	Intermediate Gates	Initial State

WAIT, WHAT'S COMPUTATIONAL POWER?

Ability to perform single qubit unitaries - rotations.

1-D Resource States

Universal Resource: Cluster State $|C\rangle$

0-0-C

Ground state of $H_{cluster}$

Useless Resource: Product State $\ket{+}^{\otimes N}$

 \circ \circ \circ \circ

Ground state of H_{product}

Question: Power of ground states $|\phi(\alpha)\rangle$ of:

 $H(\alpha) = \cos(\alpha)H_{\text{cluster}} + \sin(\alpha)H_{\text{product}}?$

Answer (for infinite systems):

Answer (for infinite systems):

■ The catch: Decoherence away from cluster state.

Answer (for infinite systems):

- The catch: Decoherence away from cluster state.
- Recently: New formalism for analyzing power in finite resource states.

1D Resource States - A test of computational power

Demonstration: The rotation-counter rotation scheme

- 1. Prepare $|\phi(\alpha)\rangle$, and input $|+\rangle$.
- 2. Apply β rotation, and $-\beta$ counterrotation via measurement.
- 3. Measure $\langle X \rangle$: computational power.

Recall $H(\alpha)$ and corresponding ground state $|\phi(\alpha)\rangle$:

 $H(\alpha) = \cos(\alpha)H_{\text{cluster}} + \sin(\alpha)H_{\text{product}}$

Recall $H(\alpha)$ and corresponding ground state $|\phi(\alpha)\rangle$:

 $H(\alpha) = \cos(\alpha)H_{\text{cluster}} + \sin(\alpha)H_{\text{product}}$

There exists unitary $U(\alpha)$ such that:

 $\left|\phi(\alpha)\right\rangle = U(\alpha)\left|C\right\rangle$

Recall $H(\alpha)$ and corresponding ground state $|\phi(\alpha)\rangle$:

 $H(\alpha) = \cos(\alpha)H_{\text{cluster}} + \sin(\alpha)H_{\text{product}}$

There exists unitary $U(\alpha)$ such that:

 $\left|\phi(\alpha)\right\rangle = U(\alpha)\left|C\right\rangle$

Further, we can exchange unitarity for a simpler representation:

 $U(\alpha) \cong T(\alpha) =$ only Xs and Is

Recall $H(\alpha)$ and corresponding ground state $|\phi(\alpha)\rangle$:

 $H(\alpha) = \cos(\alpha)H_{\text{cluster}} + \sin(\alpha)H_{\text{product}}$

There exists unitary $U(\alpha)$ such that:

 $\left|\phi(\alpha)\right\rangle = U(\alpha)\left|C\right\rangle$

Further, we can exchange unitarity for a simpler representation:

 $U(\alpha) \cong T(\alpha) =$ only Xs and Is

Finally, we can assume T is local, so:

$$T(\alpha) = \bigotimes_{i=1}^{N} (aX_i + bI_i)$$

With these simplifications, $T(\alpha)$ can be found via classical optimization, for small rings.

FROM THEORY TO EXPERIMENT - SIMULATING MBQC

Solution: Redraw some brackets:

$$p(\mathbf{j}) = |\langle \mathbf{j} | \phi(\alpha) \rangle|^2 = |\langle \mathbf{j} | [T(\alpha) | C \rangle]|^2 = |[\langle \mathbf{j} | T(\alpha)] | C \rangle|^2 = \left| \left\langle T^{\dagger}(\alpha) \mathbf{j} \right| C \right\rangle \Big|^2$$

Solution: Redraw some brackets:

$$p(\mathbf{j}) = \left| \langle \mathbf{j} | \phi(\alpha) \rangle \right|^2 = \left| \langle \mathbf{j} | [T(\alpha) | C \rangle] \right|^2 = \left| [\langle \mathbf{j} | T(\alpha)] | C \rangle \right|^2 = \left| \left\langle T^{\dagger}(\alpha) \mathbf{j} \middle| C \right\rangle \right|^2$$

• Conclusion: Don't implement $T(\alpha)$ at all. Instead, measure $T^{\dagger}(\alpha) |\mathbf{j}\rangle$ on $|C\rangle$ instead!

Solution: Redraw some brackets:

$$p(\mathbf{j}) = |\langle \mathbf{j} | \phi(\alpha) \rangle|^2 = |\langle \mathbf{j} | [T(\alpha) | C \rangle]|^2 = |[\langle \mathbf{j} | T(\alpha)] | C \rangle|^2 = \left| \left\langle T^{\dagger}(\alpha) \mathbf{j} \right| C \right\rangle \Big|^2$$

Conclusion: Don't implement $T(\alpha)$ at all. Instead, measure $T^{\dagger}(\alpha) |\mathbf{j}\rangle$ on $|C\rangle$ instead! Takeaway: Problem Decomposition.

THE ALLUDED ALGORITHMS - THE TASK

The Task: Develop algorithm to make circuits and post-process measurement outcomes, obtain results as if $T(\alpha)$ had been implemented.

Results - Experiment

Outlook & Conclusion

Outlook & Conclusion

■ To-Do: Larger systems to demonstrate decoherence mitigation.

Outlook & Conclusion

- To-Do: Larger systems to demonstrate decoherence mitigation.
- Impact: First experimental demonstration of robustness of quantum computational power. Understanding quantum advantage, and a use case for NISQ devices.