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Motivation - What are Quantum Computers Good For?

“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d be�er make
it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.”

- Feynman, 1981

Also...

Shor’s Factoring Algorithm

Grover’s Search Algorithm

Image Credit: Caltech Magazine
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Motivation - Outstanding Questions in Quantum Computing

1. What is the source of quantum advantage?

I Measurement-Based �antum Computing - coming up!

2. What can we do with NISQ (Noisy Intermediate-Scale �antum) devices?

I Active research area... and this project!
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Why Measurement-Based Quantum Computing?
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Wait, what’s computational power?

x̂
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|ψrot〉

Rz(β)
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β

Ability to perform single qubit unitaries - rotations.
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1-D Resource States

Universal Resource: Cluster State |C〉

Ground state of Hcluster

Useless Resource: Product State |+〉⊗N

Ground state of Hproduct

�estion: Power of ground states |φ(α)〉 of:

H(α) = cos(α)Hcluster + sin(α)Hproduct?
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1D Resource States - Phase Diagram & Decoherence

Answer (for infinite systems):

|C〉 |+〉
α

|φ(α)〉
0 π/2π/4

Cluster phase Product phase

The catch: Decoherence away from cluster state.

Recently: New formalism for analyzing power in finite resource states.
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1D Resource States - A test of computational power

β

X

−β
X

Demonstration: The rotation-counter rotation scheme

1. Prepare |φ(α)〉, and input |+〉.
2. Apply β rotation, and −β counterrotation via measurement.

3. Measure 〈X〉: computational power.
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1D Resource States - Predicted Results
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From Theory to Experiment - Producing Ground States

Recall H(α) and corresponding ground state |φ(α)〉:

H(α) = cos(α)Hcluster + sin(α)Hproduct

There exists unitary U(α) such that:

|φ(α)〉 = U(α) |C〉

Further, we can exchange unitarity for a simpler representation:

U(α) ∼= T (α) = only Xs and Is

Finally, we can assume T is local, so:

T (α) =
N⊗
i=1

(aXi + bIi)

With these simplifications, T (α) can be found via classical optimization, for small rings.
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From Theory to Experiment - Simulating MBQC

Cluster Creation T (α) Measurement

|0〉 H T Rz(β) H

|0〉 H T H

|0〉 H T Rz(−β) H

|0〉 H T H

|0〉⊗4
∣∣Cring

〉
|φ(α)〉
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The Alluded Algorithms - The Roadblock & The Trick

Problem: T (α) is non-unitary in general. But quantum gates are unitary.

Solution: Redraw some brackets:

p(j) = |〈j|φ(α)〉|2 = |〈j| [T (α) |C〉]|2 = |[〈j|T (α)] |C〉|2 =
∣∣∣〈T †(α)j∣∣∣C〉∣∣∣2

Conclusion: Don’t implement T (α) at all. Instead, measure T †(α) |j〉 on |C〉 instead!

Takeaway: Problem Decomposition.
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The Alluded Algorithms - The Task

Cluster Creation T (α) Measurement

|0〉 H T adjust meas. basis to T †(α) |j1〉

|0〉 H T adjust meas. basis to T †(α) |j2〉

|0〉 H T adjust meas. basis to T †(α) |j3〉

|0〉 H T adjust meas. basis to T †(α) |j4〉

The Task: Develop algorithm to make circuits and post-process measurement outcomes,
obtain results as if T (α) had been implemented.
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Results - Experiment
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Outlook & Conclusion

To-Do: Larger systems to demonstrate decoherence mitigation.

Impact: First experimental demonstration of robustness of quantum computational
power. Understanding quantum advantage, and a use case for NISQ devices.

Image Credit: �anta Magazine
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