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MoTIVATION - WHAT ARE QUANTUM COMPUTERS GOOD

“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make

it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.”
- Feynman, 1981
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MoTIVATION - WHAT ARE QUANTUM COMPUTERS GooD FoR?

“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make

it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.”
- Feynman, 1981

Also...
m Shor’s Factoring Algorithm

m Grover’s Search Algorithm
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MOTIVATION - OUTSTANDING QUESTIONS IN QUANTUM COMPUTING

1. What is the source of quantum advantage?

2. What can we do with NISQ (Noisy Intermediate-Scale Quantum) devices?
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MOTIVATION - OUTSTANDING QUESTIONS IN QUANTUM COMPUTING

1. What is the source of quantum advantage?
P> Measurement-Based Quantum Computing - coming up!

2. What can we do with NISQ (Noisy Intermediate-Scale Quantum) devices?
P Active research area... and this project!
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WAIT, WHAT’S COMPUTATIONAL POWER?

Ability to perform single qubit unitaries - rotations.




1-D RESOURCE STATES
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1-D RESOURCE STATES

Universal Resource: Cluster State |C) R

Useless Resource: Product State |+

o—0O0—~0O—0 o O O O

Ground state of Hjyster Ground state of Hproduct

Question: Power of ground states |¢(«a)) of:

H (o) = cos(a) Hetster + sin(o) Hproduct?
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Answer (for infinite systems):
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1D RESOURCE STATES - PHASE DIAGRAM & DECOHERENCE

Answer (for infinite systems):

Cluster phase Product phase
C) +) |#())
0 /4 /2 @

m The catch: Decoherence away from cluster state.

m Recently: New formalism for analyzing power in finite resource states.




1D RESOURCE STATES - A TEST OF COMPUTATIONAL POWER

Demonstration: The rotation-counter rotation scheme
1. Prepare |¢(«)), and input |+).
2. Apply  rotation, and — 3 counterrotation via measurement.

3. Measure (X): computational power.




1D RESOURCE STATES - PREDICTED RESULTS

(X) of encoded qubit vs. Interpolation a
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1D RESOURCE STATES - PREDICTED RESULTS

(X) of encoded qubit vs. Interpolation a
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FROM THEORY TO EXPERIMENT - PRODUCING GROUND STATES

Recall H(«) and corresponding ground state |¢(a)):
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Recall H(«) and corresponding ground state |¢(a)):
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FROM THEORY TO EXPERIMENT - PRODUCING GROUND STATES

Recall H(«) and corresponding ground state |¢(a)):
@) = eosl@E e I B @)l
There exists unitary U(«a) such that:
[#(e)) = U(a)|C)
Further, we can exchange unitarity for a simpler representation:
U(a) =2 T(a) = only Xsand Is

Finally, we can assume 7' is local, so:

N

T(a) = ®((1X¢ +bL;)

=1

With these simplifications, T'(«v) can be found via classical optimization, for small rings.
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THE ALLUDED ALGORITHMS - THE RoADBLOCK & THE TRICK

Problem: T'(«) is non-unitary in general. But quantum gates are unitary.
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THE ALLUDED ALGORITHMS - THE RoADBLOCK & THE TRICK

Problem: T'(«) is non-unitary in general. But quantum gates are unitary.

m Solution: Redraw some brackets:

p(i) = [GI8@) = 1G] (e [P = [GI T@) |0) = [{Tt(@)i|c)[

m Conclusion: Don’t implement T'(«) at all. Instead, measure T (a) |j) on |C) instead!

m Takeaway: Problem Decomposition.




THE ALLUDED ALGORITHMS - THE TASK

Measurement

adjust meas. basis to T () |j1)
adjust meas. basis to T () |j2)
adjust meas. basis to T () |j3)
adjust meas. basis to T () |j4)

The Task: Develop algorithm to make circuits and post-process measurement outcomes,
obtain results as if T'(«) had been implemented.




RESULTS - EXPERIMENT
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OuTLoOK & CONCLUSION
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m To-Do: Larger systems to demonstrate decoherence mitigation.
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OuTLoOK & CONCLUSION

m To-Do: Larger systems to demonstrate decoherence mitigation.

m Impact: First experimental demonstration of robustness of quantum computational
power. Understanding quantum advantage, and a use case for NISQ devices.
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