A Simulation of a Simulation:

 Algorithms for Measurement-Based Quantum Computing Experiments
APS NWS Meeting 2022

Rio Weil

Robert Raussendorf, Arnab Adhikary, Dmytro Bondarenko, Amrit Guha University of British Columbia
EMAIL-RYOWEIL6@STUDENT.UBC.CA
June 4, 2022

1. Motivation
2. Why Measurement-Based Quantum Computing?
3. MBQC Resource States and Computational Power
4. From Theory to Experiment
5. The Alluded Algorithms
6. Results
7. Outlook \& Conclusion

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

- Feynman, 1981

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."
- Feynman, 1981

Also...

- Shor's Factoring Algorithm
- Grover's Search Algorithm

1. What is the source of quantum advantage?
2. What can we do with NISQ (Noisy Intermediate-Scale Quantum) devices?

3. What is the source of quantum advantage?

- Measurement-Based Quantum Computing - coming up!

2. What can we do with NISQ (Noisy Intermediate-Scale Quantum) devices?

- Active research area... and this project!

Ability to perform single qubit unitaries - rotations.

Universal Resource: Cluster State $|C\rangle$

Ground state of $H_{\text {cluster }}$

Useless Resource: Product State $|+\rangle^{\otimes N}$

Ground state of $H_{\text {product }}$

Universal Resource: Cluster State $|C\rangle$

Ground state of $H_{\text {cluster }}$

Useless Resource: Product State $|+\rangle^{\otimes N}$

Ground state of $H_{\text {product }}$

Question: Power of ground states $|\phi(\alpha)\rangle$ of:

$$
H(\alpha)=\cos (\alpha) H_{\text {cluster }}+\sin (\alpha) H_{\text {product }} ?
$$

Answer (for infinite systems):

Answer (for infinite systems):

- The catch: Decoherence away from cluster state.

Answer (for infinite systems):

- The catch: Decoherence away from cluster state.
- Recently: New formalism for analyzing power in finite resource states.

Demonstration: The rotation-counter rotation scheme

1. Prepare $|\phi(\alpha)\rangle$, and input $|+\rangle$.
2. Apply β rotation, and $-\beta$ counterrotation via measurement.
3. Measure $\langle X\rangle$: computational power.
$\langle X\rangle$ of encoded qubit vs. Interpolation α

$\langle X\rangle$ of encoded qubit vs. Interpolation α

From Theory to Experiment - Producing Ground States

Recall $H(\alpha)$ and corresponding ground state $|\phi(\alpha)\rangle$:

$$
H(\alpha)=\cos (\alpha) H_{\text {cluster }}+\sin (\alpha) H_{\text {product }}
$$

From Theory to Experiment - Producing Ground States

Recall $H(\alpha)$ and corresponding ground state $|\phi(\alpha)\rangle$:

$$
H(\alpha)=\cos (\alpha) H_{\text {cluster }}+\sin (\alpha) H_{\text {product }}
$$

There exists unitary $U(\alpha)$ such that:

$$
|\phi(\alpha)\rangle=U(\alpha)|C\rangle
$$

From Theory to Experiment - Producing Ground States

Recall $H(\alpha)$ and corresponding ground state $|\phi(\alpha)\rangle$:

$$
H(\alpha)=\cos (\alpha) H_{\text {cluster }}+\sin (\alpha) H_{\text {product }}
$$

There exists unitary $U(\alpha)$ such that:

$$
|\phi(\alpha)\rangle=U(\alpha)|C\rangle
$$

Further, we can exchange unitarity for a simpler representation:

$$
U(\alpha) \cong T(\alpha)=\text { only } X \mathrm{~s} \text { and } I \mathrm{~s}
$$

From Theory to Experiment - Producing Ground States

Recall $H(\alpha)$ and corresponding ground state $|\phi(\alpha)\rangle$:

$$
H(\alpha)=\cos (\alpha) H_{\text {cluster }}+\sin (\alpha) H_{\text {product }}
$$

There exists unitary $U(\alpha)$ such that:

$$
|\phi(\alpha)\rangle=U(\alpha)|C\rangle
$$

Further, we can exchange unitarity for a simpler representation:

$$
U(\alpha) \cong T(\alpha)=\text { only } X \mathrm{~s} \text { and } I \mathrm{~s}
$$

Finally, we can assume T is local, so:

$$
T(\alpha)=\bigotimes_{i=1}^{N}\left(a X_{i}+b I_{i}\right)
$$

With these simplifications, $T(\alpha)$ can be found via classical optimization, for small rings.

From Theory to Experiment - Simulating MBQC

Problem: $T(\alpha)$ is non-unitary in general. But quantum gates are unitary.

Problem: $T(\alpha)$ is non-unitary in general. But quantum gates are unitary.

- Solution: Redraw some brackets:

$$
\left.p(\mathbf{j})=|\langle\mathbf{j} \mid \phi(\alpha)\rangle|^{2}=|\langle\mathbf{j}|[T(\alpha)|C\rangle]|^{2}=|[\langle\mathbf{j}| T(\alpha)]| C\right\rangle\left.\right|^{2}=\left|\left\langle T^{\dagger}(\alpha) \mathbf{j} \mid C\right\rangle\right|^{2}
$$

Problem: $T(\alpha)$ is non-unitary in general. But quantum gates are unitary.

- Solution: Redraw some brackets:

$$
\left.p(\mathbf{j})=|\langle\mathbf{j} \mid \phi(\alpha)\rangle|^{2}=|\langle\mathbf{j}|[T(\alpha)|C\rangle]|^{2}=|[\langle\mathbf{j}| T(\alpha)]| C\right\rangle\left.\right|^{2}=\left|\left\langle T^{\dagger}(\alpha) \mathbf{j} \mid C\right\rangle\right|^{2}
$$

■ Conclusion: Don't implement $T(\alpha)$ at all. Instead, measure $T^{\dagger}(\alpha)|\mathbf{j}\rangle$ on $|C\rangle$ instead!

Problem: $T(\alpha)$ is non-unitary in general. But quantum gates are unitary.

- Solution: Redraw some brackets:

$$
\left.p(\mathbf{j})=|\langle\mathbf{j} \mid \phi(\alpha)\rangle|^{2}=|\langle\mathbf{j}|[T(\alpha)|C\rangle]|^{2}=|[\langle\mathbf{j}| T(\alpha)]| C\right\rangle\left.\right|^{2}=\left|\left\langle T^{\dagger}(\alpha) \mathbf{j} \mid C\right\rangle\right|^{2}
$$

■ Conclusion: Don't implement $T(\alpha)$ at all. Instead, measure $T^{\dagger}(\alpha)|\mathbf{j}\rangle$ on $|C\rangle$ instead!

- Takeaway: Problem Decomposition.

The Alluded Algorithms - The Task

The Task: Develop algorithm to make circuits and post-process measurement outcomes, obtain results as if $T(\alpha)$ had been implemented.
$\langle X\rangle$ of encoded qubit vs. Interpolation α (Experiment)

Outlook \& Conclusion

Image Credit: Quanta Magazine

Outlook \& Conclusion

- To-Do: Larger systems to demonstrate decoherence mitigation.

Outlook \& Conclusion

- To-Do: Larger systems to demonstrate decoherence mitigation.
- Impact: First experimental demonstration of robustness of quantum computational power. Understanding quantum advantage, and a use case for NISQ devices.

