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Myelin: Lipid rich tissue found in the nervous system, crucial
for proper function of nerve cells and the brain

Being able to quantify myelin in-vivo is crucial for diagnosis of
demyelinating diseases
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Conventional MT: Issues of specificity.

More selective technique: ihMT!

In this talk: New method of ihMT with pseudo-random noise
sequences.
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What is ihMT?

» Quantitatively: Consider four spectra acquired with differnet
methods; So, S+, S—, and Syual-

modulated @ A
(offset==A)

ihMT: S, S, S, (v,=0) ihMT: S,
Image taken from A.P. Manning et al., Journal of Magnetic Resonance, 274 (2017) 125-136

» We can then define the ihMT ratio as:
S;p+S. 25l
250

ihMTR =
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What is ihMT7? Il

» Nothing to do with inhomogenous broadening... everything to
do with dipolar coupling!

S+/S_ 5dual
Reservoirs: Reservoirs:
Zeeman Dipolar Zeeman Dipolar
Spectrum: Asymmetry Spectrum: Symmetric
from dipolar order. suppression on both sides.
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What is ihMT7? Il

vVvYyy

S4/— have high sensitivity to dipolar relaxation time Tip
For short T1ip, Sy, & Syuai, and ihMT is small.
For long Tip, Sy, > Squai and ihMT can be measured.

Lipid bilayers have long T1D due to slow spin diffusion along
lipid tails; so in brain tissue, only myelin/glial cells should
have a non-negligible ihMT signal.
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» 2K 1 length binary sequence

» For k shift registers, we can produce the MLBS via:
s[n] = ao[n]

ak[n+ 1] = ag[n] + a1[n] (mod 2)

ak,l[n + 1] = ak[n]

anln+ 1] = as[n]
ao[n + 1] = a1[n]
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» 2K 1 length binary sequence

» For k shift registers, we can produce the MLBS via:
s[n] = ao[n]

ak[n+ 1] = ag[n] + a1[n] (mod 2)
ak,l[n + 1] = ak[n]

anln+ 1] = as[n]
ag[n + 1] = a1[n]

:

This image is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license
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» Flat power spectrum, distributed over TS
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MLBS Properties

vVvYvyyVvyy

Balanced (3 shift-register example: 1,0,1,1,1,0,0)
Perfect auto-correlation

Like white noise, but deterministic!

1
TMLBS

Idea: MLBS' can be used for in low (power) cost pulse
sequences for observing ihMT.

Flat power spectrum, distributed over
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Change of plans

» The plan: Doing in-person experiments on phantom &
biological samples with a NMR spectrometer.

Me: *Excited to do some experiments*

COVID-19: *Exists*
Me:

.
“

= e
» Backup plan: simulations with SIMPSON (SIMulation
Program for SOlid-state NMR)!
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Setup + Early tests
» System of interest:

offset =A

—

T 0

Dipolar order
creation

Image taken from A.P. Manning et al., Journal of Magnetic Resonance, 274 (2017) 125-136
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Setup + Early tests Il

Recreation of Kenneth's results; dipolar order generation,
using a 50kHz Gaussian pre-pulse followed by a 5 degree observational pulse
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Setup + Early tests IlI

» Problem: Unexpected dependence on the spectra on the delay
time between the prepulse and observational pulse

» Solution: Implementation of phase cycling!

] Exp.# \ Prep. phase \ Obs. pulse phase \ Receiver phase ‘
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Setup + Early Tests IV

Dual, Positive, and no prepulse
followed py 5 degree pqlse (with phasg cycling)

Intensity

_50 [
—— Dual prepulse
—— Positive prepulse
—— No prepulse
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Frequency (kHz)
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From the continuous to the pseudo-random

» Dual prepulse — MLBS prepulse
» How do we create S, /S_ with MLBS'?
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Physicists hate him!
Three simple steps to create dipolar order with your MLBS

1023-element MLBS

Amplitude

Time
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Step |

Fourier Transform of 1023-element MLBS

Amplitude

Frequency
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Step Il

Fourier Transform of 1023-element MLBS,
half zeroed out

Amplitude

Frequency
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Step Il

Inverse Fourier Transform of half-zeroed frequency domain MLBS

Amplitude

Time
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Full/Half-MLBS spectra

Half and Full MLBS prepulse spectra
Comparison with the no prepulse case
— Noprepulse
100 — Half-MLBS
— Full-MLBS
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Selective removal of (center) frequency points

Simulations of Full MLBS
Experiments with zeroing out the center frequencies

— Noprepulse
100 —  Full MLBS with no center freqs
— Full MLBS Normal
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» Relaxing the dipolar part: For all unique spin pairs 7, j, we
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i
wp o(t)
Hbipole = § ——— (Bl li = 1; - 1})
i V6
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Introducing T1D relaxation into SIMPSON

» How does the system respond to T1D relaxation?

» Relaxing the dipolar part: For all unique spin pairs 7, j, we
consider:

i
wp o(t)
Hbipole = § ——— (Bl li = 1; - 1})
i V6

P> At each time step, we can calculate the dipolar part of the
density matrix:

I_|Dipo|e

Tr (H2Dipo|e)

Pdipole = Tr (,0 : HDipoIe)
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Introducing T1D relaxation into SIMPSON

» How does the system respond to T1D relaxation?

» Relaxing the dipolar part: For all unique spin pairs 7, j, we
consider:

Wb o)
D,0
Hbipole = %: v Blizliz =1 - 17)
P> At each time step, we can calculate the dipolar part of the
density matrix:
I_|Dipo|e

Tr (H2Dipo|e)

Pdipole = Tr (,0 : HDipoIe)
» This part of the density matrix can be relaxed:

At
Pdipole * €XP _7
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T1D dependence of spectra

Integral difference (between MLBS and no prepulse spectra) vs. log of T1D relaxation time
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Varying the MLBS pulsewidth

Full-spectrum integral difference between Half-MLBS and no prepulse spectra
as a function of T1D (varying pulse width)
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The monthlong war on spectral asymmetry

v

Adding/subtracting spins to the system — Unsuccessful
Relaxing dipolar interactions pairwise — Unsuccessful

Using a 7 flip angle pulse — Successful at removing dipolar
asymmetry in general, but doesn't reveal the problem.

Removing off diagonals before the observation pulse —
Partially successful

Relaxing products of I, — Partially successful

Removing individual coherence orders from the spectrum —
Learned that spectrum depends solely on order O.
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Relaxation method 2 - Relaxing coherence order 0
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Relaxation method 2 - Relaxing coherence order 0

> 1. At each time step, remove all of the /z parts of the density
matrix; i.e. for each spin i:

Iiz

Pliz = Tr (,0 : Iiz)

24/29



Relaxation method 2 - Relaxing coherence order 0

> 1. At each time step, remove all of the /z parts of the density
matrix; i.e. for each spin i:

Iiz
Tr(12)

> 2. Relax all non-1z coherence order 0 parts of the density

matrix with:
At
POrder 0 * €EXP *7

Pliz = Tr (,0 : Iiz)
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Relaxation method 2 - Relaxing coherence order 0

> 1. At each time step, remove all of the /z parts of the density
matrix; i.e. for each spin i:

Iiz
Tr(12)

> 2. Relax all non-1z coherence order 0 parts of the density

matrix with:
At
POrder 0 * €EXP *7

» 3. Add back in the Iz parts, and continue the pulse sequence.

Pliz = Tr (,0 : Iiz)
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Spectra from new relaxation method - MLBS

Half-spectrum integral difference for MLBS prepulses
aas a function of T1D (Relaxing order 0)
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Spectra from new relaxation method - CW

Half-spectrum integral difference for CW prepulses
as a function of T1D (Relaxing order 0)
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How do we make the system relax?

ME, JUST WANTING ‘
MY RESULTS TO'MAKE SENSE
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Future plans

» Develop a better understanding of the relaxation, and finding
a more physically accurate implementation

» Developing a comparison between the MLBS prepulse and the
CW prepulse cases; which is more efficient?

» Possible new directions: Coloured Frank sequences, hyperbolic
secant pulses?

» Running experiments remotely?
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It's alright to be uncertain...

* would this work??? *

7
is = i % sim->Nfstart;
id = i % sim->Nfdetect;
// basis compatibility check
if (wsp->fdetect[id]->basis != wsp->sigmalis]l->basis) {
mat_complx *dum = cm_change_basis_2(wsp->fdetect[i],wsp->sigmal[is]->basis,sim
if (wsp->fdetect[id] != sim->fdetect[id]) free_complx_matrix(wsp->fdetect[id]
wsp->fdetect[id] = dum;
¥
if (sim->acq_adjoint == 0) {
z = cm_trace(wsp->fdetect[id],wsp->sigmalis]);
} else {
z = cm_trace_adjoint(wsp->fdetect[id],wsp->sigmalis]);
¥
ptr = &(wsp->fid[wsp->curr_nsig+iksim->ntotl);
if (fabs(phase) > TINY) {
ptr->re += phfac.rexz.re+phfac.imkz.im;
ptr->im += -phfac.imkz.re+phfac.rexz.im;
} else {
ptr->re += z.re;
ptr->im += z.im;
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