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Obtain the binding energies of nucleons
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What is TITAN?
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Overview of TITAN

e TITAN RFQ: Cooler-Buncher

MR-TOF-MS

e MR-TOF-MS: Multiple Reflection Time-Of-
Flight Mass Spectrometer

e EBIT: Electron Beam lon Trap
e CPET: Cooler Penning Trap

e MPET. Measurement Penning Trap
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Overview of TITAN

e TITAN RFQ: Cooler-Buncher
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Penning Traps 101 - lon confinement

B A e

e Lorentzforce I = g v X B directs ions in B- [ Ring

field into circular motion with cyclotron _@ 20 electrode

qB : 2
frequency f. =
2mm
L
* Magnetic + Electrostatic field to confine ions '\End cap
electrode

o Magnetron motion f on order of kKH Z f_|_mod|f|ed cyclotron motion superposition

 Modified cyclotron motion f. on order of MHz
o T %

magnetron motion axial motion
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Penning Traps 101 - Mass Measurement

1. Scan over fpr

2. f_ < f, occurs when fpr = .

3. Increasein E, ;. ; of ions

4. Decrease in Time-of-Flight to Detector




Penning Traps 101 - Mass Measurement

Time-of-flight (us)

v - 8102 562 (Hz)
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MPET to CryoMPET

bhat=®
MPET is evoalving®

Room Temperature Penning Trap, online 2007-2017
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bl at=*®
MPET i=s evaluving®

Room Temperature Penning Trap, online 2007-2017

MPET to CryoMPET

CONGRATULATIONS?® Your
evolved into CryoMPET ?

Cryogenic Penning Trap, in development 2017-present
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Motivation for CryoMPET

TITAN EBIT increases the charge state of ions
=D\ 2 Xt = X = X - .
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This decreases the relative uncertainty of measurement

om m

—_—~

m q b TRF \/N lons
|

However, increased charge state leads to increased chance of interaction with background gas
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Cryopumps for better trap vacuum!
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Extraction Scans: Real-Life Resonance Hunt

= jusrl/titan/edl/mpet opticsl.edl (on isacepicsl)
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e CryoMPET installed spring 2019 ->
Tuning+Resonance search in progress

e Resonance dependent on extraction electrode
voltages

e Scans over electrodes to find and improve
Time-of-Flight (TOF) resonance effect.

Avg TOF vs. XDC Voltage (Scanned Value)
1103 No RF excitation
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Extraction Scans: Real-Life Resonance Hunt

e CryoMPET installed spring 2019 ->
Tuning+Resonance search in progress

voltages

Time-of-Flight (TOF) resonance effect.
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Resonance dependent on extraction electrode

Scans over electrodes to find and improve
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Setbacks

e Sparking
e Shorts at 3 components.

* Temperature threshold not met




Setbacks

e Sparking
e Shorts at 3 components.

* Temperature threshold not met

e Trap has to be pulled from
magnet




Meanwhile, with extractions...

Difficult to tune a disconnected trap...
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Meanwhile, with extractions...
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Simulations with SIMION!

Difficult to tune a disconnected trap...
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Physicists hate him: The 5-step plan to

obtain clean virtual resonances

1. Generate 2 groups of ions with differing initial
conditions (on/off resonance)

2. Select a random initial voltage for each
extraction electrode

3. Test run of ions to ensure reasonable
transmission

4. Run for hundreds of iterations with optimizer
algorithm until extrema is reached

5. Record the extrema, and repeat process as
long as time permits.

Optimization Metric
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Results
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The future of CryoMPET

e Return of trap to magnet

e \/oltage tuning for maximization of resonance -
assisted by simulation results!

e ™"

e Usage in future experiments to explore various
science cases In nuclear and fundamental
physics!
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Standard Model Testing with Mass
Measurements
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A slightly more detailed look at Penning Trap
mass spectrometry

1. Scan over fpr

2. f_ < f, occurs when fpr = .

3. Increasein E,_ . ; — Increase in y

4. lons get harder “kick” from B-field,
decreasing time-of-flight to detector.

| Fpl = |p-—




ackground Gas Removal
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Superconducting Magnet

Cryogenic Pumping (Condensation) Getter Material (lighter gases)
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Sparking in the PLT

e Sparking in Pulsed Drift Tube (PLT) when
pulsing down ion beam energy

2.2 keV beam

PLT (Pulsed Drift Tube)

~2.2 keV
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Setback Solutions

e Shorts:
-Addition of spacers
-Kapton at insulation breaks
-Replacing wires

e Sparks:
-Decreasing beam energy resolved sparking

e Temperature threshold:
-Machining of parts to decrease conduction
-Plating components to decrease thermal
radiation effects

38



Nelder-Mead Optimization Method

e SIMION'’s optimization algorithm.

 Manipulation of simplex through stretching,
reflection, and shrinking to find extrema.

e Search area dependent on the initial simplex
shape size.

 Heuristic search, so global extremum is not
guaranteed.
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