

Extracting CryoMPET

Rio Weil TITAN Collaboration

TRIUMF Summer Student Symposium 2019 August , 2019

 $E = mc^2$

$E = mc^2$

Obtain the binding energies of nucleons

Area of scientific interest	Required mass precision
Nuclear structure	$\frac{\delta m}{m} \approx 10^{-6} - 10^{-8}$
Nuclear astrophysics	$\frac{\delta m}{m} \approx 10^{-7}$
Tests of fundamental physics	$\frac{\delta m}{m} \approx 10^{-8} - 10^{-9}$

What is TITAN?

What is TITAN?

What is TITAN?

TRIUMF's Ion Trap for Atomic and Nuclear Science

- TITAN RFQ: Cooler-Buncher
- MR-TOF-MS: Multiple Reflection Time-Of-Flight Mass Spectrometer
- EBIT: Electron Beam Ion Trap
- CPET: Cooler Penning Trap
- MPET: Measurement Penning Trap

- TITAN RFQ: Cooler-Buncher
- MR-TOF-MS: Multiple Reflection Time-Of-Flight Mass Spectrometer
- EBIT: Electron Beam Ion Trap
- CPET: Cooler Penning Trap
- MPET: Measurement Penning Trap

- TITAN RFQ: Cooler-Buncher
- MR-TOF-MS: Multiple Reflection Time-Of-Flight Mass Spectrometer
- EBIT: Electron Beam Ion Trap
- CPET: Cooler Penning Trap
- MPET: Measurement Penning Trap

- TITAN RFQ: Cooler-Buncher
- MR-TOF-MS: Multiple Reflection Time-Of-Flight Mass Spectrometer
- EBIT: Electron Beam Ion Trap
- CPET: Cooler Penning Trap
- MPET: Measurement Penning Trap

- TITAN RFQ: Cooler-Buncher
- MR-TOF-MS: Multiple Reflection Time-Of-Flight Mass Spectrometer
- EBIT: Electron Beam Ion Trap
- CPET: Cooler Penning Trap
- MPET: Measurement Penning Trap

- TITAN RFQ: Cooler-Buncher
- MR-TOF-MS: Multiple Reflection Time-Of-Flight Mass Spectrometer
- EBIT: Electron Beam Ion Trap
- CPET: Cooler Penning Trap
- MPET: Measurement Penning Trap

Penning Traps 101 - Ion confinement

- Lorentz force $\overrightarrow{F} = q \overrightarrow{v} \times \overrightarrow{B}$ directs ions in Bfield into circular motion with cyclotron frequency $f_c = \frac{qB}{2\pi m}$
- Magnetic + Electrostatic field to confine ions
- Magnetron motion f_{-} on order of kHz
- Modified cyclotron motion f_+ on order of MHz

•
$$f_c = f_+ + f_-$$

- 1. Scan over f_{RF}
- 2. $f_{-} \leftrightarrow f_{+}$ occurs when $f_{RF} = f_{c}$
- 3. Increase in E_{radial} of ions
- 4. Decrease in Time-of-Flight to Detector

Penning Traps 101 - Mass Measurement

Penning Traps 101 - Mass Measurement

MPET to CryoMPET MPET

Room Temperature Penning Trap, online 2007-2017

MPET to CryoMPET MPET

Cryogenic Penning Trap, in development 2017-present Room Temperature Penning Trap, online 2007-2017

CryoMPET

Motivation for CryoMPET

 $\frac{\delta m}{m} \approx -$ M

However, increased charge state leads to increased chance of interaction with background gas

Cryopumps for better trap vacuum!


```
TITAN EBIT increases the charge state of ions
               X^+ \to X^{2+} \to X^{3+} \to \cdots
This decreases the relative uncertainty of measurement
```

$$qBT_{RF}\sqrt{N_{ions}}$$

20

Extraction Scans: Real-Life Resonance Hunt

- CryoMPET installed spring 2019 -> Tuning+Resonance search in progress
- Resonance dependent on extraction electrode voltages
- Scans over electrodes to find and improve Time-of-Flight (TOF) resonance effect.

			Optics	MPET	
PS 3 INTERLOCK	0 V	<i>o</i>	0	-5000	MPET:DALY
	8 V	°	0	-5000	MPET:CB4TE
	9 V		0	-5000	MPET:CB4TW
	ЭV	<i>°</i>	0	-5000	MPET:CB4B
	7 V	°	0	-5000	MPET:EL4
	4∨	<i>•</i>	-1250	-5000	MPET:EL2
PS 2 INTERLOCI	3 V	0 	-200	-5000	MPET:EL1AND3
	8 V	<i>•</i>	-1000	-5000	MPET:XZT2
	1 V		-900	-5000	MPET:XZT1AND3
	5 V	1000	5	-1000	MPET:XDC
	0 V	-600	-10	°	MPET:PLTM
	3 V	5000	2060	0 	MPET:PLTP
	z V	5000	0	0	MPET:LSYN
PS 1 INTERLOCK	4 V	5000	0	0 	MPET:LSYP
	3 V	5000	0	0 	MPET:LSXN
	1 V	5000	0	0 	MPET:LSXP
	3 V	5000	0	0 	MPET:NDC
	1 V	5000	0	0 	MPET:NDT
) V	600	0	0 	MPET:CATHB
	z V	7	5.000	0	MPET:CATHI

Extraction Scans: Real-Life Resonance Hunt

- CryoMPET installed spring 2019 -> Tuning+Resonance search in progress
- Resonance dependent on extraction electrode voltages
- Scans over electrodes to find and improve Time-of-Flight (TOF) resonance effect.

- Sparking
- Shorts at 3 components.
- Temperature threshold not met

Setbacks

- Sparking
- Shorts at 3 components.
- Temperature threshold not met

• Trap has to be pulled from magnet

Meanwhile, with extractions...

Difficult to tune a disconnected trap...

25

Meanwhile, with extractions...

Difficult to tune a disconnected trap...

Simulations with SIMION!

Extraction Scans: Virtual (with SIMION)

27

Physicists hate him: The 5-step plan to obtain clean virtual resonances

- 1. Generate 2 groups of ions with differing initial conditions (on/off resonance)
- 2. Select a random initial voltage for each extraction electrode
- 3. Test run of ions to ensure reasonable transmission
- 4. Run for hundreds of iterations with optimizer algorithm until extrema is reached
- 5. Record the extrema, and repeat process as long as time permits.

28

Physicists hate him: The 5-step plan to obtain clean virtual resonances

- 1. Generate 2 groups of ions with differing initial conditions (on/off resonance)
- 2. Select a random initial voltage for each extraction electrode
- 3. Test run of ions to ensure reasonable transmission
- 4. Run for hundreds of iterations with optimizer algorithm until extrema is reached
- 5. Record the extrema, and repeat process as long as time permits.

Physicists hate him: The 5-step plan to obtain clean virtual resonances

- 1. Generate 2 groups of ions with differing initial conditions (on/off resonance)
- 2. Select a random initial voltage for each extraction electrode
- 3. Test run of ions to ensure reasonable transmission
- 4. Run for hundreds of iterations with optimizer algorithm until extrema is reached
- 5. Record the extrema, and repeat process as long as time permits.

30

Results

31

The future of CryoMPET

- Return of trap to magnet
- Voltage tuning for maximization of resonance assisted by simulation results!
- Usage in future experiments to explore various science cases in nuclear and fundamental physics!

Standard Model Testing with Mass Measurements

34

A slightly more detailed look at Penning Trap mass spectrometry

- 1. Scan over f_{RF}
- 2. $f_- \leftrightarrow f_+$ occurs when $f_{RF} = f_c$
- 3. Increase in $E_{radial} \rightarrow$ Increase in μ
- 4. lons get harder "kick" from B-field, decreasing time-of-flight to detector.

$$|F_B| = \left| \mu \cdot \frac{\partial B}{\partial z} \right| = \left| \frac{E_r}{B_0} \cdot \frac{\partial B}{\partial z} \right|$$

Background Gas Removal

Cryogenic Pumping (Condensation)

Getter Material (lighter gases)

36

Sparking in the PLT

• **Sparking** in Pulsed Drift Tube (PLT) when pulsing down ion beam energy

Setback Solutions

• Shorts:

-Addition of spacers -Kapton at insulation breaks -Replacing wires

• Sparks:

-Decreasing beam energy resolved sparking

• Temperature threshold:

-Machining of parts to decrease conduction -Plating components to decrease thermal radiation effects

38

Nelder-Mead Optimization Method

- SIMION's optimization algorithm.
- Manipulation of simplex through stretching, reflection, and shrinking to find extrema.
- Search area dependent on the initial simplex shape size.
- Heuristic search, so global extremum is not guaranteed.

39