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1 Introduction

Cosmology FAQ

There are no problems in the Introduction chapter in Ryden. However, this seems like the optimal place
to address a bunch of commonly-asked questions in Cosmology.

(a) Where is the center of the Universe?

Answer: Everywhere; the universe is homogenous on large scales, so there is no preferred location as
a center!

(b) Why is the Universe expanding?

Answer: Because it was expanding yesterday (and it was expanding yesterday due to inflation).

(c) What is the Universe expanding into?

Answer: Itself; there is no boundary to the Universe.

(d) Why isn’t the Solar System expanding?

Answer: It actually was in the past, but it has stopped now.

(e) Is the Universe rotating?

Answer: There are modified FRW metrics that allow for special axes (note this breaks the cosmological
principle; if the Universe is described by these metrics, it would be homogenous but not isotropic).
However, a rotating universe would generate spiral patterns on the CMB; the fact that we do not
observe such patterns allows us to constrain global rotation.

(f) What happened before the Big Bang?

Answer: We don’t know! There are theoretical models (such as cyclic Universes), but to a degree this
is an unanswerable question.

(g) How come the CMB photons haven’t outrun the galaxies since the Big Bang?

Answer: The Big Bang doesn’t work that way; the Universe did not start at one point and then expand.
It happened everywhere at once! CMB photons are emitted isotropically, from everywhere; so at every
point in time we receive CMB photons that were further away.

(h) If the Universe is only 14 billion years old, how come we can see objects that are 40 billion light years
away?

Answer: Due to the expansion of the universe, the horizon of the observable universe is not ct0 but
rather ∼ 3ct0. You can do the integrals to get the exact prefactor.

(i) What is dark matter?

Answer: A substance that makes up 29% of our universe and only interacts through the gravitational
force. We have a better picture of what it isn’t than what it is.

(j) What will happen in the far future of the Universe?

Answer: We don’t know! But in our best current model (the Benchmark model), a heat death is
predicted.
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2 Fundamental Observations

2.1 Human blackbody radiation

The energy density of blackbody radiation is given by:

εγ = αT4 (2.1)

Approximating a human being as a sphere with volume 1m3, an considering that photons travel at speed
c we have that the rate of energy radiation is:

E = cAεγ = cAαT4 ∼ 2.10× 103W (2.2)

2.2 CMB photon rate

We can calculate the photon number density of the CMB to be:

nγ = βT3 = (2.029× 107m−3 K−3)(2.8255K)3 = 4.107× 108m−3 (2.3)

Approximating our body to be a perfect sphere with cross sectional area A ∼ 1m, since photons travel at
a rate cm s−1 the rate at which they pass through us is:

r ∼ cAnγ = (3.00× 10m s−1)(1m2)(4.107× 108m−3) = 1.23× 1017s−1 (2.4)

2.3 How long for the CMB to warm you up?

The energy per photon of the CMB is:
εγ

nγ
= 1.02× 10−22J (2.5)

The energy required to raise my temperature by 1nK is:

∆E = Cm∆T = (4200J kg−1 K−1)(50kg)(10−9K) = 2.1× 10−4J (2.6)

So solving for the time to heat up by 1 nanoKelvin:

t1nK =
∆E
r εγ

nγ

∼ 16.8s (2.7)

2.4 Tired Light

We start with the energy loss per unit distance propsed by the “tired light hypothesis”:

dE
dr

= −kE (2.8)

This is the all-too-famous exponential decay ODE, which has solution:

E(r) = C exp(−kr) (2.9)

In principle we could use separation of variables to solve the ODE, but let’s just verify that this is the
correct solution:

d
dr
(
C exp(−kr)

)
= −kC exp(−kr) = −kE X (2.10)
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Letting E(0) = E0 be the distance of the energy of the photon when emitted (before it has travelled and
lost energy), we get:

E0 = E(0) = C exp
(
−k(0)

)
= C =⇒ C = E0 (2.11)

Therefore:
E(r) = E0 exp(−kr) (2.12)

Now, using the energy-momentum relation and the DeBroglie wavelength relation, we have:

E = pc =
hc
λ

(2.13)

So substituting this into (2.12) we get:
hc
λr

=
hc
λ0

exp(−kr) (2.14)

Where λr is the observed/measured photon wavelength at distance r from the source and λ0 is the photon
wavelength measured at the source. Rearranging we obtain:

λr

λ0
= exp(kr) (2.15)

Now we recall the definition of redshift:

z =
λr − λ0

λ0
=

λr

λ0
− 1 (2.16)

Substituting this into (2.15) we get:
z = exp(kr)− 1 (2.17)

Which adding one and taking the logarithm of both sides we get:

log(1 + z) = kr (2.18)

If z� 1, then by Taylor expanding to first order we obtain:

log(1 + z) ≈ z (2.19)

So in this limit we have:
z = kr (2.20)

From which we see a linear distance-redshift relation. For the last part of the question, we recall Hubble’s
Law:

z =
H0

c
r (2.21)

So comparing this with (2.20), the value of k to yield a Hubble constant of H0 = 68km s−1 Mpc−1 must be:

k =
H0

c
= 2.3× 10−4Mpc−1 (2.22)

2.5 CMB Cutoff - The Cosmic Infrared background

We start with the number density for CMB photons:

n( f )d f =
ε( f )d f

h f
=

8π

c3
f 2d f

exp
(
h f /kT

)
− 1

(2.23)
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Since h f > E0 � kT, we have that exp
(
h f /kT

)
� 1 and so exp

(
h f /kT

)
− 1 ∼ exp

(
h f /kT

)
. This yields:

n( f )d f ≈ 8π

c3 f 2 exp
(
− h f

kT

)
d f (2.24)

Now, to get n(h f > E0) we integrate this expression from E0/h to ∞.

n(h f > E0) =
∫ ∞

E0/h

8π

c3 f 2 exp
(
− h f

kT

)
d f (2.25)

Integrating by parts (with u = f 2, dv = exp
(
−h f /kT

)
), we have:

n(h f > E0) =
8π

c3

(
f 2−kT

h
exp

(
− h f

kT

)∣∣∣∣∞
E0/h
−
∫ ∞

E0/h
2 f
−kT

h
exp

(
− h f

kT

)
d f

)
(2.26)

The term at infinity goes to zero, so:

n(h f > E0) =
8π

c3

(
kTE2

0
h3 exp

(
− E0

kT

)
+

2kT
h

∫ ∞

E0/h
f exp

(
− h f

kT

)
d f

)
(2.27)

We now integrate by parts again (with u = f , dv = exp
(
− h f

kT

)
) to get:

n(h f > E0) =
8π

c3

 kTE2
0

h3 exp
(
− E0

kT

)
+

2kT
h

(
f
−kT

h
exp

(
− h f

kT

)∣∣∣∣∞
E0/h
−
∫ ∞

E0/h

−kT
h

exp
(
− h f

kT

)
d f

)
(2.28)

Again the term at infinity goes to zero and we get:

n(h f > E0) =
8π

c3

 kTE2
0

h3 exp
(
− E0

kT

)
+

2kT
h

(
kTE0

h2 exp
(
− E0

kT

)
+

kT
h

∫ ∞

E0/h
exp

(
− h f

kT

)
d f

) (2.29)

Finally the last integral is easy:

n(h f > E0) =
8π

c3

 kTE2
0

h3 exp
(
− E0

kT

)
+

2kT
h

 kTE0

h2 exp
(
− E0

kT

)
+

kT
h

(
−kT

h
exp

(
− h f

kT

)∣∣∣∣∞
E0/h

)


(2.30)
So after this tedious calculation, we have:

n(h f > E0) =
8π

c3 exp
(
− E0

kT

)[
kTE2

0
h3 +

2k2T2E0

h3 +
2k3T3

h3

]
(2.31)

Using that E0 � kT again, we can neglect all but the first term (so we could have really avoided the latter
two integration steps, but alas):

n(h f > E0) ≈
8πkTE2

0
c3h3 exp

(
− E0

kT

)
(2.32)

Now taking the ratio of this with nγ:

n(h f > E0)

nγ
≈

8πkTE2
0

c3h3 exp
(
− E0

kT

)
2.4041

π2
k3

h̄3c3 T3
= 0.42

(
E0

kT

)2
exp

(
− E0

kT

)
(2.33)
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which was the desired formula. Next, we calculate the fraction of “CMB” photons that are actually far-IR
photons. We first consider the wavelength-frequency relation for light:

c = λ f (2.34)

so λ < 1mm corresponds to f > 3× 1011Hz and so:

E = h f > 2× 10−22J (2.35)

So using the above derived relation with T = 2.7255K we have:

n(h f > 2× 10−22J)
nγ

≈ 0.42

(
2× 10−22J
k · 2.7255K

)2

exp

(
− 2× 10−22J

k · 2.7255K

)
= 0.058 (2.36)

2.6 CMB Cutoff - The Other Direction

We again recall the number density of the CMB photons:

n( f )d f =
8π

c3
f 2d f

exp
(
h f /kT

)
− 1

(2.37)

Since kT � E0 > h f , we have that:

exp
(

h f
kT

)
≈ 1 +

h f
kT

(2.38)

by Taylor expanding to first order. The number density in this regime therefore becomes:

n( f )d f ≈ 8π

c3
f 2d f

1 + h f
kT − 1

=
8πkT

hc3 f d f (2.39)

Integrating this from 0 to E0/h, we obtain n(h f < E0):

n(h f < E0) ≈
∫ E0/h

0

8πkT
hc3 f d f =

4πkT
hc3 f 2

∣∣∣E0/h

0
=

4πkTE2
0

h3c3 (2.40)

So solving for the fraction of photons in the CMB with h f < E0 we have:

n(h f < E0)

nγ
≈

4πkTE2
0

h3c3

2.4041
π2

k3

h̄3c3 T3
= 0.21

(
E0

kT

)2
(2.41)

Solving for the fraction of CMB photons with λ > 3cm (and hence capable of passing through the Earth’s
atmosphere) we again use the wavelength-frequency relation for light of c = λ f . λ > 3cm corresponds to
f < 1010Hz so:

E = h f < 6.63× 10−24J (2.42)

So using our obtained relation with T = 2.7255K we have:

n(h f < 7× 10−24J)
nγ

≈ 0.21

(
7× 10−24J
k · 2.7255K

)2

= 0.0065 (2.43)
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3 Newton versus Einstein

3.1 Evidence for electrical neutrality

Through astronomical observations, we notice that gravitational forces dominate dynamics in the universe
on large scales. However, electrostatic forces are much stronger than gravitational. A simple demonstra-
tion of this is given by comparing the magnitudes of the gravitational and electrostatic forces between
an electron and proton. At a distance r, the gravitational force between an electron and proton (in the
Newtonian picture) is given by:∣∣∣Fg

∣∣∣ = Gmpme

r2 =
1
r2 (6.67× 10−11N kg−2 m2)(1.67× 10−27kg)(9.11× 10−31kg) =

1.01× 10−66

r2 N (3.1)

And the elecctrostatic force is given by:

|Fe| =
ke2

r2 =
1
r2 (8.99× 109N C−2 m2)(1.60× 10−19C)2 =

2.30× 10−28

r2 N (3.2)

Taking the ratio we have: ∣∣∣∣∣ Fe

Fg

∣∣∣∣∣ =
∣∣∣∣∣∣

2.30×10−28

r2 N
1.01×10−66

r2 N

∣∣∣∣∣∣ = 2.28× 1038 (3.3)

As we can see from this example, electrostatic forces are much stronger than gravitational (38 orders of
magnitude stronger in this case!). Hence if there was a large charge imbalance in the universe, we would
observe that electrostatic forces would dominate large-scale dynamics rather than gravitational. This
however disagrees with our observations, and we conclude that the universe must be (mostly) electrically
neutral.

3.2 Angular Width on a sphere

We recall that the metric for a sphere of radius R is given by:

dl2 = dr2 + R2 sin2
(

r
R

)
dθ2 (3.4)

So we can write the width dl of the object using the above equation. Since dl � R, we can take the entire
width of the object to be located at the same distance r away from us (the observer). In other words, in
this limit we have dr = 0 and hence the above reduces to:

dl2 = R2 sin2
(

r
R

)
dθ2 (3.5)

Isolating for the angular width of the object, we obtain:

dθ =
dl

R sin
( r

R
) (3.6)

As we take r → πR (i.e. the object is located at the antipode) we have:

lim
r→Rπ

dθ = lim
r→Rπ

dl
R sin

( r
R
) = ∞ (3.7)

as the denominator goes to 0 (limr→Rπ sin
( r

R
)
= sin

(
Rπ
R

)
= sin(π) = 0). The angular width is minimized

when the object lies on the equator, where r = Rπ
2 and dθ = dl

R , and this angular width increases to infinity
as the object approaches the antipode of the sphere. For an object at the antipode, all lines of sight from
the observer lead to the object, and it therefore fills the horizon.
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3.3 The Earth isn’t flat!

We choose our coordinate system such that the origin is located in the center of the sphere, and we as the
oberver are located at the north pole. The circle drawn on the sphere is at a fixed distance r from us on
the north pole, and therefore each point on the sphere is at a fixed polar angle θ. The radius of this circle
as measured as an outside observer (not located on the sphere) is R sin θ. The circumference of the circle

R
θ

r

R sin θ

Figure 1: Illustration of setup of Problem 3.3

is therefore given by:
C = 2πR sin θ (3.8)

Now, we recall that the arclength r is related to the polar angle and sphere radius by:

r = Rθ. (3.9)

So substituing this into the circumference, we obtain:

C = 2πR sin
(

r
R

)
(3.10)

which was the claimed formula. For the second part of the question, we consider that for a flat space, the
circumference would be measured to be:

C f = 2πr. (3.11)

In the limit r � R, we can Taylor expand the circumference as given in Eq. (3.10) to obtain that:

Cs ≈ 2πR

(
r
R
− r3

6R3

)
= 2πr− πr3

3R2 (3.12)

Hence the difference between the circumference measured in Euclidean space versus a sphere would be
given by: ∣∣∣C f − Cs

∣∣∣ ≈ ∣∣∣∣∣2πr− (2πr− πr3

3R2 )

∣∣∣∣∣ = πr3

3R2 . (3.13)

We can measure distances within an error of ±1m, so to convince ourselves that Earth is spherical rather
than flat, we require that the circumference differnece be:∣∣∣C f − Cs

∣∣∣ > 1m (3.14)

So approximately:
πr3

3R2 > 1m (3.15)
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Rearranging, we have:

r > 3

√
3mR2

π
(3.16)

And substituing R = 6400km we get:
r > 34km (3.17)

3.4 Area Bounds for Equilateral Triangles

Case 1: κ = +1. No, we cannot draw an equilateral triangle of arbitrarily large surface area A in this case.
A simple counterargument is that a sphere has surface area 4πR2, so immediately no triangle with area
larger than that is possible. For a calculation of the maximum area of a triangle, we require a thoughtful
argument. First, recall the equation for the sum of three angles of a triangle of area A on a surface of a
sphere of radius R:

α + β + γ = π +
A
R2 (3.18)

For an equiliateral triangle, α = β = γ, so:

3α = π +
A
R2 (3.19)

WLOG, we can choose our coordinate system that the first point of the triangle is on the north pole, the
second point is a distance r from the north pole on the sphere with azimuthal angle φ = 0, and the third
point is also a distance r from the north pole on the sphere with azimuthal angle φ = α.

r

α

α
α

Figure 2: Illustration of the triangle drawn for the spherical case of Problem 3.4.

We now recall the area element on the sphere is given as:

dA = Rdθ · R sin θdφ = R2dθdφ (3.20)

Where Rdθ is the polar distance and R sin θdφ is the azimuthal distance. With the setup as described, the
area of the triangle may be calculated via integration. We integrate from 0 ≤ θ ≤ r

R (recalling that r = Rθ)
and from 0 ≤ φ ≤ α:

A =
∫∫

triangle
dA = R2

∫ r/R

0
sin θdθ

∫ α

0
dφ (3.21)

Carrying out these two easy integrals, we obtain:

A = R2

(
1− cos

(
r
R

))
α (3.22)
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Isolating for α, we obtain:

α =
A

R2
(

1− cos
( r

R
)) (3.23)

Plugging this into (3.19), we get:

3
A

R2
(

1− cos
( r

R
)) = π +

A
R2 (3.24)

Isolating for A we have:

A = πR2 1− cos
( r

R
)

2 + cos
( r

R
) (3.25)

The largest that r can possibly be is when r = πR (the base of the triangle lies on the south pole), and so:

Amax = πR2
1− cos

(
πR
R

)
2 + cos

(
πR
R

) = πR2 1− (−1)
2− 1

= 2πR2 (3.26)

In other words, the largest an equilateral triangle can be in this case is being half of the sphere!
Case 2: κ = 0. We can draw an equilateral triangle of arbitrarily large surface area A in this case. On a
flat plane, there is no upper bound to how large you want to draw your shapes!
Case 3: κ = −1. No, we cannot draw an equilateral triangle of arbitrarily large surface area A in this case.
Consider the equation that gives the sum of three angles of a triangle on a 2-D surface of uniform negative
curvature (with radius of curvature R):

α + β + γ = π − A
R2 (3.27)

For an equilateral triangle, α = β = γ so:

3α = π − A
R2 (3.28)

α cannot be negative if we are to have a physical shape, so:

0 ≤ π − A
R2 (3.29)

Rearranging, we obtain an upper bound on the area of an equilateral triangle for a 2-D surface of uniform
negative curvature:

A ≤ R2π (3.30)

Which gives us a maximum:

Amax = R2π (3.31)

in this limit, note that the angles of the triangle α approach zero.

3.5 Equivalent Metrics

We wish to show the equivalence of the metrics:

dl2 = dx2 + dy2 + dz2 (3.32)

and:
dl2 = dr2 + r2

[
dθ2 + sin2 θdφ2

]
. (3.33)
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Making the substitutions x = r sin θ cos φ, y = r sin θ sin φ, and z = r cos θ into (3.32), we have:

dl2 = (d(r sin θ cos φ))2 + (d(r sin θ sin φ))2 + (d(r cos θ))2 (3.34)

Liberally applying the product and chain rules, we obtain:

dl2 = (sin θ cos φdr + r cos θ cos φdθ − r sin θ sin φdφ)2

+ (sin θ sin φdr + r cos θ sin φdθ + r sin θ cos φdφ)2

+ (cos θdr− r sin θdθ)2 (3.35)

Now we can expand this expression:

dl2 = sin2 θ cos2 φdr2 + r2 cos2 θ cos2 φdθ2 + r2 sin2 θ sin2 φdφ2

+ 2r sin θ cos θ cos2 φdrdθ − 2r sin2 θ sin φ cos φdrdφ− 2r2 sin θ cos θ sin φ cos φdθdφ

+ sin2 θ sin2 φdr2 + r2 cos2 θ sin2 φdθ2 + r2 sin2 θ cos2 φdφ2

+ 2r sin θ cos θ sin2 φdrdθ + 2r sin2 θ sin φ cos φdrdφ + 2r2 sin θ cos θ sin φ cos φdθdφ

+ cos2 θdr2 − 2r sin θ cos θdrdθ + r2 sin2 θdθ2 (3.36)

Now grouping like terms, we have:

dl2 = dr2
[
sin2 θ cos2 φ + sin2 θ sin2 φ + cos2 θ

]
+ r2dθ2

[
cos2 θ cos2 φ + cos2 θ sin2 φ + sin2 θ

]
+ r2dφ2

[
sin2 θ sin2 φ + sin2 θ cos2 φ

]
+ 2rdrdθ

[
sin θ cos θ cos2 φ + sin θ cos θ sin2 φ− sin θ cos θ

]
+ 2rdrdφ

[
− sin2 θ sin φ cos φ + sin2 θ sin φ cos φ

]
+ 2r2dθdφ

[
− sin θ cos θ sin φ cos φ + sin θ cos θ sin φ cos φ

]
(3.37)

We can see the last line of terms all equals to zero (the brackets evaluate to zero, so):

dl2 = dr2
[
sin2 θ cos2 φ + sin2 θ sin2 φ + cos2 θ

]
+ r2dθ2

[
cos2 θ cos2 φ + cos2 θ sin2 φ + sin2 θ

]
+ r2dφ2

[
sin2 θ sin2 φ + sin2 θ cos2 φ

]
+ 2rdrdθ

[
sin θ cos θ cos2 φ + sin θ cos θ sin2 φ− sin θ cos θ

]
(3.38)

Now redrawing some brackets:

dl2 = dr2
[
sin2 θ(cos2 φ + sin2 φ) + cos2 θ

]
+ r2dθ2

[
cos2 θ(cos2 φ + sin2 φ) + sin2 θ

]
+ r2dφ2

[
sin2 θ(sin2 φ + cos2 φ)

]
+ 2rdrdθ

[
sin θ cos θ(cos2 φ + sin2 φ)− sin θ cos θ

]
(3.39)

Now applying the cos2 φ + sin2 φ = 1 identity to each term:

dl2 = dr2
[
sin2 θ + cos2 θ

]
+ r2dθ2

[
cos2 θ + sin2 θ

]
+ r2dφ2

[
sin2 θ

]
+ 2rdrdθ [sin θ cos θ − sin θ cos θ]

(3.40)
The last term vanishes, and to the first two terms we can apply the identity cos2 θ + sin2 θ = 1:

dl2 = dr2 + r2dθ2 + r2 sin2 θdφ2 (3.41)

And redrawing some brackets:
dl2 = dr2 + r2

[
dθ2 + sin2 θdφ2

]
(3.42)

We identify this with (3.33) and hence we conclude.
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4 Cosmic Dynamics

4.1 Does the Cosmological Constant Affect Planetary Motion?

In a sphere of radius 1AU, we have:

EΛ = ελV = ελ
4
3

πR3 = 5200MeV m−3 4
3

π(1.5× 1011m)3 = 1.18× 1025J (4.1)

Now calculating the rest energy of the sun, we have:

E� = M�c2 = 1.99× 1030kg(3.0× 108ms−1)2 = 1.79× 1047J (4.2)

We see a difference of 23 orders of magnitude; we conclude that the cosmological constant does not have
a significant effect on the motion of planets within the Solar system.

4.2 Perturbing Einstein’s Static Universe

If Λ = 4πGρ, then the acceleration equation says:

ä
a
= −4πG

3c2 (ε + 3P) +
Λ
3

= −4πGρ

3
+

4πGρ

3
= 0 (4.3)

Where in the second equality we use that this hypothetical universe is filled solely with matter, so P ≈ 0.
Now, if some of this matter gets converted to radiation, we have that Pr =

1
3 ε > 0, so Ptot > 0 and hence:

ä
a
= −4πG

3c2 (ε + 3P) +
Λ
3

= −4πGPtot

3
< 0 (4.4)

Note that while the pressure increases, the energy density ε remains unchanged (the energy just converted
form) so the energy density term and the cosmological constant term cancel out like before. From this, we
conclude that ä < 0, and so the universe contracts . The extra gravitational pressure from the radiation
causes the universe to collapse; this shows that Einstein’s static universe model isn’t great, as even his
universe with just one star would trigger a runaway collapse.

4.3 How Large is Einstein’s Static Universe?

From Eq. 4.73 in Ryden, we have that in Einstein’s static universe has radius of curvature:

R0 =
c

2(πGρ)1/2 = 2× 1026m ∼ 7Gpc (4.5)

If a photon were to circumnavigate this universe, it would take time:

T =
2πR0

c
= 4× 1018s ∼ 132Gyr (4.6)

Which is longer than the age of the universe!
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4.4 Baseballs and Critical Density

The current critical density is given by Ryden Eq. 4.32 to be:

ρc,0 =
3

8πG
H2

0 = 8.7× 10−27kg m−3 (4.7)

We set the density of baseballs to be equal to the critical density:

ρc,0 = ρbb = mbbnbb (4.8)

Where nbb is the number density of the baseballs. Rearranging, we get:

nbb =
ρc,0

mbb
=

8.7× 10−27kg m−3

0.145kg
= 6.0× 10−26m−3 (4.9)

Given this density of baseballs, we can use Ryden Eq. 2.2 to solve for the average distance we could see
before having our line of sight intersected by a baseball:

λ =
1

nbbπr2
bb

=
1

(6.0× 10−26m−3)π(0.0369m)2
= 3.90× 1027m ≈ 126000Mpc (4.10)

The fact that we can see galaxies at a distance ∼ c/H0 ∼ 4000Mpc does not give us a useful upper
bound on the density of intergalatic baseballs in this case (we see that the line of sight from the current
calculation assuming critical density of baseballs is ∼2 orders of magnitude larger than what we can
actually see already). However, for completeness we calculate what upper bound this does give on the
density of intergalatic baseballs:

nbb <
1

λπr2
bb

=
1

(4000Mpc)(π(0.0369m)2)
= 1.93× 10−24m−3 (4.11)

4.5 Equation of State for Gases

The energy per-particle is given by:
E = (mc2 + h2c2/λ2)1/2 (4.12)

And the total energy density of a gas of particles is given by:

ε = nE (4.13)

Combining the two, we have:
ε = n(mc2 + h2c2/λ2)1/2 (4.14)

Since n is the number density, we can write it as:

n =
N
V

=
N

k1a3 (4.15)

Where N is the number of particles in the gas (we assume this does not change, i.e. that no particles
are created or destroyed), and V = k1a3 is the volume of the expanding universe (proportional to a3).
Furthermore, we can write λ = k2a as the wavelength is linear in the scale factor. Putting this into (4.14)
we have:

ε =
N

k1a3 (mc2 +
h2c2

k2
2a2

)1/2 (4.16)
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Now we recall the fluid equation:

ė + 3
ȧ
a
(ε + P) = 0. (4.17)

Substituting the equation of state:
P = wε (4.18)

into the fluid equation, we have:

ε̇ + 3
ȧ
a

ε(1 + w) = 0 (4.19)

Solving for w, we have:

w =
−ε̇

3 ȧ
a ε
− 1 (4.20)

We will have to take the time derivative of (4.16) to substitute into (4.20). Noting that the only time-
dependent parameter in ε is a, we take the derivative (using the quotient rule and chain rule):

ε̇ =

N
(mc2+ h2c2

k2
2a2 )

1/2

(
−2 h2c2

k2
2a3

)
ȧk1a3 − 3Nk1a2 ȧ(mc2 + h2c2

k2
2a2 )

1/2

k2
1a6

(4.21)

Simplifying slightly:

ε̇ =
−Nc2 ȧ(3k2

2ma2 + 4h2)

k1k2
2a6(mc2 + h2c2

k2
2a2 )

1/2
(4.22)

Substituting (4.16) and (4.22) into (4.20) we have:

w =

Nc2 ȧ(3k2
2ma2+4h2)

k1k2
2a6(mc2+ h2c2

k2
2a2 )

1/2

3 ȧ
a

N
k1a3 (mc2 + h2c2

k2
2a2 )

1/2
− 1 (4.23)

Cancelling terms in the numerator and denominator, we have:

w =
c2(3k2

2ma2 + 4h2)

3k2
2a2(mc2 + h2c2

k2
2a2 )
− 1 (4.24)

Expanding out terms in the numerator and denominator:

w =
3mc2k2

2a2 + 4h2c2

3mc2k2
2a2 + 3h2c2

− 1 (4.25)

In the highly relativistic limit, we have a → 0 and p → 0. Note that while p does not appear explicitly
in the above equation, a → 0 implies p → ∞ under the linear relationship of the scaling factor with λ, as
k2a = λ = h/p. In any case, taking a→ 0 in the above expression, we have:

wrel = lima→0w = lim
a→w

3mc2k2
2a2 + 4h2c2

3mc2k2
2a2 + 3h2c2

− 1 =
4h2c2

3h2c2 − 1 =
4
3
− 1 =

1
3

(4.26)

This was precisely the claimed value. Now in the highly non-relativistic limit, we have a→ ∞ and p→ 0.
We again take the limit of a→ ∞ in (4.25) to obtain:

wnonrel = lim
a→∞

w = lim
a→∞

3mc2k2
2a2 + 4h2c2

3mc2k2
2a2 + 3h2c2

− 1 =
3mc2k2

2
3mc2k2

2
− 1 = 1− 1 = 0 (4.27)

which is again the desired value.
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A Force-Based Derivation of the Newtonian Friedmann Equation

Now let’s derive the “acceleration equation” (sometimes called “Friedmann’s other equation”!) for
the whole Universe from simple Newtonian physica. Imagine a sphere of constant density ρ(t) and
radius r, with a test mass m at its edge. Write down the equation of motion for the test mass under
the gravitational pull of hte sphere. Now use the idea that the physical radius can be written as
comoving radius times scale factor, i.e. r ≡ a(t)x. you should find that you can derive an equation
for a which doesn’t depend on x or on m! In other words, the sphere that oyu used inthe first place
has dissapeared and your equation of motion has ended up being for the scale factor itself. [Note
that you’re not being asked to solve this equation, just to derive it!]

The mass of the sphere is given by:

M(t) = ρ(t)V(t) = ρ(t)
4
3

πr(t)3 (4.28)

The distance from the center of the sphere to the test mass is just r(t) (the test mass is on the surface), so
using Newton’s second law and Newton’s law of universal gravitation, we have:

mr̈(t) = F =
−GM(t)m

r(t)2 (4.29)

Substituting M(t) from (4.28), we have:

mr̈(t) =
−Gρ(t) 4

3 πr(t)3m
r(t)2 = −Gρ(t)

4
3

πa(t)m (4.30)

Cancelling out m from both sides and replacing r(t) with a(t)x we have:

xä(t) = −Gρ(t)
4
3

πa(t)x (4.31)

The xs cancel on both sides, and dividing both sides by a(t) we get:

ä(t)
a(t)

= −Gρ(t)
4
3

π (4.32)
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5 Model Universes

5.1 Redshift in single-component universes

We can take Eq. 5.47 in Ryden as our starting point:

1 + z =
a(t0)

a(te)
=

(
t0

te

)2/(3+3w)

(5.1)

Taking the derivative w.r.t. t0 of both sides of this equation, we obtain:

dz
dt0

=

ȧ(t0)
dt0

dt0
a(te)− ȧ(te)

dte

dt0
a(t0)

a(te)2 (5.2)

There’s a variety of terms to process here. First, combining Ryden Eqs. 5.39 and 5.42 we get:

a(t) =
(

t
t0

)2/(3+3w)

(5.3)

Taking the time derivative, we have:

ȧ(t) =
2

3 + 3w

(
t
t0

)2/(3+3w) 1
t
=

2
3 + 3w

a(t)
t

(5.4)

We also have that:
dt0

dt0
= 1 (5.5)

The final quantity to determine is dte
dt0

. To solve for this, we recall Ryden 3.59:

1
a(te)

∫ te+λe/c

te
dt =

1
a(t0)

∫ t0+λ0/c

t0

(5.6)

Since λ/c� 1, we can approximate λe/c ∼ dte, λ0/c ∼ dt0 to get:

1
a(te)

∫ te+dte

te
dt =

1
a(t0)

∫ t0+dt0

t0

dt (5.7)

Which solving the integrals tells us that:
dte

a(te)
=

dt0

a(t0)
(5.8)

Which we can rearrange to obtain:
dte

dt0
=

a(te)

a(t0)
=

1
1 + z

(5.9)

Combining the three obtained relations of (5.4), (5.5), (5.9) and substituting this into (5.2) we have that:

dz
dt0

=
2

3+3w
a(t0)

t0
a(te)− 2

3+3w
a(te)

te
1

1+z a(t0)

a(te)2 (5.10)

Factoring and using that a(t0)
a(te)

= 1 + z from (5.1) this becomes:

dz
dt0

=
2

3 + 3w

(
(1 + z)

1
t0
− 1

te

)
(5.11)

17



Substituting te = t0(1 + z)−(3+3w)/2 from (5.1) we have:

dz
dt0

=
2

3 + 3w

(
(1 + z)

1
t0
− (1 + z)(3+3w)/2 1

t0

)
(5.12)

Now using Ryden Eq. 5.42:

t0 =
2

3 + 3w
H−1

0 (5.13)

We obtain:
dz
dt0

= H0(1 + z)− H0(1 + z)(3+3w)/2 (5.14)

which was the desired relation. The observed redshift increases in time if dz
dt0

> 0, so rearranging the
above expression we have:

H0(1 + z)− H0(1 + z)(3+3w)/2 > 0 =⇒ (1 + z) > (1 + z)(3+3w)/2 (5.15)

And since 1 + z ≥ 1, the LHS is greater than the RHS if (3 + 3w)/2 < 1, i.e. if:

w < −1
3

. (5.16)

5.2 Redshift Change Timescale for Flat Matter-Only Universe

In a flat matter-only universe, we can use the result from 5.1 with w = 0 to obtain that:

dz
dt0

= H0(1 + z)− H0(1 + z)3/2 (5.17)

We want to find the time dt0 for the galaxy to change by dz
z = −10−6, and since z = 1 to start dz = −10−6.

Rearranging the above expression to solve for dt0 we have:

dt0 =
dz
H0

1
(1 + z)− (1 + z)3/2 (5.18)

So plugging in dz = −10−6, z = 1, and H0 = 68kms−1Mpc−1 we numerically get:

dt0 ≈ 5.49× 1011s ≈ 17400yrs (5.19)

5.3 Present age of universe for positively curved matter-only universe

We recall the parametric solutions for the scale factor a and the time t for a positively curved universe
filled only with matter:

a(θ) =
1
2

Ω0

Ω0 − 1
(1− cos θ) (5.20)

t(θ) =
1

2H0

Ω0

(Ω0 − 1)3/2 (θ − sin θ). (5.21)

In the present day, a = 1, so solving (5.20) for θ we have:

θ = cos−1

(
1− 2(Ω0 − 1)

Ω0

)
= cos−1

(
2−Ω0

Ω0

)
(5.22)
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Substituting this into (5.21) we have:

t0 =
1

2H0

Ω0

(Ω0 − 1)3/2 (cos−1
(

2−Ω0

Ω0

)
− sin

(
cos−1

(
2−Ω0

Ω0

))
) (5.23)

The last term looks complicated, but we can view cos−1
(

2−Ω0
Ω0

)
as the angle for a triangle with hypotenuse

Ω0 and adjacent side 2 − Ω0. The sine of this will therefore be the ratio of the opposite side and the
hypotenuse of this triangle. The length of the opposite side is given (by Pythagoras) as:√

Ω2
0 − (2−Ω0)2 = 2

√
Ω0 − 1 (5.24)

So sin
(

cos−1
(

2−Ω0
Ω0

))
is given as:

sin

(
cos−1

(
2−Ω0

Ω0

))
=

2
√

Ω0 − 1
Ω0

. (5.25)

So substituting this into (5.23) we get:

H0t0 =
1
2

Ω0

(Ω0 − 1)3/2 (cos−1
(

2−Ω0

Ω0

)
− 2
√

Ω0 − 1
Ω0

) (5.26)

Which distributing the product we get:

H0t0 =
1
2

Ω0

(Ω0 − 1)3/2 cos−1
(

2−Ω0

Ω0

)
− 1

Ω0 − 1
(5.27)

which was the desired expression. A plot of t0 vs. Ω0 for 1 ≤ Ω0 ≤ 3 is given below.

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Omega0
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 * 
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Pc
/k

m
)

t0 vs Omega0

Figure 3: Plot of t0 vs. Ω0 for 1 ≤ Ω0 ≤ 3.
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5.4 Present age of universe for negatively curved matter-only universe

We recall the parametric solutions for the scale factor a and the time t for a negatively curved universe
filled only with matter:

a(η) =
1
2

Ω0

1−Ω0
(cosh η − 1) (5.28)

t(η) =
1

2H0

Ω0

(1−Ω0)3/2 (sinh η − η). (5.29)

In the present day, a = 1, so solving (5.28) for η we have:

η = cosh−1

(
2(1−Ω0)

Ω0
+ 1

)
= cosh−1

(
2−Ω0

Ω0

)
(5.30)

Substituting this into (5.29) we get:

t0 =
1

2H0

Ω0

(1−Ω0)3/2 (sinh

(
cosh−1

(
2−Ω0

Ω0

))
− cosh−1

(
2−Ω0

Ω0

)
) (5.31)

Now, using that sinh
(

cosh−1 x
)
=
√

x2 − 1, the first term of the above expression becomes:

sinh

(
cosh−1

(
2−Ω0

Ω0

))
=

(
(2−Ω0)

2

Ω2
0

− 1

)1/2

=

(
4− 4Ω0

Ω2
0

)1/2

=
2

Ω0
(1−Ω0)

1/2 (5.32)

So substituting this result we obtain:

H0t0 =
1
2

Ω0

(1−Ω0)3/2

(
2

Ω0
(1−Ω0)

1/2 − cosh−1
(

2−Ω0

Ω0

))
(5.33)

Distributing the terms, we obtain the desired result:

H0t0 =
1

1−Ω0
− Ω0

2(1−Ω0)3/2 cosh−1
(

2−Ω0

Ω0

)
. (5.34)

Finally, a plot of t0 vs. Ω0 for 0 ≤ Ω0 ≤ 1 is given below.

5.5 Phantom Energy and the Big Rip

The supposed “phantom energy” with equation of state parameter wp < −1 would have energy density:

εp(a) = εp,0a−3(1+wp). (5.35)

Comparitively, matter has energy density:

εm(a) = εm,0a−3. (5.36)

At equality, we have that:

1 =
εp(a)
εm(a)

=
εp,0a−3(1+wp)

εm,0a−3 =
Ωp,0

Ωm,0

1
a3wp

(5.37)

Since Ωp,0 = 1−Ωm,0, we have:

1 =
1−Ωm,0

Ωm,0

1
a3wp

(5.38)
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Figure 4: Plot of t0 vs. Ω0 for 0 ≤ Ω0 ≤ 1.

Which we can rearrange to solve for the scale factor amp where equality holds:

amp =

(
1

Ωm,0
− 1

)1/3wp

(5.39)

The Friedmann equation in this universe reads:

H2

H2
0
=

Ωm,0

a3 +
Ωp,0

a3(1+wp)
=

Ωm,0

a3 +
1−Ωm,0

a3(1+wp)
(5.40)

In the limit a� amp, the first term becomes negligible and hence:

H2

H2
0
≈ 1−Ωm,0

a3(1+wp)
(5.41)

We now rearrange this equation to set up for the integration:

ȧ
a

H0
≈ (1−Ωm,0)

1/2

a3(1+wp)/2
=⇒ H0dt ≈ a3(1+wp)/2−1(1−Ωm,0)

−1/2da (5.42)

Integrating from t0 to trip, corresponding to from a(t0) = 1 to a(trip) = ∞ on the RHS, we have:∫ trip

t0

H0dt ≈
∫ ∞

1
a3(1+wp)/2−1(1−Ωm,0)

−1/2da (5.43)

Carrying out the integral, we get:

H0(trip − t0) ≈
2

3(1 + wp)
a3(1+wp)/2(1−Ωm,0)

−1/2

∣∣∣∣∣
∞

1

(5.44)

Since wp < −1, the RHS goes to 0 at a = ∞, so:

H0(trip − t0) ≈ −
2

3(1 + wp)
(1−Ωm,0)

−1/2 (5.45)
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Which we can write as:

H0(trip − t0) ≈
2

3
∣∣∣1 + wp

∣∣∣ (1−Ωm,0)
−1/2 (5.46)

which was the desired result. Finally, with H0 = 68km s−1 Mpc−1, Ωm,0 = 0.3, and wp = −1.1, we can
solve numerically for the time remaining until the “Big Rip” to be:

trip − t0 ≈ 115.5Gyr (5.47)

5.6 Pulling an Einstein

In this universe with matter and dark energy, the acceleration equation reads:

ä
a
= −4πG

3c2 (ε + 3P) = −4πG
3c2 (εm + εq + 3wqεq) (5.48)

Where we have used that P = (0)εm = 0 for matter and P = wqεq for the dark energy. To have a static
universe with ä = 0, it must follow that:

εm = −(1 + 3wq)εq (5.49)

The Friedmann equation reads:

H(t)2 =
8πG
3c2 (εm + εq)−

κc2

R2
0a(t)2

(5.50)

Since we have a static universe, ȧ = 0 and hence H(t) = 0. Furthermore, using that εm = −(1 + 3wq)εq
from earlier, the Friedmann equation becomes:

0 =
8πG
3c2 (−3wq)εq −

κc2

R2
0a(t)2

(5.51)

Since −1 < wq < −1/3, wq is negative, and hence the only way the above equality is satisfied is if κ = 1 so
the positive term can be cancelled by the second term. So in this scenario, the universe is positively curved .
We rearrange the above equation to solve for the radius of curvature R0 when a(t) = 1:

R0 =

√√√√ c4

8πG
∣∣∣wq

∣∣∣εq

(5.52)

5.7 Big Crunch

For a positively curved matter only universe, we recall the parametric solutions for a(θ), t(θ) (Ryden Eqs.
5.90/5.91):

a(θ) =
1
2

Ω0

Ω0 − 1
(1− cos θ) (5.53)

t(θ) =
1

2H0

Ω0

(Ω0 − 1)3/2 (θ − sin θ) (5.54)

The big bang occurs at θ = 0, and the Big crunch at θ = 2π. Given the parametric solutions above, he time
between these can be computed as (Ryden Eq. 5.92):

tcrunch =
π

H0

Ω0

(Ω0 − 1)3/2 (5.55)
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Furthermore, we can solve for the present t0 at which a(θ0) = 1:

a(θ0) = 1 =
1
2

Ω0

Ω0 − 1
(1− cos θ0) =⇒ θ0 = arccos

(
1− 2(Ω0 − 1)

Ω0

)
= arccos

(
2

Ω0
− 1
)

(5.56)

Therefore the time between Dr. Niwde’s obsdrvations at t = t0 = t(θ0) and the final big crunch is given
by:

∆t = tcrunch − t(θ0) =
π

H0

Ω0

(Ω0 − 1)3/2 −
1

2H0

Ω0

(Ω0 − 1)3/2 (θ0 − sin θ0) (5.57)

Or more concisely:

∆t =
1

H0

Ω
(Ω0 − 1)3/2

(
π − 1

2
(θ0 − sin θ0)

)
(5.58)

Where θ0 is given in (5.56). To determine the highest amplitude blueshift, we recall the redshift-scale factor
relation 1 + z = 1

a , so:

z =
1
a
− 1 (5.59)

If we want to minimize z (i.e. have it be the most negative/highest magnitude blueshift), we want to
maximize a. We can determine this from the Friedmann equation (a la Ryden Eq. 5.86) but it also can
easily be read off from the parametric solution above to be:

amax =
Ω0

Ω0 − 1
(5.60)

which is attained at θ = π. So, the highest amplitude blueshift that Dr. Niwde can observe is at:

zblue, max =
Ω0 − 1

Ω
− 1 = − 1

Ω0
(5.61)

At this blueshift, as stated previously we have θ = π. So this occurs at:

tblue, max = t(π) =
1

2H0

Ω0

(Ω0 − 1)3/2 (π − sin π) =
π

2H0

Ω0

(Ω0 − 1)3/2 (5.62)

So the lookback time is:

t0 − tblue, max =
1

2H0

Ω0

(Ω0 − 1)3/2 (θ0 − sin θ0)−
π

2H0

Ω0

(Ω0 − 1)3/2 (5.63)

Or with some factoring:

t0 − tblue, max =
1

2H0

Ω0

(Ω0 − 1)3/2 (θ0 − sin θ0 − 1) (5.64)

5.8 Big Bounce

The Friedmann equation in such a universe would read:

H2

H2
0
= Ω0 +

1−Ω0

a2 (5.65)

23



At the point where a has an extrema, H(t) = 0 and so:

0 = Ω0 +
1−Ω0

a2 =⇒ abounce =

(
Ω0 − 1

Ω0

)1/2
(5.66)

Rearranging the Friedmann equation, we have:

ȧ
a
= H0

√
Ω0

√
1−

a2
bounce

a2 =⇒ da
dt

=
H0√
Ω0

√
a2 − a2

bounce (5.67)

Integrating, we obtain: √
Ω0H0

∫ t0

tbounce

dt =
∫ a

abounce

1√
a′2 − a2

bounce

da′ (5.68)

Integrating both sides (making use of an integral table for the RHS), we have:√
Ω0H0(t− tbounce) = arccosh

(
a

abounce

)
(5.69)

Which we can rearrange to obtain:

a(t) = abounce cosh
(√

Ω0H0(t− tbounce)
)

(5.70)

At t0 we have that a(t0) = 1 by convention, so solving for t0 − tbounce using (5.69) we have:

t0 − tbounce =
1

H0
√

Ω0
arccosh

((
Ω0

Ω0 − 1

)1/2
)

(5.71)

5.9 Ωm,0 for t = H−1
0

In a spatially flat and matter + cosmological constant filled universe, the Friedmann equation can be
integrated to yield the analytic solution relating t and a (Ryden Eq. 5.101):

H0t =
2

3
√

1−Ωm,0
ln

( a
amΛ

)3/2
+

√
1 +

(
a

amΛ

)3
 (5.72)

Where amΛ is defined by:

amΛ =

(
Ωm,0

1−Ωm,0

)1/3

(5.73)

At the present time, we have t = t0, and a = a(t0) = 1 by convention. Substituting this, as well as (5.73)
into (5.72) we get:

H0t0 =
2

3
√

1−Ωm,0
ln

√1−Ωm,0

Ωm,0
+

√
1 +

1−Ωm,0

Ωm,0

 (5.74)

In order to have t0 = H−1
0 we require the RHS of the above equation to exactly equal one:

1 =
2

3
√

1−Ωm,0
ln

√1−Ωm,0

Ωm,0
+

√
1 +

1−Ωm,0

Ωm,0

 (5.75)

24



Rewriting the last term:

1 =
2

3
√

1−Ωm,0
ln

√1−Ωm,0

Ωm,0
+

√
1

Ωm,0

 =
2

3
√

1−Ωm,0
ln

[
1 +

√
1−Ωm,0√
Ωm,0

]
(5.76)

Using the hyperbolic secant identity of arcsech x = ln
(

1+
√

1−x2

x

)
, we have:

1 =
2

3
√

1−Ωm,0
arcsech(

√
Ωm,0) (5.77)

Or:
3
√

1−Ωm,0

2
= arcsech(

√
Ωm,0) (5.78)

This equation can now be solved numerically for Ωm,0 to find:

Ωm,0 ≈ 0.263 (5.79)

5.10 Amounts in the Benchmark model

In the Benchmark model, we have (from Ryden Table 5.2) that:

Ωm,0 = 0.31, Ωγ,0 = 5.35× 10−5, Ωbary,0 = 0.048 (5.80)

We that Ω = ε(t)
εc(t)

where εC is the critical density, which is currently εc,07.8× 10−10J m−3 (up to uncer-
tainty). Therefore obtaining the energy density for photons in the benchmark model, we have:

εγ,0 = εc,0Ωγ,0 = 4.17× 10−14J m−3 (5.81)

It will be more convenient to solve for the mass density for the matter and baryons:

ρm,0 = εc,0Ωγ,0/c2 = 2.69× 10−27kg m−3, ρbary,0 = εc,0Ωbary,0/c2 = 4.16× 10−28J m−3 (5.82)

In addition, in the Benchmark model we have a finite horizon distance (Ryden Eq. 5.115):

dhor(t0) = 14000Mpc = 4.33× 1026m. (5.83)

Therefore the volume of the universe within the horizon distance is:

Vhor(t0) =
4
3

πdhor(t0)
3 = 3.39× 1080m3 (5.84)

Now, solving for the total mass of all matter within our horizon, we have:

Mm = Vhor(t0)ρm,0 = 9.12× 1053kg (5.85)

Next, solving for the total amount of energy of photons within the horizon distance, we have:

Ephotons = Vhor(t0)εγ,0 = 1.41× 1067J (5.86)

Finally, we solve for the number of baryons in the universe. This will be the total mass of baryons within
the universe divided by the mean mass per Baryon, which we take to be the mass of a proton mp. Therefore
the total number of baryons within the horizon can be solved for as:

Nbary = Vhor(t0)ρbary,0/mp = 8.45× 1079baryons (5.87)

25



Time and Scale Factor for Matter-Only Universe

Let’s make sure we can work through the mathematical steps for a closed matter-only (i.e. ‘Matter
+ Curvature’) universe. Try to do this without looking up the book for every step! Start by writing
the Friedmann equation for this case, using a rather than 1 + z, and with the single parameter Ω0
(where this implicitly means ‘matter’, here). Thus write an integral expression for t. It may not look
trivial to solve this for t(a) or a(t), but you should be able to show that the following parametric
solution works [a ‘parametric solution’ means that you can write doesn y(φ) and x(φ), both in
terms of a parameter φ, even if an explicit expression for y(x) is hard or impossible]:

a(θ) =
1
2

Ω0

Ω0 − 1
(1− cos θ) (5.88)

t(θ) =
1

2H0

Ω0

(Ω0 − 1)3/2 (θ − sin θ). (5.89)

To be clear: you are being asked to show that in the appropriate Friedmann equation, the LHS
is equal to the RHS if you assume the above solution (or you could solve the integral, but that’s
harder!). [You might have to do a bit of rearranging of trig functions - but perservere, because it
works!] Lastly, by letting θ run from 0 to 2π, sketch a vs. t for this model.

The Friedmann equation in this case reads:

H2

H2
0
=

Ω0

a3 +
1−Ω0

a2 (5.90)

Now, since H = ȧ
a , we can rearrange this to obtain that:

ȧ2

H2
0
= (

Ω0

a
+ 1−Ω0) (5.91)

Or in other words:
da
dt

= H0

√
Ω0

a
+ 1−Ω0 (5.92)

So solving for t we integrate:

H0t =
∫ t

0
dt′ =

∫ a

0

da′√
Ω0
a + 1−Ω0

. (5.93)

Now, we verify that (5.91) holds for the parametric solution given by (5.88) and (5.89). First, we determine
what ȧ is given this solution. By the chain rule, we have that:

ȧ =
da
dt

=
da
dθ

dθ

dt
=

da
dθ

θ̇ (5.94)

Solving for da
dθ by differentiating (5.88) we have:

da
dθ

=
1
2

Ω0

Ω0 − 1
sin θ. (5.95)

And solving for θ̇ by implicitly differentiating (5.89) we have:

1 =
1

2H0

Ω0

(Ω0 − 1)3/2 (θ̇ − θ̇ cos θ) =⇒ θ̇ =
2H0(Ω0 − 1)3/2

Ω0(1− cos θ)
(5.96)
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Hence, we find that:

ȧ =
H0(Ω0 − 1)1/2

1− cos θ
sin θ (5.97)

Evaluating the LHS of (5.91), we have:

ȧ2

H2
0
=

Ω0 − 1
(1− cos θ)2 sin2 θ (5.98)

Evaluating the RHS of (5.91), we have:

Ω0

a
+ 1−Ω0 = (

Ω0
1
2

Ω0
Ω1−1 (1− cos θ)

+ 1−Ω0) (5.99)

Multiplying the first term by 1 = 1−cos θ
1−cos θ and the second term by 1 =

(
1−cos θ
1−cos θ

)2
we obtain:

Ω0

a
+ 1−Ω0 =

2(Ω0 − 1)
(1− cos θ)2 (1− cos θ)− Ω0 − 1

(1− cos θ)2 (1− cos θ)2 (5.100)

Which after some expanding and cancellation, becomes:

Ω0

a
+ 1−Ω0 =

Ω0 − 1
(1− cos θ)2 (1− cos2 θ) (5.101)

Using the famous trig identity sin2 θ + cos2 θ = 1, we can identify (5.98) with (5.101) to conclude that this
is indeed the correct solution.

For the plot, we observe that the given parametric equations are exactly of those for a cycloid, so the
curve of t(θ) vs. a(θ) will be exactly that it is displayed below.
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Figure 5: Plot of t(θ) vs. a(θ) for θ ∈ [0, 2π). Ω0 = 2 and H0 = 1 were chosen for convenience of plotting.
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6 Measuring Cosmological Parameters

6.1 Magnitudes and Polar Bear Feet

First solving for the bolometric absolute magnitude of the bear’s foot, we have:

MB = −2.5 log10

(
L
Lx

)
= −2.5 log10

(
10W

78.7L�

)
= −2.5 log10

(
10W

78.7 · 3.82× 1026W

)
(6.1)

Numerically, this is:
MB = 68.7 (6.2)

Now for the apparent magnitude at luminosity distance of dL = 0.5km. We first calculate the flux of the
polar bear foot to be

fB
L

4πd2
L
=

10W
4π(500m)2 = 3.18× 10−6Wm−2 (6.3)

So therefore calculating the apparent magnitude, we have:

mB = −2.5 log10

(
fB
fx

)
= −2.5 log10

(
3.18× 10−6Wm−2

2.53× 10−8Wm−2

)
(6.4)

Which numerically we calculate to be:
mB = −5.25 (6.5)

If we have a bolometer that can detect the the bear’s foot at a maximum luminosity distance of dL = 0.5km,
then fB (the flux of the bear foot at this distance) defines the maximum flux fmax that is capable of being
detected, so solving for the maximum luminosity distance it could detect the sun, we have:

dmax, sun =

√
L�

4π fmax
= 3.09× 1015m (6.6)

Repeating this calculation for the supernova, we have:

dmax, supernova =

√
Lsupernova

4π fmax
=

√
4× 109L�

4π fmax
= 1.96× 1020m (6.7)

6.2 Angular Size and Polar Bear Feet

We know that:
dA =

l
δθ

(6.8)

so given l = 0.16m and dA = 0.5km, we can rearrange to solve for the angular size to be:

δθ =
l

dA
=

0.16m
500m

= 3.2× 10−4rad (6.9)

The critical redshift of the benchmark model is zC = 1.6, where dA,max = 5.31× 1025m, so:

δθmax =
l

dA,max
= 3× 10−27rad (6.10)
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6.3 Maximizing dA in a flat, single-component universe

In a spatially flat, single-component universe, the scale factor is given as (Ryden Eq. 5.39):

a(t) =
(

t
t0

)2/(3+3w)

(6.11)

So we can integrate to obtain the proper distance (Ryden Eq. 5.49):

dp(t0) = c
∫ t0

te

dt
a(t)

= c
∫ t0

te

(
t
t0

)−2/(3+3w)

dt = ct0
3(1 + w)

1 + 3w

[
1− (te/t0)

(1+3w)/(3+3w)
]

(6.12)

Furthermore, using that 1 + z = a(t0)
a(te)

= (t0/te)2/(3+3w) (Ryden Eq. 5.47) to find te, we obtain (Ryden Eq.
5.48):

te =
t0

(1 + z)(3+3w)/2
=

2
3(1 + w)H0

1
(1 + z)3(1+w)/2

(6.13)

Substituting this into (??) we find the current proper distance in terms of z:

dp(t0) =
c

H0

2
1 + 3w

[
1− (1 + z)−(1+3w)/2

]
(6.14)

Further, in the case of a spatially flat universe, we can use Ryden Eq. 6.37 to obtain the current angular
and luminosity distances:

dA(t0) =
dp(t0)

1 + z
=

c
H0

2
1 + 3w

[
1− (1 + z)−(1+3w)/2

] 1
1 + z

(6.15)

dL(t0) = dp(t0)(1 + z) =
c

H0

2
1 + 3w

[
1− (1 + z)−(1+3w)/2

]
(1 + z) (6.16)

To solve for the critical redshift zC where dA has the maximum value, we take the derivative of (6.15) with
respect to z and set it to 0:

ddA
dz

=
c

H0

2
1 + 3w

(
−(1 + z)−2 +

3 + 3w
2

(1 + z)−(5+3w)/2
)
= 0 (6.17)

The terms in the brackets must vanish, so:

− (1 + z)−2 +
3 + 3w

2
(1 + z)−(5+3w)/2 = 0 (6.18)

Cancelling out a factor of (1 + z)−2, we get:

3 + 3w
2

(1 + z)−(1+3w)/2 = 1 (6.19)

Now rearranging to solve for zc, we find:

zc =

(
2

3 + 3w

)(1+3w)/2
− 1 (6.20)
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We can now substitute this back into (6.15) to find what the maximum redshift is:

dA,max =
c

H0

2
1 + 3w

[
1− (1 + zc)

−(1+3w)/2
] 1

1 + zc

=
c

H0

2
1 + 3w

1−

( 2
3 + 3w

)(1+3w)/2
−(1+3w)/2

( 2
3 + 3w

)−(1+3w)/2
(6.21)

So we conclude:

dA,max =
c

H0

2
1 + 3w

1−
(

2
3 + 3w

)−(1+3w)2/4
( 2

3 + 3w

)−(1+3w)/2
(6.22)

6.4 Difference between relative and absolute magnitude

At small redshift (z� 1), the luminosity distance is approximately (Ryden Eq. 6.50, also seen in class):

dL ≈
c

H0
z
(

1 +
1− q0

2
z
)

. (6.23)

By Ryden Eq 6.49, the distance modulus is given by:

m−M = 5 log10

(
dL

1Mpc

)
+ 25. (6.24)

Substituting the first equation into the second, we get:

m−M ≈ 5 log10

 c
H0

z
(

1 + 1−q0
2 z

)
1Mpc

+ 25 (6.25)

From here on out, we will supress the 1Mpc in the denominator for clarity:

m−M ≈ 5 log10

(
c

H0
z
(

1 +
1− q0

2
z
))

+ 25 (6.26)

Using that log(ab) = log(a) + log(b) we get:

m−M ≈ 5 log10

(
c

H0
z
)
+ 5 log10

(
1 +

1− q0

2
z
)
+ 25 (6.27)

Using the approximation log10(1 + x) ≈ 0.4343 ln(1 + x) ≈ 0.4343x for small x on the second term, we
get:

m−M ≈ 5 log10

(
c

H0
z
)
+ 5(0.4343)(

1− q0

2
z) + 25 (6.28)

Simplifying the numerical terms in the second term, and multiplying by one in the argument of the first
term, we get:

m−M ≈ 5 log10

(
c

H0
z

68km s−1 Mpc−1

68km s−1 Mpc−1

)
+ 1.086(1− q0)z + 25 (6.29)
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Further application of the log(ab) = log(a) + log(b) rule yields:

m−M ≈ 5 log10

(
c

68km s−1 Mpc−1

)
+ 5 log10 z + 5 log10

(
68km s−1 Mpc−1

H0

)
+ 1.086(1− q0)z + 25

(6.30)
Applying the log

(
1
x

)
= − log(x) rule we get:

m−M ≈ 5 log10

(
c

68km s−1 Mpc−1

)
+ 5 log10 z− 5 log10

(
H0

68km s−1 Mpc−1

)
+ 1.086(1− q0)z + 25

(6.31)
Before we evaluate the first term numerically, we recall the supressed Mpc, so:

m−M ≈ 5 log10

(
300000km s−1

68km s−1

)
+ 5 log10 z− 5 log10

(
H0

68km s−1 Mpc−1

)
+ 1.086(1− q0)z + 25 (6.32)

We use a calculator to check the value of the first term:

m−M ≈ 5(3.6446) + 5 log10 z− 5 log10

(
H0

68km s−1 Mpc−1

)
+ 1.086(1− q0)z + 25 (6.33)

Grouping the numerical terms:

m−M ≈ 43.23− 5 log10

(
H0

68km s−1 Mpc−1

)
+ 5 log10 z + 1.086(1− q0)z . (6.34)

6.5 Surface Brightness

First, we recall the angular diameter distance dA to a standard yardstick to be (Ryden Eq. 6.35):

dA ≡
l

δθ
=

Sκ(r)
1 + z

(6.35)

Rearranging, we find:

δθ =
l(1 + z)

Sκ(r)
(6.36)

The observed flux is related to the luminosity L and the observed flux f as (Ryden 6.27):

f =
L

4πSκ(r)2(1 + z)2 (6.37)

So, Σ as a function of redshift is:

Σ ∝
f

(δθ)2 =

L
4πSκ(r)2(1+z)2(

l(1+z)
Sκ(r)

)2 =
L

l24π

1
(1 + z)4 ∝

1
(1 + z)4 (6.38)

So:

Σ =
Σ0

(1 + z)4 (6.39)

for some constant Σ0. Since the surface brightness Σ only depends on the redshift and not cosmological
parameters, we cannot use it to measure a cosmological parameter q0 .
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6.6 Quasar Light Flux

The variation time scale at the time light was emitted is related to the variation timescale when it was
observed via:

δt0 = (1 + z)δte (6.40)

So for redshift z = 5.0 and δt0 of 3 days, the variation time scale when emitted is:

δte = 0.5days (6.41)

Rmax for the observed quasar is:

Rmax = c(δte) = 6.48× 1012m (6.42)

From Ryden Figure 6.4, a standard yardstick with redshift z = 5.0 has angular distance dA ≈ 0.3c/H0 in
the Benchmark model, so the angular size is given by:

δθ =
Rmax

dA
=

6.48× 1012m
0.3c/H0

= 1.58× 10−44rad (6.43)

6.7 Proper Area of a sphere

The FRW metric (Ryden Eq. 6.22) is:

ds2 = −c2dt2 + a(t)2[dr2 + Sk(r)2dΩ2] (6.44)

Expanding out dΩ, this becomes:

ds2 = −c2dt2 + a(t)2[dr2 + Sk(r)2dθ2 + Sκ(r)2 sin2 θdφ2] (6.45)

For a space described by this metric, a surface element dA on a sphere of radius r will be given by:

dA = (Sκ(r)dθ)(Sκ(r) sin θdφ) = Sκ(r)2 sin θdθdφ (6.46)

Integrating this surface area to find the surface area of this sphere, we have:

A =
∫∫

dA =
∫∫

Sκ(r)2 sin θdθdφ = Sκ(r)2
∫ π

0
sin θdθ

∫ 2π

0
dφ = Sκ(r)2(2)(2π) = 4πSκ(r)2 (6.47)

Therefore setting r to be the proper radius r = dp(t0), we obtain:

Ap(t0) = 4πSκ(r)2 . (6.48)

6.8 Total Intensity of Standard Candles

The relation between the observed flux f and the Luminosity L of a distant light source is given by:

f =
L

4πSκ(r)2(1 + z)2 (6.49)

Since we live in a flat universe, Sκ(r) = r and so:

f =
L

4πr2(1 + z)2 (6.50)
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In a single-component universe, the proper distance r = dp(t0) for w 6= −1/3 is given by (Ryden Eq 5.50):

r = dp(t0) =
c

H0

2
1 + 3w

[
1− (1 + z)−(1+3w)/2

]
(6.51)

So subsituting this into (6.50) we have:

f (z) =
L

4π

(
c

H0
2

1+3w

[
1− (1 + z)−(1+3w)/2

])2
(1 + z)2

(6.52)

Which we can rewrite as:

f (z) =
L(1 + 3w)2

16π(c/H0)2
1

(1 + z)2

[
1− (1 + z)−(1+3w)/2

]−2
(6.53)

which was the desired expression. When w = −1/3, the scale factor in a spatially flat, single component
universe is given by:

a(t) =
(

t
t0

)2/(3+3w)

=

(
t
t0

)2/(3−1)
=

t
t0

(6.54)

Therefore, the Hubble constant is given by:

H0 =
ȧ
a

∣∣∣∣
t=t0

=
1
t0
t0
t0

=
1
t0

(6.55)

The redshift is given by:

1 + z =

(
t0

te

)2/(3+3w)

=
t0

te
(6.56)

Solving for the proper distance r = dp(t0) in this universe, we have:

r = dp(t0) = c
∫ t0

te

dt
a(t)

= ct0

∫ t0

te

dt
t

= ct0 ln
(

t0

te

)
=

c
H0

ln(1 + z) (6.57)

Therefore the observed flux in this universe is given by:

f (z) =
L

4π(c/H0)2 ln2(1 + z)
1

(1 + z)2 (6.58)

The number of stars located in the range r to r + dr in the sky per steradian will be given by:

N(r) = n0r2dr (6.59)

So the number of stars in the range z to z + dz per steradian is given by:

N(z) = n0r2 d
dz

(
c

H0

2
1 + 3w

[
1− (1 + z)−(1+3w)/2

])
(6.60)

Taking the derivative:

N(z) = n0r2
(

c
H0

(1 + z)−(3+3w)/2
)

dz (6.61)
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So, finding the intensity from standard candles in the range z to z + dz, we multiply the earlier result for
f (z) with the above result for N(z):

dJ(z) = f (z)N(z) =
L

4πr2(1 + z)2 n0r2
(

c
H0

(1 + z)−(3+3w)/2
)

dz (6.62)

Which after cancelling terms:

dJ(z) =
n0L(c/H0)

4π
(1 + z)−(7+3w)/2dz (6.63)

which is the desired result. To find the total intensity J, we integrate over all redshifts:

J =
∫ ∞

0
dJ(z) =

∫ ∞

0

n0L(c/H0)

4π
(1 + z)−(7+3w)/2dz =

n0L(c/H0)

4π

−2
(1 + 3w)

(1 + z)−(5+3w)/2

∣∣∣∣∣
∞

0

(6.64)

This gives us the result:

J =

{
n0L(c/H0)

4π
1+3w

2 w > − 5
3

∞ w < − 5
3

(6.65)

To obtain the w = − 1
3 result, we would have to repeat the analysis using (6.58), but we leave this as an

exercise.
The result above tells us that the total intensity we have in a universe with w < − 5

3 is infinite! On
some level this makes sense, as the horizon distance is infinite. However, in this universe, we claim the
apparently paradoxical result that the brightness of the night sky is still finite. Why? Because the above
calculation assumes that we see light flux from every single standard candle in the universe; this is simply
NOT the case. There will be standard candles that block the sight of other standard candles to ours, so we
simply do not see the light from every light source in the universe (and hence the above result is actually
misleading, as it does not take into account the fact that light sources block other light sources). The
maximum possible brightness we could have is if stars paved the sky (i.e. every sightline was blocked
eventually by a star). In this scenario, we can repeat the calculation as done in Chapter 2 of Ryden. If a
standard candle of radius R∗ is at a distance r � R∗, its angular area in steradians is given by:

Ω =
πR2
∗

4πr2(1 + z)2 =
R2
∗

4r2(1 + z)2 (6.66)

and its measured flux will be:
f =

L∗
4πr2(1 + z)2 (6.67)

so the surface brightness of the star, in watts per square meter is:

Σ∗ =
f

Ω
=

L∗
πR2∗

(6.68)

which also gives the surface brightness of the paved sky, which while large, is most certainly finite!

6.9 Expansion Switch

The acceleration equation can be written as:

− ä
aH2 =

1
2

N

∑
i=1

Ωi(1 + 3wi) (6.69)
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where the sum is taken over the different components of the universe. In the Benchmark model, we have
matter (w = 0), radiation (w = 1

3 ), and the cosmological constant (w = −1), and so:

− ä
aH2 =

1
2

Ωm + Ωr −ΩΛ (6.70)

We have that Ωm =
Ωm,0

a3 , Ωr =
Ωr,0
a4 , and ΩΛ = ΩΛ,0, so:

− ä
aH2 =

1
2

Ωm,0

a3 +
Ωr,0

a4 −ΩΛ,0 (6.71)

Setting ä to find the scale factor a for which the expansion of the universe switched from slowing down
to speeding up, we have:

0 =
1
2

Ωm,0

a3 +
Ωr,0

a4 −ΩΛ,0 (6.72)

Multiplying by a4 we get:

0 =
1
2

Ωm,0a + Ωr,0 −ΩΛ,0a4 (6.73)

In the Benchmark model, Ωm,0 = 0.31, Ωr,0 = 9.0× 10−5, and ΩΛ,0 ≈ 0.69. The radiation term can be
neglected to good approximation, yielding:

0 ≈ a(
1
2

Ωm,0 −ΩΛ,0a3) (6.74)

So solving for the positive root of this equation, we get:

a = 3

√
Ωm,0

2ΩΛ,0
≈ 0.608 (6.75)

Which we note is less than the scale factor at matter-lambda equality of amΛ = 0.77.
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7 Dark Matter

7.1 Dark Matter Candidates

Taking the radius of the halo to be Rhalo ≈ 75kpc and the mass of our galaxy to be Mgal ≈ 9.6× 1011M�, we
approximate that roughly all of the mass comes from dark matter, hence giving us N = Mgal/10−8M� =

9.6× 1019 black holes. The volume of our galaxy is given by:

V =
4
3

πR3
halo = 5.2× 1064m3 (7.1)

The number density of these black holes in our galaxy is therefore given by:

nBH =
N
V

=
9.6× 1019

5.2× 1064m3 ≈ 1.85× 10−42m−3 (7.2)

In other words, we can find one black hole per:

VBH =
1

nBH
= 5.4× 1041m3 (7.3)

So the nearest black hole would (approximately) be a distance of:

dBH ≈ 3
√

VBH = 8.1× 1013m (7.4)

away. The mean free path before a black hole comes into a distance 1AU with our sun is given by:

λBH =
1

nBHσ
=

1
nBHπ(1AU)2 = 7.6× 1018m (7.5)

So combining this with the solar galactic orbital speed of 235km s−1, we find that the frequency of such
black hole pass-bys are given by:

fBH ≈
v

λBH
= 3.1× 10−14Hz (7.6)

Now we consider MACHOs with mass 10−3M�. The only difference from the previous part is that all
that occurs is N gets scaled by a factor of 10−8M�/10−3M� = 10−5. This leads to:

dMACHO ≈ 3.8× 1015m (7.7)

fMACHO ≈ 3.1× 10−9Hz (7.8)

7.2 Draco Galaxy

If we assume that the velocity dispersion is isotropic, then the 3D RMS velocity is equal to the three times
the 1D mean square velocity σr, so:

〈v2〉 = 3(10.5km s−1)2 = 3.31× 108m s−1 (7.9)

Using the steady state virial theorem, we know that:

1
2

M〈v2〉 = α

2
GM2

rh
(7.10)
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Which we can rearrange for M:

M =
〈v2〉rh

αG
(7.11)

Assuming that α = 0.45, we can calculate the mass of the Draco galaxy to be:

M =
3.31× 108m s−1 · 120pc

0.45 ∗ 6.67× 10−11m3 kg−1 s−2 == 3.89× 1033kg = 2.04× 107M� (7.12)

The mass to light ratio is then:

M
L

=
2.04× 107M�
1.8× 105L�

≈ 113
M�
L�

(7.13)

Some possible errors: The isotropy assumption of the velocity dispersion (on a local scale, the galaxy is
certainly not isotropic). Assuming that the galaxy was in a steady state. Assuming α = 0.45.

7.3 Gravitational Lensing of Earth

The local curvature of spacetime causes the photon to be deflected by angle:

αEarth =
4GM
c2R

= 2.8× 10−9rad (7.14)

For a white dwarf and a neutron star, we get:

αdwarf = 4.0× 10−4rad (7.15)

αneut = 0.74rad (7.16)

7.4 Halo Mass Density

For a spherically symmetric mass distribution, we can model the density as:

ρ(r) =
1

4πr2
dM(r)

dr
(7.17)

Since M(r) = v2r
G ,

dM(r)
dr

= v2

G and so the above becomes:

ρ(r) =
v2

4Gπr2 (7.18)

Note that we have assumed here that v is approximately constant with r. Indeed, we find that v(r) ≈
230km s−1 out to r = 35kpc for our galaxy, so we are justified as treating it as a constant in our derivation.
Putting in this value for v and G, we get:

ρ(r) =
1
r2 6.3× 1019kg m−1 =

1
r2 9.78× 1011M�Mpc (7.19)

If we look at the mass density of the cosmological constant (assuming it to be uniform), we have:

ρλ = ΩΛρcrit = 0.7 · 1.28× 1011M�Mpc−3 ≈ 1011M�Mpc−3 (7.20)

So within our galactic halo (which only extends to ∼ 75kpc), the mass density from the dark matter halo
is evidently is much larger than the cosmological constant; it therefore shouldn’t significaly affect thae
dynamics of our galaxy’s halo.
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7.5 Cluster Collisions

The number density of galaxies in this half-mass radius is:

n =
N
V

=
N

4
3 πr3

h

= 70.7Mpc−3 (7.21)

If the typical cross sectional area is Σ ≈ 10−3Mpc2, then the mean free path of the Coma cluster before it
hits another galaxy is:

λ =
1

Σn
=

1
(10−3Mpc2)(70.7Mpc−3)

= 14.1Mpc (7.22)

If the velocity dispersion of the Coma cluster is σ ≈ 880km s−1, assuming isotropy we can obtain the 3D
RMS velocity to be:

〈v2〉 = 3(880km s−1)2 = 2.32× 1012m2s−2 (7.23)

Then approximating 〈v〉 ≈
√
〈v2〉, we get:

〈v〉 ≈ 1.52× 106m s−1 = 4.9× 10−17Mpc s−1 (7.24)

Hence the average time between collisions is:

t =
λ

〈v〉 =
14.1Mpc

4.9× 10−17Mpc s−1 = 2.9× 1017s = 9.2Gyr (7.25)

The Hubble time is H−1
0 ≈ 14Gyr, so t is less than that, but on the same order of magnitude.

7.6 Solar vs. CMB neutrinos

Assuming isotropic emission, neutrinos from the sun (by the time they reach Earth) are spread out over
area:

Ashell = 4πR2 (7.26)

where R = 1AU. Letting Ahuman be the cross-sectional area of a human being, the approximate number
of solar photons that hit us per second is:

rν = rsun
Ahuman
Ashell

(7.27)

Modelling the human body as a tube of length Lhuman, the time that a given photon will spend inside the
body is:

tν =
Lhuman

c
(7.28)

So the number of neutrinos inside of us at any given moment will be:

N = rνtν = rsun
Ahuman
Ashell

Lhuman
c

=
rsunVhuman

4πR2c
(7.29)

Approximating Vhuman ∼ 0.1m3, and using R = 1AU = 1.5 × 1011m, c = 3.0 × 108m s−1 and rsun =
2× 1038neutrinos s−1 (given in the question) we find:

Nsun = 2.4× 105neutrinos (7.30)
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Which gives us our result for the number of solar neutrinos in our body at any given moment. The
number density of neutrinos from the cosmic neutrino background is 3/11 times the number density of
CMB photons (per neutrino flavour), so accounting for the 3 flavours, we get:

nν = 3
(

3
11

)
nγ =

9
11

(4.108× 108m−3) = 3.36× 108m−3 (7.31)

So taking our volume to be roughly V =∼ 0.1m3, we have approximately:

NCNB = 3.36× 107neutrinos (7.32)

cosmic neutrino background neutrinos inside of us at any moment. Hence there are around 100 times
the amount of cosmic neutrino background neutrinos inside of us as there are solar.
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8 The Cosmic Microwave Background

8.1 Baryon-to-Photon Ratio and Recombination Temperature

We recall the fractional ionization as solved for using the Saha equation:

X =
−1 +

√
1 + 4S

2S
(8.1)

where S is given by:

S(T, η) = 3.84η

(
kT

mec2

)3/2
exp

(
Q
kT

)
(8.2)

where T is the temperature, η is the baryon-to-photon ratio, and Q is the ionization energy. We take
k = 8.62× 10−5eV K−1, Q = 13.6eV, mec2 = 511000eV. For η = 4× 10−10 and for η = 8× 10−10, we get:
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Figure 6: Plots of fractional ionization X as a function of temperature T (in Kelvin) for baryon-to-photon
ratios η = 4× 10−10 and η = 8× 10−10.

Taking Trec to be when X = 1/2, for η = 4× 10−10, we have Trec = 3720K , and for η = 8× 10−10,

we have Trec = 3784K . Doubling the photon-to-baryon ratio has a small effect (only a relative change of
about 1.7%).

8.2 An ionizing photon per baryon

From Problem 2.5, we recall:
n(h f > E0)

nγ
≈ 0.42

(
E0

kT

)2
exp

(
− E0

kT

)
(8.3)

So setting n(h f > E0) = nbary to have 1 ionizing photon per baryon, and letting E0 = Q, we find:

η =
nbary

nγ
=

n(h f > Q)

nγ
= 0.42

(
Q
kT

)2
exp

(
− Q

kT

)
(8.4)

With Q = 13.6eV and η = 6.1× 10−10, we can numerically solve the above relation to find:

T = 5823K (8.5)

which is larger than the recombination temperature.
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8.3 Completely Helium at Recombination

We start with Ryden Eq. 8.28:

nH
npne

=
gH

gpgE

(
mH

mpme

)3/2 (
kT

2πh̄2

)−3/2
exp

(
[mp + me −mH ]c2

kT

)
=

gH
gpgE

(
mH

mpme

)3/2 (
kT

2πh̄2

)−3/2
exp

(
QH
kT

)
(8.6)

The analogous relation for the Helium atom is:

nHe
nenHe+

=
gHe

gegHe+

(
mHe

memHe+

)3/2 ( kT
2πh̄2

)−3/2
exp

(
QHe
kT

)
(8.7)

Using that the statistical factor is gHe/gegHe+ = 1/4 and that mHe ∼ mHe+ ∼ 4mp, this becomes:

nHe
nenHe+

=
1
4

(
mekT
2πh̄2

)−3/2
exp

(
QHe
kT

)
(8.8)

Defining X =
nHe+

nHe++nHe
, we have that:

nHe =
1− X

X
nHe+ (8.9)

and from charge neutrality, nHe+ = ne, so:

1− X
X

= nHe+
1
4

(
mekT
2πh̄2

)−3/2
exp

(
QHe
kT

)
(8.10)

If the Baryonic portion of the universe consists entirely of Helium-4 at the time of recombination, we then
have that:

η =
4nHe+

Xnγ
(8.11)

Noting the 4 as there are four baryons per Helium nucleus. Therefore using the blackbody number density
of photons (Ryden Eq. 8.23):

nHe+ = 0.2436
X
4

η

(
kT
h̄c

)3
(8.12)

And plugging this back into (8.10), we have:

1− X
X2 =

3.84
16

η

(
kT

mec2

)3/2
exp

(
QHe
kT

)
(8.13)

We now solve for the time of recombination. Setting X = 1/2, we have:

2 =
3.84
16

η

(
kTrec

mec2

)3/2
exp

(
QHe
kTrec

)
(8.14)

We now take η = 6 × 10−10 and QHe = 24.6eV, and substitute in the standard values for the other
constants. We can then umerically solve for Trec to get:

Trec = 6490K (8.15)
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8.4 Distances to Last Scattering

From Fig 5.9, we can see that at zls = 1090, the propert distance approaches its limiting value of 3.20c/H0,
so:

dp, ls = 3.20
c

H0
= 14000Mpc . (8.16)

Finding the luminosity distance is then just multiplying the above by a factor of (1 + zls):

dL, ls = (1 + zls)dp, ls = 1091dp, ls = 15274Gpc . (8.17)
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9 Nucleosynthesis and the Early Universe

9.1 Mass fraction of Helium with faster decay

After the proton/neutron freezeout, the ratio of neutrons to protons is approximately:

f0 =
nn,0

np,0
≈ 1

5
(9.1)

Suppose the time delay until nucleosynthesis is t. In this time delay, the neutrons decay to exp(−t/τn) of
their original amount, and the protons increase by the amount the neutrons decay (as the neutrons decay
into a proton and electron). Therefore, the neutron-to-proton to ratio as a function of delay time is:

f (t) =
nn(t)
np(t)

=
nn,0 exp(−t/τn)

np,0 + nn,0(1− exp(−t/τn))
=

nn,0
np,0

exp(−t/τn)

1 + nn,0
np,0

(1− exp(−t/τn))
=

f0 exp(−t/τn)

1 + f0(1− exp(−t/τn))

(9.2)
The time delay from freezeout until nucleosynthesis is 200s, and we suppose that the neutron decay time
is reduced to τn = 88s, so we can compute the fraction f (200) at the time of nucleosynthesis to be:

f (200) = 0.017 (9.3)

If we assume that all available neutrons are incorporated into Helium, we get the maximal value for the
primordial Helium fraction (as derived in problem 9.4) so:

Ymax =
2 f (200)

1 + f (200)
= 0.033 (9.4)

9.2 Mass fraction of Helium with different rest energies

Note that technically, this new difference in the mass fraction would likely cause some difference in the
binding energy of the deuteron. This would affect the temperature Tnuc of nucleosynthesis, as:

1 ≈ 6.5η

(
kTnuc

mnc2

)3/2
exp

(
BD

kTnuc

)
(9.5)

and therefore the nucleosynthsis time tnuc would also change. For simplicity’s sake, let us assume that BD
remains unchanged. However, the difference in the mass energy will affect the neutron-to-proton ratio at
freezeout, where we find:

f0 =
nn,0

np,0
= exp

(
− Qn

kTfreeze

)
(9.6)

so with Qn = 0.129MeV instead of 1.29MeV and kTfreeze = 0.8MeV, we find:

f0 = 0.85. (9.7)

So, using (9.2) with f0 = 0.85, t = 200s, τn = 880s, we find:

f (200) = 0.58 (9.8)

therefore the maximum possible mass fraction is given by:

Ymax =
2 f (200)

1 + f (200)
= 0.734 (9.9)
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9.3 Helium Increase in Our Galaxy

With L ≈ 3× 1010L�, L� = 3.83× 1026W, and ∆T = 10Gyr, the energy emitted in the form of starlight is:

E = L∆T = 3.62× 1054J (9.10)

Assuming that the fusion of Hydrogen into Helium-4 is the only significant energy source, we can find
the number of Helium nuclei produced via simple division:

NHe =
E

Eper fusion
=

3.62× 1054J
28.4MeV

= 7.17× 1065 (9.11)

The primordial Helium fraction was given by:

Yp =
ρHe,p

ρb,p
=

MHe,p

Mb,p
= 0.24 (9.12)

The mass of our galaxy is approximately conserved (there is a very insignificant amount that it decreases
by due to the radiation leaving the galaxy, which we neglect), so Mb,p is equal to the baryonic mass of our
galaxy today. Hence with Mb,p = Mb = 1011M� we have:

MHe,p = 0.24× 1011M� (9.13)

The current fraction is therefore given by:

Y =
MHe

Mb
=

MHe,p + NHemHe

Mb
(9.14)

so with mHe ≈ 4mp and our previous result for MHe,p, we obtain numerically:

Y = 0.26 (9.15)

So therefore the helium fraction has increased by:

∆Y = Y−Yp = 0.03 (9.16)

9.4 Maximum value for primordial Helium Fraction

By definition, we have:

Ymax =
ρHe

ρb
(9.17)

Further, assuming that all neutrons are contained in Helium (as we want the maximal primordial Helium
fraction), we have:

ρHe = 2ρn (9.18)
And the Baryonic density is given by:

ρb = ρn + ρp (9.19)
Where:

ρn = mnnn, ρp = mpnp (9.20)
So substituting these into (9.17) we have:

Ymax =
2ρn

ρn + ρp
=

2ρn/ρp

1 + ρn/ρp
=

2 nn
np

mn
mp

1 + nn
np

mn
mp

(9.21)

Defining f = nn
np

and making the approximation that mn
mp
≈ 1, we conclude:

Ymax ≈
2 f

1 + f
(9.22)
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9.5 Neutrino Detection

The cross-section for the interaction of a neutrino with a proton or neutron is:

σw ∼ 10−47m2
(

kT
1MeV

)2
. (9.23)

So for a typical CNB neutrino with Eν ∼ kTν ∼ 5× 10−4eV, we have:

σw ∼ 2.5× 10−66m2 (9.24)

Fe-56 has 26 protons, 26 electrons, and 30 neutrons per atom. It has a per-atom weight of:

M = 26mp + 26me + 30mn ≈ 56mp = 56× 1.67× 10−27kg = 9.34× 10−26kg (9.25)

So the atomic number density is:

na =
ρ

M
=

7900kg m−3

9.34× 10−26kg
= 8.5× 1028m−3 (9.26)

The number density of protons/electrons is therefore:

np = ne = 26na = 2.2× 1030m−3 (9.27)

and the number density of neutrons is therefore:

nn = 30na = 2.5× 1030m−3 (9.28)

The total number density of sub-atomic particles is therefore:

n ∼ np + ne + nn = 6.9× 1030m−3 (9.29)

though of course this is approximate; really all the subatomic particles are clustered in their respective
atoms. The mean free path of a CNB neutrino in this medium is given by:

λ =
1

nσw
= 5.8× 1034m (9.30)

Extremely large; neutrinos are very hard to detect!

Optical Depth of Reionized Material (9.5 in first ed.)

We know from ovbservations that the intergalatic medium is currently ionized. Thus, at some point
between trec and t0, the integalactic medium must have been reionized. In fact detailed measure-
ments of the CMB on large scales place constraints on the amount of reionization (but that isn’t
important for this question). Assume that the baryonic component of the Universe instantaneously
became completely reionized at some time t∗. For what value of t∗ does the optical depth of the
reionized material:

τ =
∫ t0

t∗
Γ(t)dt =

∫ t0

t∗
ne(t)σecdt (9.31)

equal one? For simplicity, assume that the Universe is spatially flat and matter-dominated, and
that the baryonic component of the universe is pure hydrogen. To what redshift z∗ does this alue
of t∗ correspond?
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As the baryon density scales as ∝ 1
a3 , we have that:

ne(t)σec =
ne,0σec

a3 (9.32)

Assuming that the baryonic component of the universe is pure hydrogen and that the universe is charge
neutral, we have:

ne,0 = nbary,0 (9.33)

For a flat, matter-dominated universe, we have scale factor (Ryden 5.5):

a(t) =
(

t
t0

)2/3
(9.34)

so we find:

ne(t)σec =
nbary,0σect2

0

t2 (9.35)

so carrying out the integral we have:

1 = τ =
∫ t∗

t0

nbary,0σect2
0

t2 dt = nbary,0σect2
0

(
1
t0
− 1

t∗

)
(9.36)

So rearranging for t∗ we have:

t∗ =
1

1
t0
− 1

nbary,0σect2
0

(9.37)

In a flat, matter-dominated universe, the age of the universe is given by:

t0 =
2

3H0
(9.38)

so we obtain:
t∗ =

1
3H0

2 −
9H2

0
4nbary,0σec

(9.39)

Therefore, taking H0 = 68km s−1 Mpc−1, nbary,0 = 0.25m−3, c = 3× 108m s−1, and σe = 6.65× 10−29m2,
we find:

t∗ = 4.2× 1014s = 13Myr (9.40)
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10 Inflation and the Very Early Universe

10.1 Upper limit on Primordial Density

Taking the hint, prior to inflation the Friedmann equation is dominated by the radiation and curvature
term, so:

H2

H2
0
=

Ωr,0

a4 +
1−Ωr,0

a2 (10.1)

Or writing H = ȧ
a :

ȧ2

H2
0
=

Ωr,0

a2 + 1−Ωr,0 (10.2)

We take our reference time to be at t = tp, so H0 = Hp and Ωr,0 = Ω(tp) and hence:

ȧ2

H2
p
=

Ω(tp)

a2 + 1−Ω(tp) (10.3)

We can write ȧ = da
dt and integrate both sides to obtain:

Hp

∫ t

0
dt =

∫ a

0

a′da√
Ω(tp) + (1−Ω(tp))a′2

(10.4)

Where we set a(t = 0) = 0. In order to perform the integral on the LHS, we make the substitution
u = Ω(tp) + (1−Ω(tp))a′2 which gives du = 2(1−Ω(tp))a′da′. It also changes the bouds of integration
to be from Ω(tp) to Ω(tp) + (1−Ω(tp))a2. We therefore obtain:

Hpt =
∫ Ω(tp)+(1−Ω(tp))a2

Ω(tp)

1
2(1−Ω(tp))

1√
u

du (10.5)

This integral can now be performed to obtain:

Hpt =
1

2(1−Ω(tp))

(
2
√

u
∣∣∣Ω(tp)+(1−Ω(tp))a2

Ω(tp)

)
=

1
1−Ω(tp)

(√
Ω(tp) + (1−Ω(tp))a2 −

√
Ω(tp)

)
(10.6)

We can now solve for a(t):

a(t) =

√√√√√√
[
(1−Ω(tp))Hpt +

√
Ω(tp)

]2
−Ω(tp)

(1−Ω(tp))
(10.7)

In order to find a maximum permissable value of Ω(tp), we want to see the big crunch exactly at the start
of the inflationary epoch at ti, so:

a(ti) =

√√√√√√
[
(1−Ω(tp))Hpti +

√
Ω(tp)

]2
−Ω(tp)

(1−Ω(tp))
= 0 (10.8)

From this we obtain:
(1−Ω(tp))Hpti +

√
Ω(tp) = ±

√
Ω(tp) (10.9)
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If ti = 0 we have that the LHS equals +
√

Ω(tp), but since we want ti > 0, we solve for the negative
solution. this yields:

Hpti =
−2
√

Ω(tp)

1−Ω(tp)
(10.10)

From the previous question, we know that H = 1
2t in a radiation-dominated universe, so Hp = 1

2tp
and so:

ti
2tp

=
2
√

Ω(tp)

Ω(tp)− 1
(10.11)

For conveninece, let us define α = ti
4tp

:

α =

√
Ω(tp)

Ω(tp)− 1
(10.12)

Rearranging, we find a quadratic equation in Ω(tp):

Ω(tp)
2 − (2 +

16t2
p

t2
i

)Ω(tp) + 1 = 0 (10.13)

This has solutions:

Ω(tp) =
(2 +

16t2
p

t2
i
)±

√
(2 +

16t2
p

t2
i
)2 − 4

2
(10.14)

Since Ω(tp) > 1, we reject the negative solution above. So, the maximum possible Ω(tp) is given by:

Ω(tp) =
(2 +

16t2
p

t2
i
) +

√
64t2

p

t2
i

+
256t4

p

t4
i

2
(10.15)

Since tp � ti, we can neglect all powers of tp
ti

in the above expression that are higher than linear order.
This yields:

Ω(tp) ≈ 1 + 4
tp

ti
(10.16)

For ti = 10−36s, we have:

Ω(tp) = 1 + 2× 10−7 (10.17)

For ti = 10−26s, we have:

Ω(tp) = 1 + 2× 10−17 (10.18)

10.2 Solving the Monopole Problem

If monopoles formed at the GUT time with one monopole per horizon of mass mM = mGUT , then the
energy density of these monopoles would be given by:

eM(tGUT) ≈
mMc2

(2ctGUT)
= 10106eV m−3 (10.19)
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where we take mMc2 ∼ EGUT ∼ 1012TeV and tGUT = 10−36s. Therefore the density parameter of the
monopoles at this time is given by:

ΩM(tGUT) =
εM(tGUT)

εc,0
≈ 1096 (10.20)

where we take εc,0 = 5× 109eV m−3. For a radiation-only universe, the scale factor goes as (Ryden Eq.
5.60):

a(t) =
(

t
t0

)1/2
(10.21)

So at the GUT time:

a(tGUT) =

(
tGUT

t0

)1/2
(10.22)

Taking t0 ∼ 13.8Gyr = 4.35× 1017s and tGUT as before, we find:

a(tGUT) = 1.5× 10−27. (10.23)

Since the magnetic monopole density parameter should scale as 1
a3 with time (like regular matter), if

inflation did not happen, the density of monopoles today would be:

ΩM(t0) = ΩM(tGUT)a(tGUT)
3 = 3.4× 1015 (10.24)

This is off from the observational limits by:

ΩM,0,observed

ΩM(t0)
=

10−6

3.4× 1015 = 2.9× 10−22. (10.25)

To account for this, we must have had N e-folds of inflation, leading the scale factor is actually eN larger
than what we calculated above. Hence:

2.9× 10−22 =
1

e3N (10.26)

which we can solve for N to obtain:
N ≈ 17 (10.27)

10.3 False Vacuum

The Universe dominated by the false vacuum has the same structure as one with dominated by a cosmo-
logical constant. In such a universe, the Hubble parameter s given by Ryden 5.72:

Hi =

(
8πGεΛ

3c2

)1/2
= 1.83× 10−18s−1 = 0.83H0 (10.28)

where we take H0 is the Hubble constant in our universe. We assume that at the false vacuum decay time
that the false vacuum decays into blackbody photons, so we can therefore use the blackbody radiation
temperature to solve for what the temperature of the Universe would be at this time:

T = 4

√
εΛ

α
= 29K (10.29)

To find the energy density of matter at this time, we first compute the scale factor at this time; this is given
by Ryden 5.73 to be:

a(t f ) = a(t0)e
Hi(t f−t0) = eHi(t f−t0) (10.30)
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where we take a(t0) = 1 by convention. So with Hi as above, t f = 50t0 and t0 = 13.7Gyr, we find:

a(t f ) = 6.7× 1016 (10.31)

So the energy density of matter at this time would be:

εm(t f ) = a(t f )
−3εm,0 = 5× 10−48MeV m−3 (10.32)

To find when the universe is again dominated by matter, we wish to find the time when:

εm = εr. (10.33)

Further, we know that:
εm(a) =

εm,0

a3 , εr(a) =
εr,0

a4 (10.34)

First solving for what εr,0 would be, we have:

εr,0 = εr(t f )a(t f )
4 = 6.7× 1070MeV m−3 (10.35)

Combining (10.33) and (10.34) we find:
εm,0

a3
rm

=
εr,0

a4
rm

(10.36)

Hence:
arm =

εr,0

εm,0
(10.37)

Further in a radiation dominated universe we know we have a(t) =
(

t
t0

)1/2
(Ryden Eq. 5.60), so:

trm = t0

(
εr,0

εm,0

)2

(10.38)

Numerically we obtain:

trm = 2.7× 10136Gyr (10.39)

Gamow’s CMB Prediction (10.3 in first ed.)

A fascinating bit of cosmological history is that of George Gamow’s prediction of the Cosmic
Microwave Background in 1948. (Unfortunately, his prediction was premature; by the time the
CMB was actually discovered in the 1960’s, his prediction had fallen into obscurity.) Let’s see if
you can reproduce Gamow’s line of argument. Gamow knew that nucleosynthesis must have taken
place at a temperature Tnuc ' 109 K, and that the age of the Universe is currently t0 ' 10Gyr.
Assume that the Universe is flat and contains only radiation. With these assumptions, what was
the energy density ε at the time of nucleosynthesis? What was the Hubble parameter H at the
time of nucleosynthesis? What was the time tnuc at which nucleosynthesis took place? What is the
current temperature T0 of the radiation filling the Universe today? If the Universe switched from
being radiation-dominated to being matter-dominated at a redshift zrm > 0, will this increase or
decrease T0 for fixed values of Tnuc and t0 ? Explain your answer.

If the Universe only contains radiation, the energy density is given by the black body energy density
formula:

εγ(T) = αT4 (10.40)
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So with α = 7.566× 10−16J m−3 K−4 and Tnuc = 109K we have:

εnuc = αT4
nuc = 7.566× 1020J m−3 (10.41)

Furthermore, Ryden Eq. 5.63 gives the energy density in a radiation-only universe as a function of time to
be:

ε(t) = 0.030
Ep

l3
p

(
t
tp

)−2

(10.42)

We can invert the above formula to find tnuc:

tnuc =

√
0.030

Ep

l3
p

tp√
ε(tnuc)

(10.43)

which numerically gives:
tnuc = 230s (10.44)

Next, in a radiation dominated universe, we have (from Ryden Eq. 5.60):

a(t) =
(

t
t0

)1/2
(10.45)

So the Hubble parameter is given by:

H =
ȧ
a
=

1
2t

(10.46)

So at nucleosynthesis:

Hnuc = 2.17× 10−3s−1 (10.47)

The energy density of radiation scales as 1
a4 , so we can use this to find the energy density of the universe

today:

εr,0 = εnuca4
nuc = εnuc

(
tnuc

t0

)2
(10.48)

so we can find the current temperature (which is still described by a black body) as:

αT4
0 = αT4

nuc

(
tnuc

t0

)2
(10.49)

T0 = Tnuc

(
tnuc

t0

)1/2
(10.50)

Numerically we find:
T0 = 27K (10.51)

Now, we suppose that the Universe switched from being radiation-dominated to matter-dominated at
some redshift zrm > 0. This would not change the energy density at the time of nucleosynthesis, but the
scale factor would now grow as:

a(t) =
(

t
t0

)2/3
(10.52)

instead of the previous ∝ t1/2. Hence the energy density of the radiation would go down more rapidly than
in the radiation-dominated-for-all times Universe, and hence the temperature T0 today would decrease .
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11 Structure Formation: Gravitational Instability

11.1 Density Fluctuations in a Flat, Matter-Dominated, Contracting Universe

We first note that:
H =

ȧ
a
< 0 (11.1)

in a contracting universe. Now, starting with Ryden Eq. 11.49, we have:

δ̈ + 2Hδ̇− 3
2

Ωm H2δ = 0 (11.2)

In a contracting matter dominated universe, Ωm = 1 and H = − 2
3t (note the negative sign for contraction!

This can be obtained from a(t) =
(

t
t0

)2/3
), so:

δ̈− 4
3t

δ̇− 2
3t2 δ = 0 (11.3)

Guessing a power law δ(t) = tr, we find:

r(r− 1)tr−2 − 4
3t

rtr−1 − 2
3t2 tr = 0 (11.4)

Dividing both sides by tr−2 we obtain a quadratic equation for r:

r2 − 7
3

r− 2
3
= 0 (11.5)

Using the quadratic formula, we find the solutions:

r =
7±
√

73
6

(11.6)

So we therefore find:

δ(t) = At
7+
√

73
6 + Bt

7−
√

73
6 (11.7)

Where A, B are constants determined by initial conditions. The second term vanishes for large t, so:

δ(t) ≈ At
7+
√

73
6 (11.8)

11.2 Density Fluctuations in a Nearly Empty, Negatively Curved, Expanding Uni-
verse

We again start with Ryden Eq. 11.49:

δ̈ + 2Hδ̇− 3
2

Ωm H2δ = 0 (11.9)

Since Ωm � 1, the last term can be neglected:

δ̈ + 2Hδ̇ = 0 (11.10)

In an empty expanding universe, we have H = 1
t (as a(t) = t

t0
) so:

δ̈ +
2
t

δ̇ = 0 (11.11)
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Again guessing a power law δ(t) = tr, we find:

r(r− 1)tr−2 +
2
t

rtr−1 = 0 (11.12)

Dividing both sides by tr−2 we obtain a quadratic equation for r:

r2 + r = 0 (11.13)

This has solutions:
r = 0, r = −1 (11.14)

So we therefore find:
δ(t) = At0 + Bt−1 (11.15)

At long times, the latter terms vanishes, so:

δ(t) ≈ A . (11.16)

That is, at long times the fluctuations are constant.

11.3 Photon-Baryon Fluid

For the photon-baryon fluid, we have:

dP
dε

=
dP
da

da
dε

=
dP
da

(
dε

da

)−1
(11.17)

Since P = Pγ = 1
3 εγ = 1

3 εγ,0a−4, we find:

dP
da

= −4
3

εγ,0a−5 (11.18)

Furthermore, since ε = εγ + εbary = εγ,0a−4 + εbary,0a−3 we find:

dε

da
= −4εγ,0a−5 − 3εbary,0a−4 (11.19)

Therefore:

dP
dε

=
− 4

3 εγ,0a−5

−4εγ,0a−5 − 3εbary,0a−4 =
1
3

 1

1 + 3
4

εbary,0
εγ,0

a

 (11.20)

. Now, we can find the sound speed to be:

cs = c
(

dP
dε

)1/2
= c

√√√√√1
3

 1

1 + 3
4

εbary,0
εγ,0

a

 (11.21)

In Ryden Eq. 11.26, the Jeans length of the photon-baryon fluid neglecting the contribution from the
baryons was estimated to be:

λJ,γ ≈ 3
c

H(zdec)
≈ 0.66Mpc (11.22)
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We can replace c with cs in the above expression to determine λJ accounting for the baryons. Before this,
we briefly resolve some remaining parameters in our expression for cs. zdec = 1090, so:

adec =
1

1 + zdec
= 9.17× 10−4 (11.23)

Furthermore, from the benchmark model we find the energy density ratio of:

εbary,0

εγ,0
=

Ωbary, 0

Ωγ,0
=

0.048
5.35× 10−5 = 897 (11.24)

Plugging these values of adec,
εbary,0

εγ,0
into (11.21), we find:

cs = 0.45c (11.25)

compared to the cs = c√
3
= 0.577c prediction neglecting baryons. Hence the Jeans length being propor-

tional to cs gets scaled down by this ratio:

λJ,bary+γ =
0.45c
0.577c

λJ,γ = 0.51Mpc (11.26)

So we were off by:
λJ,γ − λJ,bary+γ = 0.15Mpc (11.27)

11.4 Milky Way Gravitational Collapse

For any circular orbit (as we can assume for a spherical dark halo), the orbital speed is related to Rhalo
and Mgal by (Ryden Eq. 7.9):

v2 =
GMgal

Rhalo
(11.28)

Further assuming a uniform distribution of mass throughout the galaxy, we have:

ρ =
Mgal

V
=

Mgal
4
3 πR3

halo

(11.29)

Combining (11.28) and (11.29), we obtain:

ρ =
Rhalov2

G
4
3 πR3

halo

=
v2

4
3 πGR2

halo

(11.30)

Substituting this into tmin ≈ 1√
Gρ

we find:

tmin ≈
1√

G v2
4
3 πGR2

halo

=

√
3

4π

Rhalo
v

(11.31)

So we therefore conclude:

tmin ∼
Rhalo

v
(11.32)

For our own Galaxy, we take Rhalo ≈ 75kpc and v = 235km s−1 to find:

tmin ≈ 9.86× 1015s = 312Myr (11.33)
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tmin defines the maximum possible redshift in which we could see galaxies with comparable to v and
Rmin; in other words we find z(tmin). Neglecting the early radiation period, we can take our universe to
be dominated by matter and the cosmological constant. For this Universe, the Friedmann equation has
the analytic solution (Ryden Eq. 5.101):

H0t =
2

3
√

1−Ωm,0
ln

( a
amΛ

)3/2
+

√
1 +

(
a

amΛ

)3
 (11.34)

With the Benchmark models of H0 = 68km s−1 Mpc−1, Ωm,0 = 0.31, and amΛ = 0.77, and the pervious
result that t = tmin = 312Myr, we can numerically solve for a in the above relation. Doing so, we find:

amin = 0.069 (11.35)

From which we obtain the maximum redshift:

zmax =
1

amin
− 1 = 13.5 (11.36)

11.5 Coma Cluster Gravitational Collapse

We first note (from Ryden 7.37) that:

MComa =

〈
v2
〉

rh

αG
(11.37)

Taking again ρ to be uniform, we find:

ρ =
MComa

V
=

〈v2〉rh
αG

4
3 πr3

h
=

3
〈

v2
〉

4παGr2
h

(11.38)

So using that tmin ≈ 1√
Gρ

we find:

tmin ≈
1√

G
3〈v2〉

4παGr2
h

=

√
4πα

3
rh√〈
v2
〉 ∼ rh√〈

v2
〉 (11.39)

So numerically we find:

tmin ≈ 3.05× 1016s = 967Myr (11.40)

11.6 Mean Square Mass Fluctuation and Standard Deviation of Density Field

The standard deviation of the density field for a Gaussian field can be computed (in the case of a Gaussian
field) as (Ryden Eq. 11.67):

σ2
δ =

V
2π

∫ ∞

0
P(k)k2dk =

V
2π

∫ kmax

0
P(k)k2dk (11.41)

Meanwhile the mean square mass fluctuation is computed as:〈(
δM
M

)2
〉

=

〈(
M− 〈M〉
〈M〉

)2〉
=

V
2π

∫ ∞

0
P(k)

[
3j1(kr)

kr

]2

k2dk =
V
2π

∫ kmax

0
P(k)

[
3j1(kr)

kr

]2

k2dk

(11.42)
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So the claim is proven is we can show for M < Mmin, or for r < rmin that:

∫ kmax

0
P(k)k2dk =

∫ kmax

0
P(k)

[
3j1(kr)

kr

]2

k2dk (11.43)

Incoming is a handwavey argument that I don’t actually think is the full answer. For r < rmin = 2π
kmax

, kr
will be small over the domain of integration so we may Taylor expand j1(kr). Doing so, we find:

j1(kr) =
sin(kr)− kr cos(kr)

(kr)2 ≈
(kr− (kr)3

6 )− kr
(

1− (kr)2

2

)
(kr)2 =

(kr)3

3
(kr)2 =

kr
3

(11.44)

Therefore: ∫ kmax

0
P(k)

[
3j1(kr)

kr

]2

k2dk ≈
∫ kmax

0
P(k)

[
3
kr

kr
3

]2
k2dk =

∫ kmax

0
P(k)k2dk (11.45)

Which is exactly what we wished to show.
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12 Structure Formation: Baryons and Photons

12.1 Galaxies more luminous than L

We start with the Schechter luminosity function which gives the number density Φ(L)dL in the range
L→ L + dL:

Φ(L)dL = Φ∗
(

L
L∗

)α

exp
(
− L

L∗

)
dL
L∗

(12.1)

The number density of galaxies more luminous than L is given by integrating from L to ∞:

n≥L =
∫ ∞

L
Φ(L′)dL′ =

∫ ∞

L
Φ∗
(

L′

L∗

)α

exp

(
− L′

L∗

)
dL′

L∗
(12.2)

Now substituting t = L′
L∗ which gives dt = dL′

L∗ we find:

n≥L = Φ∗
∫ ∞

L/L∗
tαe−tdt (12.3)

Furthermore, we can recognize the RHS as an incomplete gamma function, yielding:

n≥L = Φ∗Γ(α + 1,
L
L∗

) (12.4)

In the limit L→ 0, we just have the regular gamma function:

n≥0 = ntot = Φ∗
∫ ∞

0
tαe−tdt = Φ∗Γ(α + 1) (12.5)

But with α = −1, the integral:

ntot =
∫ ∞

0

e−t

t
dt = ∞ (12.6)

is seen to diverge (at the lower limit). The physical solution is as follows; in this limit, the number density
of galaxies diverges, but the luminosity density remains finite (so the average luminosity per galaxy is
zero); this can be realized via the following calculation:

Ψtot =
∫ ∞

0
L′Φ(L′)dL =

∫ ∞

0
L′Φ∗

(
L′

L∗

)−1

exp

(
− L′

L∗

)
dL′

L∗
= Φ∗

∫ ∞

0
exp

(
− L′

L∗

)
dL′ = Φ∗L∗. (12.7)

12.2 Total Luminosity Density

We again tart with the Schechter luminosity function:

Φ(L)dL = Φ∗
(

L
L∗

)α

exp
(
− L

L∗

)
dL
L∗

(12.8)

We can now integrate LΦ(L)dL from 0 to ∞ to obtain the total luminosity density:

Ψ =
∫ ∞

0
Φ(L′)dL′ =

∫ ∞

0
L′Φ∗

(
L′

L∗

)α

exp

(
− L′

L∗

)
dL′

L∗
=
∫ ∞

0
Φ∗
(

L′

L∗

)α+1

exp

(
− L′

L∗

)
dL′ (12.9)

Again making the substitution t = L′
L∗ we find:

Ψ =
∫ ∞

0
Φ∗L∗tα+1e−tdt = Φ∗L∗

∫ ∞

0
tα+1e−tdt (12.10)
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We recognize the rightmost expression as a gamma function, which yields:

Ψ = Φ∗L∗Γ(α + 2) (12.11)

Now, observing that Γ(−1 + 2) = Γ(1) = 1, so we find for the V band that:

ΨV = Φ∗L∗VΓ(1) = 1× 108L�,VMpc−3 (12.12)

12.3 Do structures of 1017M� exist today?

From Ryden Eq. 12.38, the total amount of mass inside the last scattering surface is given by:

Mtot ≈ 4.3× 1023M� (12.13)

Dividing this by M = 1017M�, we find:

N =
Mtot

M
= 4.3× 106regions (12.14)

The very first M = 1017M� structure to collapse is the one region out of 4.3 million that had the highest
overdensity at the time of radiation-matter equality, with probability:

P =
1
N

= 2.3× 10−7. (12.15)

This is equivalent to a 5.04σ deviation in a Gaussian distribution. Since σ = δM/M = 0.12, then we can
compute the redshift of collapse to be:

1 + zcoll = 5.04σ = 0.6048 (12.16)

i.e. the first such object has not begin to collapse (as zcoll < 0) and hence we do not expect to see
gravitationally collapsed structures with mass M = 1017M� today.

12.4 Ripping Apart Galaxies

An object is ripped apart when its energy density εm becomes less than the phantom energy density εp.
Hence we can set these two densities to be equal:

εm = εp. (12.17)

We know that εp ∝ a−3(1+wp), and in particular:

εp = Ωp,0εca−3(1+wp). (12.18)

So solving for the rip-apart scale factor a we find:

a =

(
εm

Ωpεc

)−1/(3+3wp)

(12.19)

and for wp = −1.1 this becomes:

a =

(
εm

Ωpεc

)10/3

. (12.20)

58



For the milky way galaxy, we have Mgal = 9.6× 1011M� and Rgal = 75kpc. Assuming a uniform mass
density and using that ρc = 8.7× 10−27kg m−3, we find:

εgal

εc
=

ρgal

ρc
=

Mgal
4
3 πR3

galρc
= 4.2× 103 (12.21)

Therefore the scale factor for which the Milky way galaxy would be ripped apart can be solved to be:

agal = 4.0× 1012 (12.22)

We can do the same for the sun, with mass M� and radius R� = 7× 108m to find:

εsun

εc
=

ρsun

ρc
=

M�
4
3 πR3

�ρc
= 1.6× 1029 (12.23)

so the scale factor for which the sun would be ripped apart would be:

asun = 7.2× 1097 (12.24)

From Problem 5.5, we know the time between the present time t0 and the Big rip trip was found for
H0 = 68km s−1 Mpc−1, wp = −1.1 and Ωm,0 = 0.3 to be:

trip − t0 = 115.5Gyr (12.25)

with t0 = 13.8Gyr, we can find trip to be:

trip = 115.5Gyr− 13.8Gyr = 101.7Gyr (12.26)

Further, we can use the intermediate result from problem 5.5 (Eq. (5.43)) that:∫ trip

t0

H0dt ≈
∫ ∞

1
a3(1+wp)/2(1−Ωm,0)

−1/2da =
1√
Ωp,0

∫ ∞

1
a3(1+wp)/2−1da (12.27)

Now, we can replace t0 with tgal (the rip-apart time for the Milky Way Galaxy), and a(t0) = 1 with
a(tgal) = agal in the above equation, and carry out the integral to get:

H0(trip − tgal) =
1√
Ωp,0

2
3(1 + wp)

a3(1+wp)/2

∣∣∣∣∣
∞

agal

(12.28)

The term at infinity vanishes (as the exponent of a is negative), and we therefore find:

tgal = trip −
1

H0
√

Ωp,0

2

3
∣∣∣1 + wp

∣∣∣ a3(1+wp)/2
gal (12.29)

Numerically, this evaluates to:

tgal = 101.7Gyr− 0.46Gyr = 101.wGyr (12.30)

So we find that the Milky way will be ripped apart about half a gigayear before the big rip. We can do the
same with tsun and a(tsun) = asun to find:

tsun = 101.7Gyr− 7.5× 10−14Gyr ≈ 101.7Gyr (12.31)

In other words, the sun will not be ripped apart until the big rip.
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