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Introduction:

This document is a (work in progress) collection of comprehensive solutions to the exercises in Nielsen and

Chuang’s “Quantum Computation and Quantum Information”. Each solution has the involved concepts (and

hence rough pre-requisite knowledge) necessary for the problem in addition to the solution. Some problems may

contain additional remarks about implications. Any problems denoted as (Research) are left as exercises to the

reader. Starred exercises are considered to be more difficult (difficulty is assumed for the problems at the end of

the chapter).
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1 Introduction and overview

Exercise 1.1: Probabilistic Classical Algorithm

Suppose that the problem is not to distinguish between the constant and balanced functions with certainty,

but rather, with some probability of error ε < 1/2. What is the performance of the best classical algorithm

for this problem?

Solution

Concepts Involved: Deutsch’s Problem, Probability.

Recall that a Boolean function f : {0, 1}n → {0, 1} is said to be balanced if f(x) = 1 for exactly half of

all possible 2n values of x.

A single evaluation tells us no information about whether f is constant or balanced, so our success

rate/error rate after a single evaluation is ε = 1
2 (random guessing!). Therefore, consider the case where

we do two evaluations. If we obtain two different results, then we immediately conclude that f is balanced.

Suppose instead that we obtain two results that are the same. If f is balanced, then the probably that

the first evaluation returns the given result is 1
2 , and the probability that the second evaluation returns

the same result is 2n/2−1
2n−1 (as there are 2n/2 of each result of 0 and 1, 2n total results, 2n/2 − 1 of the

given result left after the first evaluation, and 2n− 1 total uninvestigated cases after the first evaluation).

Therefore, if f is balanced, this occurs with probability 1
2 ·

2n/2−1
2n−1 , which we can see is less than 1

2 as:

2n < 2n+1 =⇒ 2n − 2 < 2n+1 − 2 =⇒ 2n/2− 1

2n − 1
< 1 =⇒ 1

2

2n/2− 1

2n − 1
<

1

2

Hence, if we get the same result in two evaluations, we can conclude that f is constant with error ε < 1
2 .

We conclude that only 2 evaluations are required for this algorithm.

Exercise 1.2

Explain how a device which, upon input of one of two non-orthogonal quantum states |ψ〉 or |ϕ〉 correctly

identified the state, could be used to build a device which cloned the states |ψ〉 and |ϕ〉, in violation

of the no-cloning theorem. Conversely, explain how a device for cloning could be used to distinguish

non-orthogonal quantum states.

Solution

Concepts Involved: Quantum Distinguishability, Quantum Measurement.

Given access to a device which can distinguish non-orthogonal quantum states |ψ〉 , |ϕ〉 (without mea-

surement), we can then design a quantum circuit that would map |ψ〉 7→ |ϕ〉 (or vise versa), allowing us

to clone the states as we like.

Conversely, given a cloning device, we could clone |ψ〉 and |ϕ〉 an arbitrary number of times. Then,

performing repeated measurements of the two states in different measurement bases, we would (given

enough measurements) be able to distinguish the two states based on the measurement statistics (there

will of course be some error ε based on probabilistic considerations, but given that we have access to as

many measurements of the states as we like, we are able to make this error arbitrarily low).
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Problem 1.1: (Feynman-Gates conversation)

Construct a friendly imaginary discussion of about 2000 words between Bill Gates and Richard Feynman,

set in the present, on the future of computation (Comment: You might like to try waiting until you’ve

heard the rest of the book before attempting this question. See ‘History and further reading’ below for

pointers to one possible answer for this question).

Problem 1.2

What is the most significant discovery yet made in quantum computation and quantum information? Write

an essay of about 2000 words to an educated lay audience about the discovery (Comment: As for the

previous problem, you might like to try waiting until you’ve read the rest of the book before attempting

this question.)

4



2 Introduction to quantum mechanics

Exercise 2.1: Linear dependence: example

Show that (1,−1), (1, 2) and (2, 1) are linearly dependent.

Solution

Concepts Involved: Linear Algebra, Linear Independence/Dependence.

We observe that: [
1

−1

]
+

[
1

2

]
−

[
2

1

]
=

[
1 + 1− 2

−1 + 2− 1

]
=

[
0

0

]

showing that the three vectors are linearly dependent by definition. Alternatively, we can apply theorem

that states that for any vector space V with dimV = n, any list of m > n vectors in V will be linearly

dependent (here, V = R2, n = 2,m = 3).

Exercise 2.2: Matrix representations: example

Suppose V is a vector space with basis vectors |0〉 and |1〉, and A is a linear operator from V to V such

that A |0〉 = |1〉 and A |1〉 = |0〉. Give a matrix representation for A, with respect to the input basis

|0〉, |1〉, and the output basis |0〉 , |1〉. Find input and output bases which give rise to a different matrix

representation of A.

Solution

Concepts Involved: Linear Algebra, Matrix Representation of Operators.

Identifying |0〉 ∼=

[
1

0

]
and |1〉 ∼=

[
0

1

]
, we have that:

A =

[
a00 a01

a10 a11

]

Using the given relations, we have that:

A |0〉 = 0 |0〉+ 1 |1〉 =⇒

[
a00 a01

a10 a11

][
1

0

]
= 0

[
1

0

]
+ 1

[
0

1

]
=⇒ a00 = 0, a01 = 1

A |1〉 = 1 |0〉+ 0 |1〉 =⇒

[
a00 a01

a10 a11

][
0

1

]
= 1

[
1

0

]
+ 0

[
0

1

]
=⇒ a10 = 1, a11 = 0

Therefore with respect to the input basis
{
|0〉 , |1〉

}
and output basis

{
|0〉 , |1〉

}
, A has matrix represen-
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tation:

A ∼=

[ 〈0| 〈1|
|0〉 0 1

|1〉 1 0

]

Suppose we instead choose the input and output basis to be
{
|+〉 = |0〉+|1〉√

2
, |−〉 = |0〉−|1〉√

2

}
. Identifying

|+〉 ∼=

[
1

0

]
and |−〉 ∼=

[
0

1

]
, we have:

A =

[
a++ a+−
a−+ a−−

]

Using the linearity of A, we have that:

A |+〉 =
1√
2
A(|0〉+ |1〉) =

1√
2

(A |0〉+A |1〉) =
1√
2

(|1〉+ |0〉) = |+〉

and:

A |−〉 =
1√
2
A( |0〉 − |1〉) =

1√
2

(A |0〉 −A |1〉) =
1√
2

( |1〉 − |0〉) = − |−〉 ,

which can be used to determine the matrix elements:

A |+〉 = 1 |+〉+ 0 |0〉 =⇒

[
a++ a+−
a−+ a−−

][
1

0

]
= 1

[
1

0

]
+ 0

[
0

1

]
=⇒ a++ = 1, a+− = 0

A |−〉 = 0 |+〉 − 1 |−〉 =⇒

[
a++ a+−
a−+ a−−

][
0

1

]
= 0

[
1

0

]
− 1

[
0

1

]
=⇒ a−+ = 0, a−− = −1

Therefore with respect to the input basis
{
|+〉 , |−〉

}
and output basis

{
|+〉 , |−〉

}
, A has matrix repre-

sentation:

A ∼=

[ 〈+| 〈−|
|+〉 1 0

|−〉 0 −1

]

Remark: If we choose the input and output bases to be different, we can even represent the A operator

as an identity matrix. Specifically, if the input basis to be chosen to be
{
|0〉 , |1〉

}
and output basis as{

|1〉 , |0〉
}

, the matrix representation of A looks like:

A ∼=

[
1 0

0 1

]
.
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Exercise 2.3: Matrix representation for operator products

Suppose A is a linear operator from vector space V to vector space W , and B is a linear operator from

vector space W to vector space X. Let |vi〉 , |wj〉 , |xk〉 be bases for the vector spaces V,W and X

respectively. Show that the matrix representation for the linear transformation BA is the matrix product

of the matrix representations for B and A, with respect to the appropriate bases.

Solution

Concepts Involved: Linear Algebra, Matrix Representation of Operators.

Taking the matrix of representations of A and B to the appropriate bases |vi〉 ,
∣∣wj〉 , |xk〉 of V,W and

X, we have that:

A |vj〉 =
∑
i

Aij |wi〉 , B |wi〉 =
∑
k

Bki |xk〉

Hence, looking at BA : V 7→ X, we have that:

BA |vj〉 = B(A |vj〉)

= B

∑
i

Aij |wi〉


=
∑
i

AijB |wi〉

=
∑
i

Aij

∑
k

Bki |xk〉


=
∑
k

∑
i

BkiAij |xk〉

=
∑
k

(BA)kj |xk〉

which shows that the matrix representation of BA is indeed the matrix product of the representations of

B and A.

Exercise 2.4: Matrix representation for identity

Show that the identity operator on a vector space V has a matrix representation which is one along the

diagonal and zero everywhere else, if the matrix is taken with respect to the same input and output bases.

This matrix is known as the identity matrix.

Solution

Concepts Involved: Linear Algebra, Matrix Representation of Operators.

Let V be a vector space and |vi〉 be a basis of V . Let A : V 7→ V be a linear operator, and let its matrix

representation taken to be respect to |vi〉 as the input and output basis. We then have that for each
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i ∈ {1, . . . , n}:

A|vi〉 = 1|vi〉+
∑
j 6=i

0|vj〉 =
∑
j

δij |vj〉

From which we obtain that A has the matrix representation:

A ∼=


1 0 0 · · · 0

0 1 0 0

0 0 1 0
...

. . .

0 0 0 . . . 1



Exercise 2.5

Verify that (·, ·) just defined is an inner product on Cn.

Solution

Concepts Involved: Linear Algebra, Inner Products.

Recall that on Cn, (·, ·) was defined as:

((y1, . . . , yn), (z1, . . . , zn)) ≡
∑
i

y∗i zi = [y∗1 . . . y
∗
n]


z1

...

zn

 .
Furthermore, recall the three conditions for the function (·, ·) : V × V 7→ C to be considered an inner

product:

(1) (·, ·) is linear in the second argument.

(2) (|v〉, |w〉) = (|w〉, |v〉)∗.

(3) (|v〉, |v〉) ≥ 0 with equality if and only if |v〉 = 0.

We check that (·, ·) : Cn × Cn 7→ C satisfies the three conditions:

(1) We see that:

((y1, . . . , yn),
∑
k

λk(z1, . . . , zn)k) =
∑
i

y∗i
∑
k

λkzik

=
∑
k

λk
∑
i

y∗i zik

=
∑
k

λk((y1, . . . , yn), (z1, . . . , zn)k)
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(2) We have:

((y1, . . . , yn), (z1, . . . , zn)) =
∑
i

y∗i zi

=
∑
i

(yiz
∗
i )∗

=

∑
i

z∗i yi

∗

=
(
((z1, . . . , zn), (y1, . . . , yn))

)∗
(3) We observe for 0 = (0, . . . 0):

(0,0) =
∑
i

0 · 0 = 0

For y = (y1, . . . , yn) 6= 0 we have that at least one yi (say, yj) is nonzero, and hence:

((y1, . . . , yn), (y1, . . . , yn)) =
∑
i

y2
i ≥ y2

j > 0

which proves the claim.

Exercise 2.6

Show that any inner product (·, ·) is conjugate-linear in the first argument,∑
i

λi |wi〉 , |v〉

 =
∑
i

λ∗i ( |wi〉 , |v〉).

Solution

Concepts Involved: Linear Algebra, Inner Products

Applying properties (2) (conjugate symmetry), (1) (linearity in second argument), and (2) (again) in
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succession, we have that: ∑
i

λi |wi〉 , |v〉

 =

|v〉,∑
i

λi |wi〉

∗

=

∑
i

λi(|vi〉, |wi〉)

∗

=
∑
i

λ∗i (|vi〉, |wi〉)∗

=
∑
i

λ∗i (|wi〉, |vi〉)

Exercise 2.7

Verify that |w〉 = (1, 1) and |v〉 = (1,−1) are orthogonal. What are the normalized forms of these

vectors?

Solution

Concepts Involved: Linear Algebra, Inner Products, Orthogonality, Normalization

Recall that two vectors |v〉, |w〉 are orthogonal if 〈v|w〉 = 0, and the norm of |v〉 is given by
∥∥|v〉∥∥ =√

〈v|v〉.

First we show the two vectors are orthogonal:

〈w|v〉 = 1 · 1 + 1 · (−1) = 0

The norms of |w〉 , |v〉 are given by:∥∥|w〉∥∥ =
√
〈w|w〉 =

√
12 + 12 =

√
2,∥∥|c〉∥∥ =

√
〈v|v〉 =

√
12 + (−1)2 =

√
2

So the normalized forms of the vectors are:

|w〉∥∥|w〉∥∥ =

[
1√
2

1√
2

]
|v〉∥∥|v〉∥∥ =

[
1√
2
−1√

2

]

Exercise 2.8

Verify that the Gram-Schmidt procedure produces and orthonormal basis for V .
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Solution

Concepts Involved: Linear Algebra, Linear Independence, Bases, Inner Products, Orthogonality, Normal-

ization, Gram-Schmidt Procedure, Induction.

Recall that given |w1〉, . . . , |wd〉 as a basis set for a vector space V , the Gram-Schmidt procedure con-

structs a basis set |v1〉, . . . , |vd〉 by defining |v1〉 ≡ |w1〉/
∥∥|w1〉

∥∥ and then defining |vk+1〉 inductively for

1 ≤ k ≤ d− 1 as:

|vk+1〉 ≡
|wk+1〉 −

∑k
i=1 〈vi|wk+1〉 |vi〉∥∥∥|wk+1〉 −

∑k
i=1 〈vi|wk+1〉 |vi〉

∥∥∥
It is evident that each of the |vj〉 have unit norm as they are defined in normalized form. It therefore

suffices to show that each of the |v1〉, . . . , |vd〉 are orthogonal to each other, and that this set of vectors

forms a basis of V . We proceed by induction. For k = 1, we have that:

|v2〉 =
|w2〉 − 〈v1|w2〉 |v1〉∥∥|w2〉+ 〈v1|w2〉 |v1〉

∥∥
Therefore:

〈v1|v2〉 =
〈v1|w2〉 − 〈v1|w2〉 〈v1|v1〉∥∥|w2〉+ 〈v1|w2〉 |v1〉

∥∥ =
〈v1|w2〉 − 〈v1|w2〉∥∥|w2〉+ 〈v1|w2〉 |v1〉

∥∥ = 0

so the two vectors are orthogonal. Furthermore, they are linearly independent; if they were linearly

dependent, we could write |v1〉 = λ|v2〉 for some λ ∈ C, but then multiplying both sides by 〈v1| we get:

〈v1|v1〉 = λ 〈v1|v2〉 =⇒ 1 = 0

which is a contradiction. This concludes the base case. For the inductive step, let k ≥ 1 and suppose that

|v1〉, . . . , |vk〉 are orthogonal and linearly independent. We then have that:

|vk+1〉 =
|wk+1〉 −

∑k
i=1 〈vi|wk+1〉 |vi〉∥∥∥|wk+1〉 −

∑k
i=1 〈vi|wk+1〉 |vi〉

∥∥∥
Then for any j ∈ {1, . . . k}, we have that:

〈vj |vk+1〉 =
〈vj |wk+1〉 −

∑k
i=1 〈vi|wk+1〉 〈vj |vj〉 |vi〉∥∥∥|wk+1〉 −
∑k
i=1 〈vi|wk+1〉 |vi〉

∥∥∥ =
〈vj |wk+1〉 − 〈vj |wk+1〉∥∥∥|wk+1〉 −

∑k
i=1 〈vi|wk+1〉 |vi〉

∥∥∥ = 0

where in the second equality we use the fact that
〈
vj
∣∣vi〉 = δij for i, j ∈ {1, . . . k} by the inductive hypoth-

esis. We therefore find that |vk+1〉 is orthogonal to all of |v1〉, . . . , |vk〉. Furthermore, |v1〉, . . . , |vk〉, |vk+1〉
is lienarly independent. Suppose for the sake of contradiction that this was false. Then, there would exist

λ1, . . . λk not all nonzero such that:

λ1|v1〉+ . . .+ λk|vk〉 = |vk+1〉
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but then multiplying both sides by 〈vk+1| we have that:

λ1 〈vk+1|v1〉+ . . .+ λk 〈vk+1|vk〉 = 〈vk+1|vk+1〉 =⇒ 0 = 1

by orthonormality. This gives a contradiction, and hence |v1〉, . . . , |vk〉, |vk+1〉 are linearly independent,

finishing the inductive step. Therefore, |v1〉, . . . , |vd〉 is an orthonormal list of vectors which is linearly

independent. Since |w1〉, . . . , |wd〉 is a basis for V , then V has dimension d. Hence, |v1〉, . . . , |vd〉 being

a linearly independent list of d vectors in V is a basis of V . We conclude that it is an orthonormal basis

of V , as claimed.

Exercise 2.9: Pauli operators and the outer product

The Pauli matrices (Figure 2.2 on page 65) can be considered as operators with respect to an orthonormal

basis |0〉, |1〉 for a two-dimensional Hilbert space. Express each of the Pauli operators in the outer product

notation.

Solution

Concepts Involved: Linear Algebra, Matrix Representation of Operators, Outer Products.

Recall that if A has matrix representation:

A ∼=

[
a00 a01

a10 a11

]

with respect to |0〉, |1〉 as the input/output bases, then we can express A in outer product notation as:

A = a00 |0〉〈0|+ a01 |0〉〈1|+ a10 |1〉〈0|+ a11 |1〉〈1|

Furthermore, recall the representation of the Pauli matrices with respect to the orthonormal basis |0〉, |1〉:

I =

[
1 0

0 1

]
X =

[
0 1

1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0

0 −1

]

We immediately see that:

I = |0〉〈0|+ |1〉〈1|
X = |0〉〈1|+ |1〉〈0|
Y = −i |0〉〈1|+ i |1〉〈0|
Z = |0〉〈0| − |1〉〈1|

Exercise 2.10

Suppose |vi〉 is an orthonormal basis for an inner product space V . What is the matrix representation for

the operator |vj〉〈vj |, with respect to the |vi〉 basis?
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Solution

Concepts Involved: Linear Algebra, Matrix Representation of Operators, Outer Products.

The matrix representation of |vj〉〈vj | with respect to the |vi〉 basis is a matrix with 1 in the jth column

and row (i.e. the (j, j)th entry in the matrix) and 0 everywhere else.

Exercise 2.11

Find the eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices X,Y and Z.

Solution

Concepts Involved: Linear Algebra, Eigenvalues, Eigenvectors, Diagonalization.

Given an operator A on a vector space V , recall that an eigenvector |v〉 of A and its corresponding

eigenvalue λ are defined by:

A|v〉 = λ|v〉

Furthermore, recall the diagonal representation of A is given by

A =
∑
i

λi |i〉〈i|

Where |i〉 form an orthonormal set of eigenvectors for A, and λi are the corresponding eigenvalues.

We start with X. Solving for the eigenvalues, we have:

det(X − Iλ) = 0 =⇒ det

[
−λ 1

1 −λ

]
= 0 =⇒ λ2 − 1 = 0

From which we obtain λ1 = 1, λ2 = −1. Solving for the eigenvectors, we then have that:

(X − Iλ1)|v1〉 = 0 =⇒

[
−1 1

1 −1

][
v11

v12

]
=

[
0

0

]
=⇒ v11 = 1, v12 = 1

(X − Iλ2)|v2〉 = 0 =⇒

[
1 1

1 1

][
v21

v22

]
=

[
0

0

]
=⇒ v21 = 1, v22 = −1

Hence we find that |v1〉 = |0〉 + |1〉, |v2〉 = |0〉 − |1〉. Normalizing these eigenvectors (Also see Exercise

2.7), we divide by
∥∥|v1〉

∥∥ =
∥∥|v2〉

∥∥ =
√

2, giving us:

|v1〉 = |+〉 =
|0〉+ |1〉√

2
, |v2〉 = |−〉 =

|0〉 − |1〉√
2

.

The diagonal representation of X is then given by:

X = λ1 |v1〉〈v1|+ λ2 |v2〉〈v2| = |+〉〈+| − |−〉〈−|

13



We do the same for Y . Solving for the eigenvalues:

det(A− Iλ) = 0 =⇒ det

[
−λ −i
i −λ

]
= 0 =⇒ λ2 − 1 = 0

From which we obtain λ1 = 1, λ2 = −1. Solving for the eigenvectors, we then have that:

(Y − Iλ1)|v1〉 = 0 =⇒

[
−1 −i
i −1

][
v11

v12

]
=

[
0

0

]
=⇒ v11 = 1, v12 = i

(Y − Iλ2)|v2〉 = 0 =⇒

[
1 −i
i 1

][
v21

v22

]
=

[
0

0

]
=⇒ v21 = 1, v22 = −i

We therefore have that |v1〉 = |0〉 + i|1〉, |v2〉 = |0〉 − i|1〉. Normalizing by dividing by
∥∥|v1〉

∥∥ =
∥∥|v2〉

∥∥,

we obtain that:

|v1〉 = |y+〉 =
|0〉+ i|1〉√

2
, |v2〉 = |y−〉 =

|0〉 − i|1〉√
2

.

The diagonal representation of Y is then given by:

Y = |y+〉〈y+| − |y−〉〈y−|

For Z, the process is again the same. We give the results and omit the details:

λ1 = 1, |v1〉 = |0〉 λ2 = −1, |v2〉 = |1〉

Z = |0〉〈0| − |1〉〈1|

Exercise 2.12

Prove that the matrix [
1 0

1 1

]

is not diagonalizable.

Solution

Concepts Involved: Linear Algebra, Eigenvalues, Eigenvectors, Diagonalization.

Solving for the eigenvalues of the matrix, we have:

det

[
1− λ 0

1 1− λ

]
= 0 =⇒ (1− λ)2 = 0 =⇒ λ1, λ2 = 1

14



But since the eigenvalue 1 is degenerate, the matrix only has one eigenvector; it therefore cannot be

diagonalized.

Exercise 2.13

If |w〉 and |v〉 are any two vectors, show that (|w〉〈v|)† = |v〉〈w|.

Solution

Concepts Involved: Linear Algebra, Adjoints.

We observe that:

(( |w〉〈v|)†|x〉, |y〉) = (|x〉, ( |w〉〈v|)|y〉) = (|x〉, 〈v|y〉 |w〉) = 〈x| 〈v|y〉 |w〉
= 〈x|w〉 〈v|y〉
= 〈x|w〉 (|v〉, |y〉)
= (〈x|w〉∗ |v〉, |y〉)
= (〈w|x〉 |v〉, |y〉)
= (( |v〉〈w|)|x〉, |y〉)

Where in the third-to last equality we use the conjugate linearity in the first argument (see Exercise 2.6)

and in the second-to last equality we use that 〈a|b〉∗ = 〈b|a〉. Comparing the first and last expressions,

we conclude that ( |w〉〈v|)† = |v〉〈w|.

Exercise 2.14: Anti-linearity of the adjoint

Show that the adjoint operator is anti-linear,∑
i

aiAi

† =
∑
i

a∗iA
†
i .

Solution

Concepts Involved: Linear Algebra, Adjoints.

We observe that:
∑

i

aiAi

† |a〉, |b〉
 =

|a〉,∑
i

aiAi|b〉

 =
∑
i

ai
(
|a〉, Ai|b〉

)
=
∑
i

ai

(
A†i |a〉, |b〉

)

=

∑
i

a∗iA
†
i |a〉, |b〉


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where we invoke the definition of the adjoint in the first and third equalities, the linearity in the second

argument in the second equality, and the conjugate linearity in the first argument in the last equality. The

claim is proven by comparing the first and last expressions.

Exercise 2.15

Show that (A†)† = A.

Solution

Concepts Involved: Linear Algebra, Adjoints

Applying the definition of the Adjoint twice (and using the conjugate symmetry of the inner product) we

have that:

((A†)†|a〉, |b〉) = (|a〉, A†|b〉) = (A†|b〉, |a〉)∗ = (|b〉, A|a〉)∗ =
(
(A|a〉, |b〉)∗

)∗
= (A|a〉, |b〉).

The claim follows by comparison of the first and last expressions.

Exercise 2.16

Show that any projector P satisfies the equation P 2 = P .

Solution

Concepts Involved: Linear Algebra, Projectors.

Let |1〉, . . . , |k〉 be an orthonormal basis for the subspace W of V . Then, using the definition of the

projector onto W , we have that:

P 2 = P · P =

 k∑
i=1

|i〉〈i|

 k∑
i′=1

∣∣i′〉〈i′∣∣
 =

k∑
i=1

k∑
i′=1

|i〉〈i|i′〉〈i′| =
k∑
i=1

k∑
i′=1

|i〉δii′〈i′| =
k∑
i=1

|i〉〈i| = P

where in the fourth/fifth equality we use the orthonormality of the basis to collapse the double sum.

Exercise 2.17

Show that a normal matrix is Hermitian if and only if it has real eigenvalues.

Solution

Concepts Involved: Linear Algebra, Hermitian Operators, Normal Operators, Spectral Decomposition.

=⇒ Let A be a Normal and Hermitian matrix. Then, it has a diagonal representation A =
∑
i λi |i〉〈i|

where |i〉 is an orthonormal basis for V and each |i〉 is an eigenvector of A with eigenvalue λi. By the
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Hermicity of A, we have that A = A†. Therefore, we have that:

A† =

∑
i

λi |i〉〈i|

† =
∑
i

λ∗i |i〉〈i| = A =
∑
i

λi |i〉〈i|

where we use the results of Exercises 2.13 and 2.14 in the second equality. Comparing the third and last

expressions, we have that λi = λi∗ and hence the eigenvalues are real.

⇐= Let A be a Normal matrix with real eigenvalues. Then, A has diagonal representation A =∑
i λi |i〉〈i| where λi are all real. We therefore have that:

A† =

∑
i

λi |i〉〈i|

† = λ∗i |i〉〈i| =
∑
i

λi |i〉〈i| = A

where in the third equality we use that λ∗i = λi. We conclude that A is Hermitian.

Exercise 2.18

Show that all eigenvalues of a unitary matrix have modulus 1, that is, can be written in the form eiθ for

some real θ.

Solution

Concepts Involved: Linear Algebra, Unitary Operators, Spectral Decomposition

Let U be a unitary matrix. It is then normal as U†U = U†U = I. It therefore has spectral decomposition

U =
∑
i λi |i〉〈i| where |i〉 is an orthonormal basis of V , and |i〉 are the eigenvectors of U with eigenvalues

λi. We then have that:

UU† = I =⇒

∑
i

λi |i〉〈i|

∑
i′

λi′ |i′〉〈i′|

† = I

=⇒

∑
i

λi |i〉〈i|

∑
i′

λ∗i′ |i′〉〈i′|

 = I

=⇒
∑
i

∑
i′

λiλi′ |i〉〈i|i′〉〈i′| = I

=⇒
∑
i

∑
i′

λiλ
∗
i′ |i〉δii′〈i′| = I

=⇒
∑
i

λiλi′ |i〉〈i| = I

=⇒
∑
i

|λi|2 |i〉〈i| =
∑
i

1 |i〉〈i|

From which we obtain that |λi|2 = 1, and hence |λi| = 1, proving the claim.
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Exercise 2.19: Pauli matrices: Hermitian and unitary

Show that the Pauli matrices are Hermitian and unitary.

Solution

Concepts Involved: Linear Algebra, Hermitian Matrices, Unitary Matrices

We check I,X, Y, Z in turn.

I† =

[1 0

0 1

]T∗ =

[
1 0

0 1

]∗
=

[
1 0

0 1

]
= I

I†I = II = I

X† =

[0 1

1 0

]T∗ =

[
0 1

1 0

]∗
=

[
0 1

1 0

]
= X

X†X = XX =

[
0 1

1 0

][
0 1

1 0

]
=

[
1 0

0 1

]
= I

Y † =

[0 −i
i 0

]T∗ =

[
0 i

−i 0

]∗
=

[
0 −i
i 0

]
= Y

Y †Y = Y Y =

[
0 −i
i 0

][
0 −i
i 0

]
=

[
1 0

0 1

]

Z† =

[1 0

0 −1

]T∗ =

[
1 0

0 −1

]∗
=

[
1 0

0 −1

]
= Z

Z†Z =

[
1 0

0 −1

][
1 0

0 −1

]
=

[
1 0

0 1

]
= I
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Exercise 2.20: Basis changes

Suppose A′ and A′′ are matrix representations of an operator A on a vector space A on a vector space

V with respect to two different orthonormal bases, |vi〉 and |wi〉 . Then the elements of A′ and A′′ are

A′ij = 〈vi|A|vj〉 and A′′ij = 〈wi|A|wj〉. Characterize the relationship between A′ and A′′.

Solution

Concepts Involved: Linear Algebra, Matrix Representations of Operators, Completeness Relation

Using the completeness relation twice, we get:

A′ij = 〈vi|A|vj〉 = 〈vi|IAI|vj〉 = 〈vi|

∑
i′

|wi′〉〈wi′ |

A

∑
j′

|wj′〉〈wj′ |

 |vj〉
=
∑
i′

∑
j′

〈vi|wi′〉〈wi′ |A|wj′〉〈wj′ |vj〉

=
∑
i′

∑
j′

〈vi|wi′〉A′′ij〈wj′ |vj〉

Exercise 2.21

Repeat the proof of the spectral decomposition in Box 2.2 for the case when M is Hermitian, simplifying

the proof wherever possible.

Solution

Concepts Involved: Linear Algebra, Hermitian Operators, Spectral Decomposition.

For the converse, we have that if M is diagonalizable, then it has a representation M =
∑
i λi |i〉〈i| where

|i〉 is an orthonormal basis of V , and |i〉 are eigenvectors of M with associated eigenvalues of λi. We then

have that:

M† =

∑
i

λi |i〉〈i|

† =
∑
i

λ∗i |i〉〈i| =
∑
i

λi |i〉〈i| = M

where in the second equality we apply the result of Exercise 2.13 and in the third equality we use that

Hermitian matrices have real eigenvalues. For the forwards implication, we proceed by induction on the

dimension d of V . The d = 1 case is trivial as M is already diagonal in any representation in this

case. Let λ be an eigenvalue of M , P the projector onto the λ subspace, and Q the projector onto the

orthogonal complement. Then M = (P +Q)M(P +Q) = PMP +QMP+ PMQ+QMQ. Obviously

PMP = λP. Furthermore, QMP = 0, as M takes the subspace P into itself. We claim that PMQ = 0

also. To see this, we recognize that (PMQ)† = Q†M†P † = QMP = 0. and hence PMQ = 0. Thus

M = PMP +QMQ. QMQ is normal, as (QMQ)† = Q†M†Q† = QMQ (and Hermiticity implies that

the operator is normal). By induction, QMQ is diagonal with respect to some orthonormal basis for the
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subspace Q, and PMP is already diagonal with respect to some orthonormal basis for P . It follows that

M = PMP +QMQ is diagonal with respect to some orthonormal basis for the total vector space.

Exercise 2.22

Prove that two eigenvectors of a Hermitian operator with different eigenvalues are necessarily orthogonal.

Solution

Concepts Involved: Linear Algebra, Eigenvalues, Eigenvectors, Hermitian Operators.

Let A be a Hermitian operator, and let |v1〉, |v2〉 be two eigenvectors of A with corresponding eigenvalues

λ1, λ2 such that λ1 6= λ2. We then have that:

〈v1|A|v2〉 = 〈v1|λ2|v2〉 = λ2〈v1|v2〉
〈v1|A|v2〉 = 〈v1|A†|v2〉 = 〈v1|λ1|v2〉 = λ1〈v1|v2〉

where we use the Hermiticity of A in the second line. Substracting the first line from the second, we have

that:

0 = (λ2 − λ1)〈v1|v2〉.

Since λ1 6= λ2 by assumption, the only way this equality is satisfied is if 〈v1|v2〉 = 0. Hence, |v1〉, |v2〉 are

orthogonal.

Exercise 2.23

Show that the eigenvalues of a projector P are all either 0 or 1.

Solution

Concepts Involved: Linear Algebra, Eigenvalues, Eigenvectors, Projectors.

Let P be a projector, and |v〉 be an eigenvector of P with corresponding eigenvalue λ. From Exercise

2.16, we have that P 2 = P , and using this fact, we observe:

P |v〉 = λ|v〉
P |v〉 = P 2|v〉 = PP |v〉 = Pλ|v〉 = λP |v〉 = λ2|v〉.

Subtracting the first line from the second, we get:

0 = (λ2 − λ)|v〉 = λ(λ− 1)|v〉.

Since |v〉 is not the zero vector, we therefore obtain that either λ = 0 or λ = 1.
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Exercise 2.24: Hermiticity of positive operator

Show that a positive operator is necessarily Hermitian. (Hint: Show that an arbitrary operator A can be

written A = B + iC where B and C are Hermitian.)

Solution

Concepts Involved: Linear Algebra, Hermitian Operators, Positive Operators

Let A be an operator. We first make the observation that we can write A as:

A =
A

2
+
A

2
+
A†

2
− A†

2
=
A+A†

2
+ i

A−A†

2i
.

So let B = A+A†

2 and C = A−A†
2i . B and C are Hermitian, as:

B† =

(
A+A†

2

)†
=
A† + (A†)†

2
=
A† +A

2
= B

C† =

(
A−A†

2i

)†
=
A† − (A†)†

−2i
=
A−A†

2i
= C

so we have hence proven that we can write A = B + iC for hermitian B,C for any operator A. Now,

assume that A is positive. We then have that for any vector |v〉:

〈v|A|v〉 ≥ 0.

Using the identity derived above, we have that:

〈v|B|v〉+ i〈v|C|v〉 ≥ 0.

The positivity forces C = 0. Therefore, A = B and hence A is Hermitian.

Exercise 2.25

Show that for any operator A, A†A is positive.

Solution

Concepts Involved: Linear Algebra, Adjoints, Positive Operators

Let A be an operator. Let |v〉 be an arbitrary vector, and then we then have that:(
|v〉, A†A|v〉

)
=
(

(A†)†|v〉, A|v〉
)

=
(
A|v〉, A|v〉

)
.

By the property of inner products, the expression must be greater than zero.
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Exercise 2.26

Let |ψ〉 = ( |0〉 + |1〉)/
√

2. Write out |ψ〉⊗2 and |ψ〉⊗3 explicitly, both in terms of tensor products like

|0〉|1〉 and using the Kronecker product.

Solution

Concepts Involved: Linear Algebra, Tensor Products, Kronecker Products.

Using the definition of the tensor product, we have:

|ψ〉⊗2
=
|0〉|0〉+ |0〉|1〉+ |1〉|0〉+ |1〉|1〉

2
∼=


1√
2

[
1√
2

1√
2

]
1√
2

[
1√
2

1√
2

]
 =


1
2
1
2
1
2
1
2



|ψ〉⊗3
=
|0〉|0〉|0〉+ |0〉|0〉|1〉+ |0〉|1〉|0〉+ |0〉|1〉|1〉+ |1〉|0〉|0〉+ |1〉|0〉|1〉+ |1〉|1〉|0〉+ |1〉|1〉|1〉

2
√

2

= |ψ〉 ⊗ |ψ〉⊗2 ∼=



1√
2


1
2
1
2
1
2
1
2


1√
2


1
2
1
2
1
2
1
2




=



1
2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2



Exercise 2.27

Calculate the matrix representation of the tensor products of the Pauli operators (a) X and Z; (b) I and

X; (c)X and I. Is the tensor product commutative?

Solution

Concepts Involved: Linear Algebra, Tensor Products, Kronecker Products.

Using the Kronecker product, we have:
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(a)

X ⊗ Z =

[
0Z 1Z

1Z 0Z

]
=


0

[
1 0

0 −1

]
1

[
1 0

0 −1

]

1

[
1 0

0 −1

]
0

[
1 0

0 −1

]
 =


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0



(b)

I ⊗X =

[
1X 0X

0X 1X

]
=


1

[
0 1

1 0

]
0

[
0 1

1 0

]

0

[
0 1

1 0

]
1

[
0 1

1 0

]
 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0



(c)

X ⊗ I =

[
0I 1I

1I 0I

]
=


0

[
1 0

0 1

]
1

[
1 0

0 1

]

1

[
1 0

0 1

]
0

[
1 0

0 1

]
 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



Comparing (b) and (c), we conclude that the tensor product is not commutative.

Exercise 2.28

Show that the transpose, complex conjugation and adjoint operations distribute over the tensor product,

(A⊗B)∗ = A∗ ⊗B∗; (A⊗B)T = AT ⊗BT ; (A⊗B)† = A† ⊗B†.

Solution

Concepts Involved: Linear Algebra, Adjoints, Tensor Products, Kronecker Products.

Using the Kronecker product representaton of a⊗B, we have:

(A⊗B)∗ =


A11B A12B . . . A1nB

A21B A22B . . . A2nB
...

...
...

...

Am1B Am2B . . . AmnB


∗

=


A∗11B

∗ A∗12B
∗ . . . A∗1nB

∗

A∗21B
∗ A∗22B

∗ . . . A∗2nB
∗

...
...

...
...

A∗m1B
∗ A∗m2B

∗ . . . A∗mnB
∗

 = A∗ ⊗B∗
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(A⊗B)T =


A11B A12B . . . A1nB

A21B A22B . . . A2nB
...

...
...

...

Am1B Am2B . . . AmnB


T

=


A11B

T A21B
T . . . An1B

T

A12B
T A22B . . . An2B

T

...
...

...
...

A1mB
T A2mB

T . . . AnmB
T

 = AT ⊗BT .

The relation for the distributivity of the hermitian conjugate over the tensor product then follows from the

former two relations:

(A⊗B)† = ((A⊗B)T )∗ = (AT ⊗BT )∗ = (AT )∗ ⊗ (BT )∗ = A† ⊗B†

Exercise 2.29

Show that the tensor product of two unitary operators is unitary.

Solution

Concepts Involved: Linear Algebra, Unitary Operators, Tensor Products

Suppose A,B are unitary. Then, A†A = I and B†B = I. Using the result of the Exercise 2.28, we then

have that:

(A⊗B)†(A⊗B) = (A† ⊗B†)(A⊗B) = (A†A⊗B†B) = I ⊗ I

Exercise 2.30

Show that the tensor product of two Hermitian operators is Hermitian.

Solution

Concepts Involved: Linear Algebra, Hermitian Operators, Tensor Products

Suppose A,B are Hermitian. Then, A† = A and B† = B. Then, using the result of Exercise 2.28, we

have:

(A⊗B)† = A† ⊗B† = A⊗B

Exercise 2.31

Show that the tensor product of two positive operators is positive.
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Solution

Concepts Involved: Linear Algebra, Positive Operators

Suppose A,B are positive operators. We then have that 〈v|A|v〉 ≥ 0 and 〈w|B|w〉 ≥ 0. Therefore, for

any |v〉 ⊗ |w〉: (
|v〉 ⊗ |w〉, A⊗B(|v〉 ⊗ |w〉)

)
= 〈v|A|v〉〈w|B|w〉 ≥ 0

Exercise 2.32

Show that the tensor product of two projectors is a projector.

Solution

Concepts Involved: Linear Algebra, Projectors

Let P1, P2 be projectors. We then have that P 2
1 = P1 and P 2

2 = P2 by Exercise 2.16. Therefore:

(P1 ⊗ P2)2 = (P1 ⊗ P2)(P1 ⊗ P2) = P 2
1 ⊗ P2 = P1 ⊗ P2

so P1 ⊗ P2 is a projector.

Exercise 2.33

The Hadamard operator on one qubit may be written as

H =
1√
2

[(|0〉+ |1〉)〈0|+ (|0〉 − |1〉)〈1|]

Show explicitly that the Hadamard transform on n qubits, H⊗n, may be written as

H⊗n =
1√
2n

∑
x,y

(−1)x·y|x〉〈y|

Write out an explicit matrix representation for H⊗2

Solution

Concepts Involved: Linear algebra, Matrix Representation of Operators, Outer Products.

Looking at the form of the Hadamard operator on one qubit, we observe that:

H =
1√
2

[
|0〉〈0|+ |0〉〈1|+ |1〉〈0| − |1〉〈1|

]
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Hence:

H =
1√
2

∑
x,y

(−1)x·y|x〉〈y|

Where x, y run over 0 and 1. Taking the n-fold tensor product of this expression, we get:

H⊗ =
1√
2

∑
x,y

(−1)x·y|x〉〈y| ⊗ 1√
2

∑
x,y

(−1)x·y|x〉〈y| ⊗ . . .⊗ 1√
2

∑
x,y

(−1)x·y|x〉〈y|

=
1√
2n

∑
x,y

(−1)x·y|x〉〈y|

Where x,y are length n-binary strings. This proves the claim.

Now explicitly writing H⊗2, we have:

H⊗2 =
1√
22

∑
x,y

(−1)(x·y) |x〉〈y|

∼=
1

2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


Note that here, x,y are binary length 2 strings. The sum goes through all pairwise combinations of

x,y ∈ {00, 01, 10, 11}.

Remark: Sylvester’s Construction gives an interesting recursive construction of Hadamard matrices.

See https://en.wikipedia.org/wiki/Hadamard_matrix. Discussion on interesting (related) open

problem concerning the maximal determinant of matrices consisting of entries of 1 and −1 can be found

here https://en.wikipedia.org/wiki/Hadamard%27s_maximal_determinant_problem.

Exercise 2.34

Find the square root and logarithm of the matrix[
4 3

3 4

]

Solution

Concepts Involved: Linear Algebra, Spectral Decomposition, Operator Functions

We begin by diagonalizing the matrix (which we call A) as to be able to apply the definition of oper-

ator functions. By inspection, A is Hermitian as it is equal to its conjugate transpose, so the spectral
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decomposition exists. Solving for the eigenvalues, we consider the characterstic equation:

det(A− λI) = 0 =⇒ det

[
4− λ 3

3 4− λ

]
= 0 =⇒ (4− λ)2 − 9 = 0 =⇒ λ2 − 8λ+ 7 = 0

Using the quadratic equation, we get λ1 = 1, λ2 = 7. Using this to find the eigenvectors of the matrix,

we have: [
4− 1 3

3 4− 1

][
v11

v12

]
= 0 =⇒ v11 = 1, v12 = −1

[
4− 7 3

3 4− 7

][
v21

v22

]
= 0 =⇒ v21 = 1, v22 = 1

Hence our normalized eigenvectors are:

|v1〉 =

[
1√
2
−1√

2

]
, |v2〉 =

[
1√
2

1√
2

]

Therefore the spectral composition of the matrix is given by:

A = 1 |v1〉〈v1|+ 7 |v2〉〈v2|

Calculating the square root of A, we then have:

√
A =

√
1 |v1〉〈v1|+

√
7 |v2〉〈v2| =

1

2

[
1 −1

−1 1

]
+

√
7

2

[
1 1

1 1

]
=

1

2

[
1 +
√

7 −1 +
√

7

−1 +
√

7 1 +
√

7

]
.

Calculating the logarithm of A, we have:

log(A) = log(1) |v1〉〈v1|+ log(7) |v2〉〈v2| =
log(7)

2

[
1 1

1 1

]

Exercise 2.35: Exponential of Pauli matrices

Let v be any real, three-dimensional unit vector and θ a real number. Prove that

exp(iθv · σ) = cos(θ)I + i sin(θ)v · σ

Where v · σ ≡
∑3
i=1 viσi. This exercise is generalized in Problem 2.1 on page 117.

Solution

Concepts Involved: Linear Algebra, Spectral Decomposition, Operator Functions.

Recall that σ1 ≡ X,σ2 ≡ Y , and σ3 ≡ Z.
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First, we compute v · σ in matrix form:

v · σ = v1σ1 + v2σ2 + v3σ3 = v1

[
0 1

1 0

]
+ v2

[
0 −i
i 0

]
+ v3

[
1 0

0 −1

]
=

[
v3 v1 − iv2

v1 + iv2 −v3

]

In order to compute the complex exponential of this matrix, we will want to find its spectral decomposition.

Using the characterstic equation to find the eigenvalues, we have:

det(v · σ − Iλ) = 0 =⇒ det

[
v3 − λ v1 − iv2

v1 + iv2 −v3 − λ

]
= 0

=⇒ (v3 − λ)(−v3 − λ)− (v1 − iv2)(v1 + iv2) = 0

=⇒ λ2 − v2
3 − v2

1 − v2
2 = λ2 − (v2

1 + v2
2 + v2

3) = 0

=⇒ λ2 − 1 = 0

=⇒ λ1 = 1, λ2 = −1

where in the second-to-last implication we use the fact that v is a unit vector. Letting |v1〉, |v2〉 be the

associated eigenvectors, v · σ has spectral decomposition:

v · σ = |v1〉〈v1| − |v2〉〈v2|

Applying the complex exponentiation operator, we then have that:

exp(iθv · σ) = exp(iθ) |v1〉〈v1|+ exp(−iθ) |v2〉〈v2| .

Using Euler’s formula, we then have that:

exp(iθv · σ) = (cos θ + i sin θ) |v1〉〈v1|+ (cos θ − i sin θ) |v2〉〈v2|
= cos(θ)

(
|v1〉〈v1|+ |v2〉〈v2|

)
+ i sin(θ)

(
|v1〉〈v1| − |v2〉〈v2|

)
= cos(θ)I + i sin(θ)v · σ.

Where in the last line we use the completeness relation and the spectral decomposition.

Exercise 2.36

Show that the Pauli matrices except for I have trace zero.

Solution

Concepts Involved: Linear Algebra, Trace.
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We have that:

tr(X) = tr

[
0 1

1 0

]
= 0 + 0 = 0

tr(Y ) = tr

[
0 −i
i 0

]
= 0 + 0 = 0

tr(Z) = tr

[
1 0

0 −1

]
= 1− 1 = 0

Exercise 2.37: Cyclic property of the trace

If A and B are two linear operators show that

tr(AB) = tr(BA)

Solution

Concepts Involved: Linear Algebra, Trace.

Let A, B be linear operators. Then, C = AB has matrix representation with entries Cij =
∑
k AikBkj

and D = BA has matrix representation with entries Dij =
∑
k BikAkj . We then have that:

tr(AB) = tr(C) =
∑
i

Cii =
∑
i

∑
k

AikBki =
∑
k

∑
i

BkiAik =
∑
k

Dkk = tr(D) = tr(BA)

Exercise 2.38: Linearity of the trace

If A and B are two linear operators, show that

tr(A+B) = tr(A) + tr(B)

and if z is an arbitrary complex number show that

tr(zA) = z tr(A).

Solution

Concepts Involved: Linear Algebra, Trace.

From the definition of trace, we have that:

tr(A+B) =
∑
i

(A+B)ii =
∑
i

Aii +Bii =
∑
i

Aii +
∑
i

Bii = tr(A) + tr(B)
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tr(zA) =
∑
i

(zA)ii = z
∑
i

Aii = z tr(A)

Exercise 2.39: The Hilbert-Schmidt inner product on operators

The set LV of linear operators on Hilbert space V is obviously a vector space - the sum of two linear

operators is a linear operator, zA is a linear operator if A is a linear operator and z is a complex number,

and there is a zero element 0. An important additional result is that the vector space LV can be given a

natural inner product structure, turning it into a Hilbert space.

(1) Show that the function (·, ·) on LV × LV defined by

(A,B) ≡ tr
(
A†B

)
is an inner product function. This inner product is known as the Hilbert-Schmidt or trace inner

product.

(2) If V has d dimensions show that LV has dimension d2.

(3) Find an orthonormal basis of Hermitian matrices for the Hilbert space LV .

Solution

Concepts Involved: Linear Algebra, Trace, Inner Products, Hermitian Operators, Bases

(1) We show that (·, ·) satisfies the three properties of an inner product. Showing that it is linear in the

second argument, we have that:A,∑
i

λiBi

 = tr

A∑
i

λiBi

 =
∑
i

λi tr(ABi) =
∑
i

λi(A,Bi)

where in the second to last equality we use the result of Exercise 2.38. To see that it is conjugate-

symmetric, we have that:

(A,B) = tr
(
A†B

)
= tr

(
(B†A)†

)
= tr

(
B†A

)∗
= (B,A)∗

Finally, to show positive definitness, we have that:

(A,A) = tr
(
A†A

)
=
∑
i

∑
k

A†ikAki =
∑
i

∑
k

A∗kiAki =
∑
i

∑
k

|Aki|2 ≥ 0

so we conclude that (·, ·) is an inner product function.

(2) Suppose V has d dimensions. Then, the elements of LV which consist of linear operators A : V 7→ V

have representations as d × d matrices. There are d2 such linearly independent matrices (take the

matrices with 1 in one of the d2 entries and 0 elsewhere), and we conclude that LV has d2 linearly
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independent vectors and hence dimension d2.

(3) As discussed in the previous part of the question, one possible basis for this vector space would

be |vi〉〈vj | where |vk〉 form an orthonormal basis of V with i, j ∈ {1, . . . d}. These of course are

just matrices with 1 in one entry and 0 elsewhere. It is easy to see that this is a basis as for any

A ∈ LV we can write A =
∑
ij λij |vi〉〈vj |. We can verify that these are orthonormal; suppose

|vi1〉〈vj1 | 6= |vi2〉〈vj2 |. Then, we have that:(
|vi1〉〈vj1 | , |vi2〉〈vj2 |

)
= tr

(
( |vi1〉〈vj1 |)† |vi2〉〈vj2 |

)
= tr

(
|vj1〉〈vi1 |vi2〉〈vj2 |

)
If |vi1〉 6= |vi2〉, then the above expression reduces to tr(0) = 0. If |vi1〉 = |vi2〉, then it follows that

|vj1〉 6= |vj2〉 (else this would contradict |vi1〉〈vj1 | 6= |vi2〉〈vj2 |) and in this case we have that:(
|vi1〉〈vj1 | , |vi2〉〈vj2 |

)
= tr

(
|vj1〉〈vi1 |vi2〉〈vj2 |

)
= tr

(
|vj1〉〈vj2 |

)
= 0

So we therefore have that the inner product of two non-identical elements in the basis is zero.

Furthermore, we have that:(
|vi1〉〈vj1 | , |vi1〉〈vj1 |

)
= tr

(
|vi1〉〈vj1 | |vi1〉〈vj1 |

)
= tr

(
|vi1〉〈vi1 |

)
= 1

so we confirm that this basis is orthonormal. However, evidently this basis is not Hermitian as if

i 6= j, then ( |vi〉〈vj |)† = |vj〉〈vi| 6= |vi〉〈vj |. To fix this, we can modify our basis slightly. We keep

the diagonal entries as is (as these are indeed Hermitian!) but for the off-diagonals, we replace every

pair of basis vectors |vi〉〈vj |, |vj〉〈vi| with:

|vi〉〈vj |+ |vj〉〈vi|√
2

, i
|vi〉〈vj | − |vj〉〈vi|√

2
.

A quick verification shows that these are indeed Hermitian:(
|vi〉〈vj |+ |vj〉〈vi|√

2

)†
=

( |vi〉〈vj |)† + ( |vj〉〈vi|)†√
2

=
|vi〉〈vj |+ |vj〉〈vi|√

2(
i
|vi〉〈vj | − |vj〉〈vi|√

2

)†
= −i ( |vi〉〈vj |)

† − ( |vj〉〈vi|)†√
2

= i
|vi〉〈vj | − |vj〉〈vi|√

2

It now suffices to show that these new vectors (plus the diagonals) form a basis and are orthonormal.

To see that these form a basis, observe that:

1√
2

|vi〉〈vj |+ |vj〉〈vi|√
2

− i√
2

(
i
|vi〉〈vj | − |vj〉〈vi|√

2

)
= |vi〉〈vj |

1√
2

|vi〉〈vj |+ |vj〉〈vi|√
2

+
i√
2

(
i
|vi〉〈vj | − |vj〉〈vi|√

2

)
= |vj〉〈vi|

and since we know that |vi〉〈vj | for all i, j ∈ {1, . . . d} form a basis, this newly defined set of vectors
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must be a basis as well. Furthermore, since the new basis vectors are constructed from orthogonal

|vi〉〈vj |, the newly defined vectors will be orthogonal to each other if i1, j1 6= i2, j2. The only things

left to check is that for any choice of i, j that:

|vi〉〈vj |+ |vj〉〈vi|√
2

and i
|vi〉〈vj | − |vj〉〈vi|√

2
.

are orthogonal, and that these vectors are normalized. Checking the orthogonality, we have:(
|vi〉〈vj |+ |vj〉〈vi|√

2
, i
|vi〉〈vj | − |vj〉〈vi|√

2

)
= tr

((
|vi〉〈vj |+ |vj〉〈vi|√

2

)(
i
|vi〉〈vj | − |vj〉〈vi|√

2

))

=
i√
2

tr
(
|vj〉〈vj | − |vi〉〈vi|

)
= 0.

And checking the normalization, we have that:(
|vi〉〈vj |+ |vj〉〈vi|√

2
,
|vi〉〈vj |+ |vj〉〈vi|√

2

)
= tr

((
|vi〉〈vj |+ |vj〉〈vi|√

2

)(
|vi〉〈vj |+ |vj〉〈vi|√

2

))

=
1

2
tr
(
|vi〉〈vi|+ |vj〉〈vj |

)
= 1

(
i
|vi〉〈vj | − |vj〉〈vi|√

2
, i
|vi〉〈vj | − |vj〉〈vi|√

2

)
= tr

((
i
|vi〉〈vj | − |vj〉〈vi|√

2

)(
i
|vi〉〈vj | − |vj〉〈vi|√

2

))

= −1

2
tr
(
− |vi〉〈vi| − |vj〉〈vj |

)
= 1

Exercise 2.40: Commutation relations for the Pauli matrices

Verify the commutation relations

[X,Y ] = 2iZ; [Y,Z] = 2iX; [Z,X] = 2iY

There is an elegant way of writing this using εjkl, the antisymmetric tensor on three indices, for which

εjkl = 0 except for ε123 = ε231 = ε312 = 1, and ε321 = ε213 = ε132 = −1:

[σj , σk] = 2i

3∑
l=1

εjklσl

32



Solution

Concepts Involved: Linear Algebra, Commutators.

We verify the proposed relations via computation in the computational basis:

[X,Y ] = XY − Y X =

[
0 1

1 0

][
0 −i
i 0

]
−

[
0 −i
i 0

][
0 1

1 0

]
=

[
i 0

0 −i

]
−

[
−i 0

0 i

]
= 2iZ

[Y,Z] = Y Z − ZY =

[
0 −i
i 0

][
1 0

0 −1

]
−

[
1 0

0 −1

][
0 −i
i 0

]
=

[
0 i

i 0

]
−

[
0 −i
−i 0

]
= 2iX

[Z,X] = ZX −XZ =

[
1 0

0 −1

][
0 1

1 0

]
−

[
0 1

1 0

][
1 0

0 −1

]
=

[
0 1

−1 0

]
−

[
0 −1

1 0

]
= 2iY

Exercise 2.41: Anti-commutation relations for the Pauli matrices

Verify the anticommutation relations

{σi, σj} = 0

Where i 6= j are both chosen from the set 1, 2, 3. Also verify that (i = 0, 1, 2, 3)

σ2
i = I

Solution

Concepts Involved: Linear Algebra, Anticommutators.

We again verify the proposed relations via computation in the computational basis:

{X,Y } = XY + Y X =

[
0 1

1 0

][
0 −i
i 0

]
+

[
0 −i
i 0

][
0 1

1 0

]
=

[
i 0

0 −i

]
+

[
−i 0

0 i

]
=

[
0 0

0 0

]

{Y,Z} = Y Z + ZY =

[
0 −i
i 0

][
1 0

0 −1

]
+

[
1 0

0 −1

][
0 −i
i 0

]
=

[
0 i

i 0

]
+

[
0 −i
−i 0

]
=

[
0 0

0 0

]

{Z,X} = ZX +XZ =

[
1 0

0 −1

][
0 1

1 0

]
+

[
0 1

1 0

][
1 0

0 −1

]
=

[
0 1

−1 0

]
+

[
0 −1

1 0

]
=

[
0 0

0 0

]
.

This proves the first claim as {A,B} = AB + BA = BA + AB = {B,A} and the other 3 relations are
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equivalent to the ones already proven. Verifying the second claim, we have:

I2 =

[
1 0

0 1

][
1 0

0 1

]
=

[
1 0

0 1

]

X2 =

[
0 1

1 0

][
0 1

1 0

]
=

[
1 0

0 1

]

Y 2 =

[
0 −i
i 0

][
0 −i
i 0

]
=

[
1 0

0 1

]

Z2 =

[
1 0

0 −1

][
1 0

0 −1

]
=

[
1 0

0 1

]

Remark: Note that we can write this result consicely as {σj , σk} = 2δijI

Exercise 2.42

Verify that

AB =
[A,B] + {A,B}

2

Solution

Concepts Involved: Linear Algebra, Commutators, Anticommutators.

By algebraic manipulation we obtain:

AB =
AB +AB

2
+
BA−BA

2
=

(AB −BA) + (AB +BA)

2
=

[A,B] + {A,B}
2

Exercise 2.43

Show that for j, k = 1, 2, 3,

σjσk = δjkI + i

3∑
l=1

εjklσl.

Solution

Concepts Involved: Linear Algebra, Commutators, Anticommutators.
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Applying the results of Exercises 2.40, 2.41, and 2.42, we have:

σjσk =
[σj , σk] + {σj , σk}

2

=
2i
∑3
l=1 εjklσl + 2δijI

2

= δijI + i

3∑
l=1

εjklσl

Exercise 2.44

Suppose [A,B] = 0, {A,B} = 0, and A is invertible. Show that B must be 0.

Solution

Concepts Involved: Linear Algebra, Commutators, Anticommutators.

By assumption, we have that:

[A,B] = AB −BA = 0

{A,B} = AB +BA = 0.

Adding the first line to the second we have:

2AB = 0 =⇒ AB = 0.

A−1 exists by the invertibility of A, so multiplying by A−1 on the left we have:

A−1AB = A−10 =⇒ IB = 0 =⇒ B = 0.

Exercise 2.45

Show that [A,B]† = [B†, A†].

Solution

Concepts Involved: Linear Algebra, Commutators, Adjoints.

Using the properties of the adjoint, we have:

[A,B]† = (AB −BA)
†

= (AB)† − (BA)† = B†A† −A†B† = [B†, A†]
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Exercise 2.46

Show that [A,B] = −[B,A].

Solution

Concepts Involved: Linear Algebra, Commutators

By the definition of the commutator:

[A,B] = AB −BA = −(BA−AB) = −[B,A]

Exercise 2.47

Suppose A and B are Hermitian. Show that i[A,B] is Hermitian.

Solution

Concepts Involved: Linear Algebra, Commutators, Hermitian Operators

Suppose A,B are Hermitian. Using the results of Exercises 2.45 and 2.46, we have:

(i[A,B])† = −i([A,B])† = −i[B†, A†] = i[A†, B†] = i[A,B].

Exercise 2.48

What is the polar decomposition of a positive matrix P? Of a unitary matrix U? Of a Hermitian matrix,

H?

Solution

Concepts Involved: Linear Algebra, Polar Decomposition, Positive Operators, Unitary Operators, Her-

mitian Operators

If P is a positive matrix, then no calculation is required; P = IP = PI is the polar decomposition (as I is

unitary and P is positive). If U is a unitary matrix, then J =
√
U†U =

√
I = I and K =

√
UU† =

√
I = I

so the polar decomposition is U = UI = IU (where U is unitary and I is positive). If H is hermitian, we

then have that:

J =
√
H†H =

√
H2 =

√∑
i

λ2
i |i〉〈i| =

∑
i

|λi| |i〉〈i|

and K =
√
HH† =

∑
i |λi| |i〉〈i| in the same way. Hence the polar decomposition is H = U

∑
i |λi| |i〉〈i| =∑

i |λi| |i〉〈i|U .
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Exercise 2.49

Express the polar decomposition of a normal matrix in the outer product representation.

Solution

Concepts Involved: Linear Algebra, Polar Decomposition, Outer Products

Let A be a normal matrix. Then, A has spectral decomposition A =
∑
i λi |i〉〈i|. Therefore, we have that:

A†A = AA† =
∑
i

∑
i′

λiλ
∗
i′ |i〉〈i|

∣∣i′〉〈i′∣∣ =
∑
i

∑
i′

λiλ
∗
i′ |i〉〈i′| δii′ =

∑
i

|λi|2 |i〉〈i|

We then have that:

J =
√
A†A =

√∑
i

|λi|2 |i〉〈i| =
∑
i

|λi| |i〉〈i|

and K =
∑
i |λi| |i〉〈i| identically. Furthermore, U is unitary, so it also has a spectral decomposition of∑

j µj |j〉〈j|. Hence we have the polar decomposition in the outer product representation as:

A = UJ = KU

A = U
∑
i

|λi| |i〉〈i|
∑
j

=
∑
i

|λi| |i〉〈i|
∑
j

U

A =
∑
j

∑
i

µj |λi||j〉〈j|i〉〈i| =
∑
i

∑
j

|λi|µj |i〉〈i|j〉〈j|

Exercise 2.50

Find the left and right polar decompositions of the matrix[
1 0

1 1

]

Solution

Concepts Involved: Linear Algebra, Polar Decomposition.

Let A =

[
1 0

1 1

]
. We start with the left polar decomposition, and hence find J =

√
A†A. In order to do
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this, we find the spectral decompositions of A†A and AA†.

det
(
A†A− Iλ

)
= 0 =⇒ det

[1 1

0 1

][
1 0

1 1

]
−

[
λ 0

0 λ

] = 0 =⇒ det

[
2− λ 1

1 1− λ

]
= 0

=⇒ λ2 − 3λ+ 1 = 0

=⇒ λ1 =
3 +
√

5

2
, λ2 =

3−
√

5

2

Solving for the eigenvectors, we have:[
2− 3+

√
5

2 1

1 1− 3+
√

5
2

]
|v1〉 = 0 =⇒ |v1〉 =

[
1 +
√

5

2

]
[

2− 3−
√

5
2 1

1 1− 3−
√

5
2

]
|v2〉 = 0 =⇒ |v2〉 =

[
1−
√

5

2

]

Normalizing, we get:

|v1〉 =
1√

10 + 2
√

5

[
1 +
√

5

2

]
, |v2〉 =

1√
10− 2

√
5

[
1−
√

5

2

]

The spectral decomposition of A†A is therefore:

A†A = λ1 |v1〉〈v1|+ λ2 |v2〉〈v2|

Calculating J , we therefore have:

J =
√
A†A =

√
λ1 |v1〉〈v1|+

√
λ2 |v2〉〈v2| =

1√
5

[
3 1

1 2

]

The last equality is not completely trivial, but the algebra is tedious so we invite the reader to use a

symbolic calculator, as we have. We make the observation that:

A = UJ =⇒ U = AJ−1

So calculating J−1, we have:

J−1 =
1√
λ1

|v1〉〈v1|+
1√
λ2

|v2〉〈v2| =
1√
5

[
2 −1

−1 3

]

Where we again have used the help of a symbolic calculator. Calculating U , we then have that:

U = AJ−1 =

[
1 0

1 1

]
1√
5

[
2 −1

−1 3

]
=

1√
5

[
2 −1

1 2

]
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Hence the left polar decomposition of A is given by:

A = UJ =

 1√
5

[
2 −1

1 2

] 1√
5

[
3 1

1 2

]
We next solve for the right polar decomposition. We could repeat the procedure of solving for the spectral

decomposition of AA†, but we take a shortcut; since we know the K that satisfies:

A = KU

will be unique, and U is unitary, we can simply multiply both sides of the above equation on the right by

U−1 = U† to obtain K. Hence:

K = AU† =

[
1 0

1 1

]
1√
5

[
2 1

−1 2

]
=

1√
5

[
2 1

1 3

]
.

Therefore the right polar decomposition of A is given by:

A = KU =

 1√
5

[
2 1

1 3

] 1√
5

[
2 −1

1 2

]

Exercise 2.51

Verify that the Hadamard gate H is unitary.

Solution

Concepts Involved: Linear Algebra, Unitary Operators

We observe that:

H†H =
1√
2

[
1 1

1 −1

]
1√
2

[
1 1

1 −1

]
=

[
1 0

0 1

]

showing that H is indeed unitary.

Remark: The above calculation shows that H is also Hermitian and Idempotent.

Exercise 2.52

Verify that H2 = I.

39



Solution

Concepts Involved: Linear Algebra

See the calculation and remark in the previous exercise.

Exercise 2.53

What are the eigenvalues and eigenvectors of H?

Solution

Concepts Involved: Linear Algebra, Eigenvalues, Eigenvectors

Using the characteristic equation to find the eigenvalues, we have:

det(H − Iλ) = 0 =⇒ det

[
1√
2
− λ 1√

2
1√
2

− 1√
2
− λ

]
= 0 =⇒ λ2 − 1 = 0

=⇒ λ1 = 1, λ2 = −1

Finding the eigenvectors, we then have:[
1√
2
− 1 1√

2
1√
2

− 1√
2
− 1

]
|v1〉 = 0 =⇒ |v1〉 =

[
1 + 1√

2
1√
2

]
[

1√
2

+ 1 1√
2

1√
2

− 1√
2

+ 1

]
|v2〉 = 0 =⇒ |v2〉 =

[
−1 + 1√

2
1√
2

]

Normalizing, we have:

|v1〉 =
1√

2 +
√

2

[
1 + 1√

2
1√
2

]
, |v2〉 =

1√
2−
√

2

[
−1 + 1√

2
1√
2

]

Exercise 2.54

Suppose A and B are commuting Hermitian operators. Prove that exp(A) exp(B) = exp(A+B). (Hint:

Use the results of Section 2.1.9.)

Solution

Concepts Involved: Linear Algebra, Operator Functions, Simultaneous Diagonalization

Since A,B commute, they can be simulatneously diagonalized; that is, there exists some orthonormal

basis |i〉 of V such that A =
∑
i ai |i〉〈i| and B =

∑
i bi |i〉〈i|. Hence, using the definition of operator
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functions, we have that:

exp(A) exp(B) = exp

∑
i

ai |i〉〈i|

 exp

∑
i′

bi′ |i′〉〈i′|


=
∑
i

∑
i′

exp(ai) exp(bi′)|i〉〈i|i′〉〈i′|

=
∑
i

∑
i′

exp(ai) exp(bi′)|i〉〈i′|δii′

=
∑
i

exp(ai) exp(bi) |i〉〈i|

=
∑
i

exp(ai + bi) |i〉〈i|

= exp

∑
i

(ai + bi) |i〉〈i|


= exp(A+B)

Exercise 2.55

Prove that U(t1, t2) defined in Equation (2.91) is unitary.

Solution

Concepts Involved: Linear Algebra, Unitary Operators, Spectral Decomposition, Operator Functions.

Since the Hamiltonian H is Hermitian, it is normal and hence has spectral decomposition:

H =
∑
E

E |E〉〈E|

where all E are real by the Hermicity of H, and |E〉 is an orthonormal basis of the Hilbert space. We

then have that:

U(t1, t2) ≡ exp

[
−iH(t2 − t1)

~

]
= exp

[
−i
∑
E E |E〉〈E| (t2 − t1)

~

]
=
∑
E

exp

(
−iE(t2 − t1)

~

)
|E〉〈E|

41



Hence calculating U†(t1, t2) we have:

U†(t1, t2) =

∑
E

exp

(
−iE(t2 − t1)

~

)
|E〉〈E|

† =
∑
E

(
exp

(
−iE(t2 − t1)

~

))∗ (
|E〉〈E|

)†
=
∑
E

exp

(
iE(t2 − t1)

~

)
|E〉〈E|

Therefore computing U†(t1, t2)U(t2, t1) we have:

U†(t2, t1)U(t2, t1) =

∑
E

exp

(
−iE(t2 − t1)

~

)
|E〉〈E|

∑
E′

exp

(
iE′(t2 − t1)

~

)
|E′〉〈E′|


=
∑
E

∑
E′

exp

(
−iE(t2 − t1)

~

)
exp

(
iE′(t2 − t1)

~

)
δEE′ |E〉〈E′|

=
∑
E

exp

(
−iE(t2 − t1)

~

)
exp

(
iE(t2 − t1)

~

)
|E〉〈E|

=
∑
E

|E〉〈E|

= I

where in the second equality we use the fact that the eigenstates are orthogonal. We conclude that U is

unitary.

Exercise 2.56

Use the spectral decomposition to show that K ≡ −i log(U) is Hermitian for any unitary U , and thus

U = exp(iK) for some Hermitian K.

Solution

Concepts Involved: Linear Algebra, Hermitian Operators, Unitary Operators, Spectral Decomposition,

Operator Functions.

Suppose U is unitary. Then, U is normal and hence has spectral decomposition:

U =
∑
j

λj |j〉〈j|

where |j〉 are eigenvectors of U with eigenvalues λj , and |j〉 forms an orthonormal basis of the Hilbert

space. By Exercise 2.18, all eigenvalues of unitary operators have eigenvalues of modulus 1, so we can let

λj = exp
(
iθj
)

where θj ∈ R and hence write the above as:

U =
∑
j

exp
(
iθj
)
|j〉〈j|
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We then have that:

K ≡ −i log(U) = −i log

∑
j

exp
(
iθj
)
|j〉〈j|

 =
∑
j

−i log
(

exp
(
iθj
))
|j〉〈j| =

∑
j

−i(iθj) |j〉〈j|

=
∑
j

θj |j〉〈j|

We then observe that:

K† =

∑
j

θj |j〉〈j|

† =
∑
j

θj |j〉〈j|

as the θjs are real and (|j〉〈j|)† = |j〉〈j|. Hence K is Hermitian. Then, multiplying both sides in

K = −i log(U) by i and exponentiating both sides, we obtain the desired relation.

Exercise 2.57: Cascaded measurements are single measurements

Suppose {Ll} and {Mm} are two sets of measurement operators. Show that a measurement defined

by the measurement operators {Ll} followed by a measurement defined by the measurement operators

{Mm} is physically equivalent to a single measurement defined by measurement operators {Nlm} with

the representation Nlm ≡MmLl.

Solution

Concepts Involved: Linear Algebra, Quantum Measurement.

Suppose we have (normalized) initial quantum state |ψ0〉. Then, the state after measurement of Ll is

given by definition to be:

|ψ0〉 7→ |ψ1〉 =
Ll|ψ0〉√
〈ψ0|L†lLl|ψ0〉

.

The state after measurement of Mm on |ψ1〉 is then given to be:

|ψ1〉 7→ |ψ2〉 =
Mm|ψ1〉√

〈ψ1|M†mMm|ψ1〉
=

Mm

(
Ll|ψ0〉√

〈ψ0|L†lLl|ψ0〉

)
√√√√( L†l 〈ψ0|√

〈ψ0|L†lLl|ψ0〉

)
M†mMm

(
Ll|ψ0〉√

〈ψ0|L†lLl|ψ0〉

)

=
MmLl|ψ0〉√
〈ψ0|L†lLl|ψ0〉

√
〈ψ0|L†lLl|ψ0〉√

〈ψ0|L†lM
†
mMmL

†
l |ψ0〉

=
MmLl|ψ0〉√

〈ψ0|L†lM
†
mMmL

†
l |ψ0〉

.
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Conversely, the state of |ψ0〉 after measurement of Nlm = MmLl is given by:

|ψ0〉 7→ |ψ3〉 =
MmLl|ψ0〉√

〈ψ0|L†lM
†
mMmLl|ψ0〉

.

We see that |ψ2〉 = |ψ3〉 (that is, the cascaded measurment produces the same result as the single

measurement), proving the claim.

Exercise 2.58

Suppose we prepare a quantum system in an eigenstate |ψ〉 of some observable M with corresponding

eigenvalue m. What is the average observed value of M , and the standard deviation?

Solution

Concepts Involved: Linear Algebra, Quantum Measurement, Expectation, Standard Deviation.

By the definition of expectation, we have that:

〈M〉|ψ〉 = 〈ψ|M |ψ〉 = 〈ψ|m|ψ〉 = m〈ψ|ψ〉 = m

Where in the second equality we use that |ψ〉 is an eigenstate of M with eigenvalue m, and in the last

equality we use that |ψ〉 is a normalized quantum state. Next, calculating
〈
M2
〉
|ψ〉, we have:〈

M2
〉
|ψ〉

= 〈ψ|M2|ψ〉 = 〈ψ|MM |ψ〉 = 〈ψ|M†M |ψ〉 = 〈ψ|m∗m|ψ〉 = 〈ψ|m2|ψ〉 = m2〈ψ|ψ〉 = m2.

Note that we have used the fact that M is Hermitian (it is an observable) to use that M† = M and

m∗ = m as all eigenvalues of Hermitian operators are real. Now calculating the standard deviation, we

have:

∆(M) =

√
〈M2〉 − 〈M〉2 =

√
m2 − (m)2 = 0

Exercise 2.59

Suppose we have qubit in the state |0〉, and we measure the observable X. What is the average value of

X? What is the standard deviation of X?

Solution

Concepts Involved: Linear Algebra, Quantum Measurement, Projective Measurement, Expectation, Stan-

dard Deviation.

By the definition of expectation, we have:

〈X〉|0〉 = 〈0|X|0〉 = 〈0|1〉 = 0
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Next calculating
〈
X2
〉
|0〉, we have:〈

X2
〉
|0〉

= 〈0|XX|0〉 = 〈1|1〉 = 1

Hence the standard deviation of X is given by:

∆(X) =

√
〈X2〉 − 〈X〉2 =

√
1− 0 = 1

Exercise 2.60

Show that v ·σ has eigenvalues ±1, and that the projectors into the corresponding eigenspaces are given

by P± = (I ± v · σ)/2.

Solution

Concepts Involved: Eigenvalues, Projectors.

Let |v〉 be a unit vector. We already showed in Exercise 2.35 that v ·σ has eigenvalues λ+ = 1, λ− = −1.

We next prove a general statement; namely, that for a observable on a 2-dimensional Hilbert space with

eigenvalues λ± = ±1 has projectors

P± =
I ±O

2

To see this is the case, let P+ = |o+〉〈o+|, P− = |o−〉〈o−|, I = |o+〉〈o+| + |o−〉〈o−|, and O =

|o+〉〈o+| − |o−〉〈o−|. We then have that:

I +O

2
=
|o+〉〈o+| − |o−〉〈o−|

2
= |o+〉〈o+| = P+

I −O
2

=
|o−〉〈o−|+ |o−〉〈o−| − |o+〉〈o+|+ |o−〉〈o−|

2
= |o−〉〈o−| = P−

Hence the general statement is proven. Applying this to O = v ·σ (which is indeed Hermitian and hence

an observable as each of X,Y, Z are Hermitian), we get that:

P± =
I ± v · σ

2

as claimed.

Exercise 2.61

Calculate the probability of obtaining the result +1 for a measurement of v ·σ, given that the state prior

to measurement is |0〉. What is the state of the system after measurement if +1 is obtained?
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Solution

Concepts Involved: Quantum Measurement, Projective Measurement.

The probability of obtaining the result +1 is given by:

p(+) = 〈0|P+|0〉 = 〈0|I + v · σ
2

|0〉

We recall from from Exercise 2.35 that:

v · σ =

[
v3 v1 − iv2

v1 + iv2 −v3

]
= v3 |0〉〈0|+ (v1 − iv2) |0〉〈1|+ (v1 + iv2) |1〉〈0| − v3 |1〉〈1| .

Hence computing p(+), we get:

p(+) = 〈0|
(

1

2
|0〉+

1

2

(
v3|0〉+ (v1 + iv2)|1〉

))
= 〈0|

(
1 + v3

2
|0〉+

v1 + iv2

2
|1〉
)

=
1 + v3

2
〈0|0〉+

v1 + iv2

2
〈0|1〉 =

1 + v3

2

so the probability of measuring the +1 outcome is 1+v3
2 . The state after the measurement of the +1

outcome is given by:

|0〉 7→ P+|0〉√
p(+)

=
1+v3

2 |0〉+ v1+iv2
2 |1〉√

1+v3
2

=
1√

2(1 + v3)

(
(1 + v3)|0〉+ (v1 + iv2)|1〉

)

Exercise 2.62

Show that any measurement where the measurement operators and the POVM elements coincide is a

projective measurement.

Solution

Concepts Involved: Quantum Measurement, Projective Measurement, POVM Measurement.

Suppose we have that the measurement operators Mm are equal to the POVM elements Em. In this case,

we have that:

Mm = Em ≡M†mMm

M†mMm is positive by Exercise 2.25, so it follows that Mm is positive and hence Hermitian by Exercise

2.24. Hence, M†m = Mm, and therefore:

Mm = M†mMm = M2
m
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From which we conclude that Mm are projective measurement operators.

Exercise 2.63

Suppose a measurement is described by measurement operators Mm. Show that there exist unitary

operators Um such that Mm = Um
√
Em, where Em is the POVM associated to the measurement.

Solution

Concepts Involved: Quantum Measurement, POVM Measurement, Polar Decomposition.

Since Mm is a linear operator, by the left polar decomposition there exists unitary U such that:

Mm = U

√
M†mMm = U

√
Em,

where in the last equality we use that M†mMm = Em.

Exercise 2.64

(∗) Suppose Bob is given a quantum state chosen from a set |ψ1〉 , . . . , |ψm〉 of linearly independent

states. Construct a POVM {E1, E2, . . . , Em+1} such that if outcome Ei occurs, 1 ≤ i ≤ m, then Bob

knows with certainty that he was given the state |ψi〉. (The POVM must be such that 〈ψi|Ei|ψi〉 > 0

for each i.)

Solution

Concepts Involved: POVM Measurement, Orthogonality

Let H be the Hilbert space where the given states lie, and let V be the m-dimensional subspace spanned

by |ψ1〉, . . . , |ψm〉. For each i ∈ {1, . . . ,m}, let Wi be the subspace of V spanned by
{
|ψj〉 : j 6= i

}
. Let

W⊥i be the orthogonal complement of Wi which consists of all states in H orthogonal to all states in Wi.

We then have that any vector in V can be written as the sum of a vector in Wi and W⊥i ∩ V (see for

example Theorem 6.47 in Axler’s Linear Algebra Done Right). Therefore, for any |ψi〉 we can write:

|ψi〉 = |wi〉+ |pi〉

Where |wi〉 ∈ Wi and |pi〉 ∈ W⊥i ∩ V . Define Ei = |pi〉〈pi|
m . By construction, we have that for any

|ψ〉 ∈ H:

〈ψ|Ei|ψ〉 =

∣∣〈ψ|pi〉∣∣2
m

≥ 0

so the Eis are positive are required. Furthermore, defining Ei+1 = I −
∑m
i=1Ei we again see that for any

|ψ〉 ∈ H:

〈ψ|Ei+1|ψ〉 = 〈ψ|I|ψ〉 −
m∑
i=1

〈ψ|Ei|ψ〉 = 1−
m∑
i=1

〈ψ|Ei|ψ〉 ≥ 1−
m∑
i=1

1

m
= 0
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so Ei+1 is also positive as required. Finally, to see that the E1, . . . Em have the desired properties, observe

by construction that since |pi〉 ∈ W⊥i ∩ V , it follows that 〈ψj |pi〉 = 0 for any j 6= i (as the |pi〉 will be

orthogonal to all the vectors in
{
|ψj〉 : j 6= i

}
by construction). Calculating 〈ψi|Ei|ψi〉, we observe that:

〈ψi|Ei|ψi〉 =
(
〈wi|+ 〈pi|

) |pi〉〈pi|
m

(
|wi〉+ |pi〉

)
=

∣∣〈pi|pi〉∣∣2
m

=
1

m
≥ 0

so if Bob measures Ei, he can be certain that he was given the state |ψi〉.

Exercise 2.65

Express the states (|0〉 + |1〉)/
√

2 and (|0〉 − |1〉)/
√

2 is a basis in which they are not the same up to a

relative phase shift.

Solution

Concepts Involved: Linear Algebra, Phase

Let us define our basis to be |+〉 := (|0〉+ |1〉)/
√

2 and |−〉 := (|0〉 − |1〉)/
√

2. Our two states are then

just the basis vectors of this basis (|+〉, |−〉) and are not the same up to relative phase shift.

Exercise 2.66

Show that the average value of the observable X1Z2 for a two qubit system measured in the state

(|00〉+ |11〉)/
√

2 is zero.

Solution

Concepts Involved: Quantum Measurement, Expectation, Composite Systems

Computing the expectation value of X1Z2, we get:

〈X1Z2〉 =

(
〈00|+ 〈11|√

2

)
X1Z2

(
|00〉+ |11〉√

2

)
=

(
〈00|+ 〈11|√

2

)(
X1Z2|00〉+X1Z2|11〉√

2

)
=

(
〈00|+ 〈11|√

2

)(
|10〉 − |01〉√

2

)
=

1

2

(
〈00|10〉 − 〈00|01〉+ 〈11|10〉 − 〈11|01〉

)
=

1

2
(0 + 0 + 0 + 0)

= 0.
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Exercise 2.67

Suppose V is a Hilbert space with a subspace W . Suppose U : W 7→ V is a linear operator which

preserves inner products, that is, for any |w1〉 and |w2〉 in W ,

〈w1|U†U |w2〉 = 〈w1|w2〉

Prove that there exists a unitary operator U ′ : V 7→ V which extends U . That is, U ′ |w〉 = U |w〉 for all

|w〉 in W , but U ′ is defined on the entire space V . Usually we omit the prime symbol ′ and just write U

to denote the extension.

Solution

Concepts Involved: Linear Algebra, Inner Products, Unitary Operators

By assumption we have that U is unitary on W as 〈w1|U†U |w2〉 = 〈w1|w2〉 and hence U†U = IW .

Hence, it has spectral decomposition:

U =
∑
j

λj |j〉〈j|

where
{
|j〉
}

is an orthonormal basis of the subspace W . Then, let
{
|j〉
}
∪
{
|i〉
}

be an orthnormal basis

of the full space V . We then define:

U ′ =
∑
j

λj |j〉〈j|+
∑
i

|i〉〈i| = U +
∑
i

|i〉〈i|

We can then see that for any |w〉 ∈W that:

U ′|w〉 =

U +
∑
i

|i〉〈i|

 |w〉 = U |w〉+
∑
j

|i〉〈i|w〉 = U |w〉

where in the last line we use that 〈i|w〉 = 0 as |i〉 are not in the subspace W . Finally, verifying the

unitarity of U ′ we have that:

U ′†U ′ =

∑
j

λ∗j |j〉〈j|+
∑
i

|i〉〈i|

∑
j′

λj |j〉〈j|+
∑
i′

|i〉〈i|


=
∑
j

∑
j′

|j〉〈j|j′〉〈j′|+
∑
j

∑
i′

|j〉〈j|i′〉〈i′|+
∑
i

∑
j′

|i〉〈i|j′〉〈j′|+
∑
i

∑
i′

|i〉〈i|i′〉〈i′|

=
∑
j

∑
j′

〈j|j′〉δjj′ +
∑
i

∑
i′

〈i|i′〉δii′

=
∑
j

|j〉〈j|+
∑
i

|i〉〈i|

= I
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Exercise 2.68

Prove that |ψ〉 6= |a〉|b〉 for all single qubit states |a〉 and |b〉.

Solution

Concepts Involved: Linear Algebra, Composite Systems, Entanglement.

Recall that:

|ψ〉 =
|00〉+ |11〉√

2

Suppose for the take of contradiction that |ψ〉 = |a〉|b〉 for some single qubit states |a〉 and |b〉. Then, we

have that |a〉 = α|0〉+ β|1〉 and |b〉 = γ|0〉+ δ|1〉 for some α, β, γ, δ ∈ C such that |α|2 + |β|2 = 1 and

|γ|2 + |δ|2 = 1. We then have that:

|a〉|b〉 = (α|0〉+ β|1〉)(γ|0〉+ δ|1〉) = αγ|00〉+ αδ|01〉+ βγ|10〉+ βδ|11〉.

Where we have used the linearity of the tensor product (though we supress the ⊗ symbols in the above

expression). We then have that:

|ψ〉 =
|00〉+ |11〉√

2
= αγ|00〉+ αδ|01〉+ βγ|10〉+ βδ|11〉

which forces αδ = 0 and βγ = 0. However, we then have that at least one of αγ or βδ is also zero, and

we thus reach a contradiction.

Exercise 2.69

Verify that the Bell basis forms an orthonormal basis for the two qubit state space.

Solution

Concepts Involved: Linear Algebra, Orthogonality, Bases, Composite Systems.

Recall that the bell basis is given by:

|B00〉 =
|00〉+ |11〉√

2
, |B01〉

|00〉 − |11〉√
2

, |B10〉 =
|01〉+ |10〉√

2
, |B11〉 =

|01〉 − |10〉√
2
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We first verify orthonormality. We observe that:

〈B00|B00〉 =

(
〈00|+ 〈11|√

2

)(
|00〉+ |11〉√

2

)
=

1

2

(
〈00|00〉+ 〈00|11〉+ 〈11|00〉+ 〈11|11〉

)
= 1

〈B00|B01〉 =

(
〈00|+ 〈11|√

2

)(
|00〉 − |11〉√

2

)
=

1

2

(
〈00|00〉 − 〈00|11〉+ 〈11|00〉 − 〈11|11〉

)
= 0

〈B00|B10〉 =

(
〈00|+ 〈11|√

2

)(
|01〉+ |10〉√

2

)
=

1

2

(
〈00|01〉+ 〈00|10〉+ 〈11|01〉+ 〈11|10〉

)
= 0

〈B00|B11〉 =

(
〈00|+ 〈11|√

2

)(
|01〉 − |10〉√

2

)
=

1

2

(
〈00|01〉 − 〈00|10〉+ 〈11|01〉 − 〈11|10〉

)
= 0

〈B01|B01〉 =

(
〈00| − 〈11|√

2

)(
|00〉 − |11〉√

2

)
=

1

2

(
〈00|00〉 − 〈00|11〉 − 〈11|00〉+ 〈11|11〉

)
= 1

〈B01|B10〉 =

(
〈00| − 〈11|√

2

)(
|01〉+ |10〉√

2

)
=

1

2

(
〈00|01〉+ 〈00|10〉 − 〈11|01〉 − 〈11|10〉

)
= 0

〈B01|B11〉 =

(
〈00| − 〈11|√

2

)(
|01〉 − |10〉√

2

)
=

1

2

(
〈00|01〉 − 〈00|10〉 − 〈11|01〉+ 〈11|10〉

)
= 0

〈B10|B10〉 =

(
〈01|+ 〈10|√

2

)(
|01〉+ |10〉√

2

)
=

1

2

(
〈01|01〉+ 〈01|10〉+ 〈10|01〉+ 〈10|10〉

)
= 1

〈B10|B11〉 =

(
〈01|+ 〈10|√

2

)(
|01〉 − |10〉√

2

)
=

1

2

(
〈01|01〉 − 〈01|10〉+ 〈10|01〉 − 〈10|10〉

)
= 0

〈B11|B11〉 =

(
〈01| − 〈10|√

2

)(
|01〉 − |10〉√

2

)
=

1

2

(
〈01|01〉 − 〈01|10〉 − 〈10|01〉+ 〈10|10〉

)
= 1

so orthonormality is verified. We know show that it is a basis. Recall that we can write any vector |ψ〉 in

the 2 qubit state space as:

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉

where α, β, γ, δ ∈ C and |α|2 + |β|2 + |γ|2 + |δ|2 = 1. We then observe that this is equivalent to:(
α+ δ√

2

)
|B00〉+

(
α− δ√

2

)
|B01〉+

(
β + γ√

2

)
|B10〉+

(
β − γ√

2

)
|B11〉 (∗)

as: (
α+ δ√

2

)
|00〉+ |11〉√

2
+

(
α− δ√

2

)
|00〉 − |11〉√

2
+

(
β + γ√

2

)
|01〉+ |10〉√

2
+

(
β − γ√

2

)
|01〉 − |10〉√

2

=

(
α

2
+
α

2
+
δ

2
− δ

2

)
|00〉+

(
α

2
− α

2
+
δ

2
+
δ

2

)
|11〉

+

(
β

2
+
β

2
+
γ

2
− γ

2

)
|01〉+

(
β

2
− β

2
+
γ

2
+
γ

2

)
|10〉

= α|00〉+ β|01〉+ γ|10〉+ δ|11〉 = |ψ〉

Hence (∗) shows that the Bell states form a basis.
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Exercise 2.70

Suppose E is any positive operator acting on Alice’s qubit Show that 〈ψ|E ⊗ I|ψ〉 takes the same value

when |ψ〉 is any of the four Bell states. Suppose some malevolent third party (‘Eve’) intercepts Alice’s

qubit on the way to Bob in the superdense coding protocol. Can Eve infer anything about which of the

four possible bit strings 00, 01, 10, 11 Alice is trying to send? If so, how, or if not, why not?

Solution

Concepts Involved: Linear Algebra, Superdense Coding, Quantum Measurement

Let E be a positive operator. We have that E for a single qubit can be written as a linear combination

of the Pauli matrices:

E = a1I + a2X + a3Y + a4Z

To see that this is the case, consider that the vector space of linear operators acting on a single qubit

has dimension 4 (one easy way to see this is that the matrix representations of these operators have 4

entries). Hence, any set of 4 linearly independent linear operators form a basis for the space. As I,X, Y, Z

are linearly independent, it follows that they form a basis of the space of linear operators on one qubit.

Hence any E can be written as above (Remark: the above decomposition into Paulis is possible regardess

of whether E is positive or not).

We then have that:

〈B00|E ⊗ I|B00〉 =

(
〈00|+ 〈11|√

2

)
E ⊗ I

(
|00〉+ |11〉√

2

)
=

(
〈00|+ 〈11|√

2

)
(a1I + a2X + a3Y + a4Z)⊗ I

(
|00〉+ |11〉√

2

)
=

(
〈00|+ 〈11|√

2

)(
a1
|00〉+ |11〉√

2
+ a2

|10〉+ |01〉√
2

+ a3
i|10〉 − i|01〉√

2
+ a4

|00〉 − |11〉√
2

)
=

1

2
(a1 + a1 + a4 − a4)

= a1

where in the second last equality we use the orthonormality of
{
|00〉, |01〉, |10〉, |11〉

}
. Repeating the same

process for the other Bell states, we have:

〈B01|E ⊗ I|B01〉 =

(
〈00| − 〈11|√

2

)
(a1I + a2X + a3Y + a4Z)⊗ I

(
|00〉 − |11〉√

2

)
=

(
〈00| − 〈11|√

2

)(
a1
|00〉 − |11〉√

2
+ a2

|10〉 − |01〉√
2

+ a3
i|10〉+ i|01〉√

2
+ a4

|00〉+ |11〉√
2

)
=

1

2
(a1 + a1 + a4 − a4)

= a1
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〈B10|E ⊗ I|B10〉 =

(
〈01|+ 〈10|√

2

)
(a1I + a2X + a3Y + a4Z)⊗ I

(
|01〉+ |10〉√

2

)
=

(
〈01|+ 〈10|√

2

)(
a1
|01〉+ |10〉√

2
+ a2

|11〉+ |00〉√
2

+ a3
i|11〉 − i|00〉√

2
+ a4

|01〉 − |10〉√
2

)
=

1

2
(a1 + a1 + a4 − a4)

= a1

〈B01|E ⊗ I|B01〉 =

(
〈01| − 〈10|√

2

)
(a1I + a2X + a3Y + a4Z)⊗ I

(
|01〉 − |10〉√

2

)
=

(
〈01| − 〈10|√

2

)(
a1
|01〉 − |10〉√

2
+ a2

|11〉 − |00〉√
2

+ a3
i|11〉+ i|00〉√

2
+ a4

|01〉+ |10〉√
2

)
=

1

2
(a1 + a1 + a4 − a4)

= a1

Now, suppose that Eve intercepts Alice’s qubit. Eve cannot infer anything about which of the four

possible bit strings that Alice is trying to send, as any single-qubit measurement that Eve can perform on

the intercepted qubit will return the value:

〈ψ|M†M ⊗ I|ψ〉

Where M is the (single-qubit) measurement operator. But, M†M is positive, so by the above argument,

the measurement outcome will be the same regardless of which Bell state |ψ〉 is. Hence, Eve cannot obtain

the information about the bit string.

Exercise 2.71: Criterion to decide if a state is mixed or pure

Let ρ be a density operator. Show that tr
(
ρ2
)
≤ 1, with equality if and only if ρ is a pure state.

Solution

Concepts Involved: Linear Algebra, Trace, Density Operators, Pure States, Mixed States.

Recall that a density operator ρ is pure if:

ρ = |ψ〉〈ψ|

for some normalized quantum state vector |ψ〉.

Since ρ is a positive operator, by the spectral decomposition we have that:

ρ =
∑
i

pi |i〉〈i|

where pi ≥ 0 (due to positivity) and |i〉 are orthonormal. Furthermore, by the property of density operators,
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we have that tr(ρ) = 1, hence:

tr(ρ) = tr

∑
i

pi |i〉〈i|

 =
∑
i

pi tr
(
|i〉〈i|

)
=
∑
i

pi = 1

where in the second equality we use the linearity of the trace. We obtain that 0 ≤ pi ≤ 1 for each i.

Calculating ρ2, we have that:

ρ2 =

∑
i

pi |i〉〈i|

∑
i′

pi′ |i′〉〈i′|

 =
∑
i

∑
i′

pipi′ |i〉〈i|i′〉〈i| =
∑
i

∑
i′

pipi′ |i〉〈i′| δii′ =
∑
i

p2
i |i〉〈i|

Hence:

tr
(
ρ2
)

=
∑
i

p2
i tr
(
|i〉〈i|

)
=
∑
i

p2
i ≤

∑
i

pi = 1

where in the inequality we use the fact that p2
i ≤ pi as 0 ≤ pi ≤ 1. The inequality becomes an equality

when p2
i = pi, that is, when pi = 0 or pi = 1. In order for tr(ρ) = 1 to hold, we have that pi = 1 for

one i and zero for all others. Hence, ρ in this case is a pure state. Conversely, suppose ρ is a pure state.

Then:

tr
(
ρ2
)

= tr
(
|ψ〉〈ψ|ψ〉 〈ψ|

)
= tr

(
|ψ〉〈ψ|

)
= 1.

Exercise 2.72: Bloch sphere for mixed states

The Bloch sphere picture for pure states of a single qubit was introduced in Section 1.2. This description

has an important generalization to mixed states as follows.

(1) Show that an arbitrary density matrix for a mixed state qubit may be written as

ρ =
I + r · σ

2
,

Where r is a real three-dimensional vector such that ‖r‖ ≤ 1. This vector is known as the Bloch

vector for the state ρ.

(2) What is the Bloch vector representation for the state ρ = I/2?

(3) Show that a state ρ is pure if and only if ‖r‖ = 1.

(4) Show that for pure states the description of the Bloch vector we have given coincides with that in

Section 1.2.

Solution

Concepts Involved: Linear Algebra, Trace, Density Operators, Pure States, Mixed States
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(1) Since {I,X, Y, Z} form an basis the vector space of single-qubit linear operators, we can write (for

any ρ, regardless of whether it is a density operator or not):

ρ = a1I + a2X + a3Y + a4Z

for constants a1, a2, a3, a4 ∈ C. Since ρ is a Hermitian operator, we find that each of these constants

are actually real, as:

a1I + a2X + a3Y + a4Z = ρ = ρ† = a∗1I
† + a∗2X

† + a∗3Y
† + a∗4Z

† = a∗1I + a∗2X + a∗3Y + a∗4Z

Now, we require that tr(ρ) = 1 for any density operator, hence:

tr(ρ) = tr(a1I + a2X + a3Y + a4Z) = a1 tr(I) + a2 tr(X) + a3 tr(Y ) + a4 tr(Z) = 2a1 = 1

from which we obtain that a1 = 1
2 . Note that in the second equality we use the linearity of the

trace, and in the third equality we use that tr(I) = 2 and tr(σi) = 0 for i ∈ {1, 2, 3} (Exercise

2.36). Calculating ρ2, we have that:

ρ2 =
1

4
I +

a2

2
X +

a3

2
Y +

a4

2
Z +

a2

2
X + a2

2X
2 + a2a3XY + a2a4XZ

+
a3

2
Y + a3a2Y X + a2

3Y
2 + a3a4Y Z +

a4

2
Z + a4a2ZX + a4a3ZY + a2

4Z
2

Now, using that
{
σi, σj

}
= 0 for i, j ∈ {1, 2, 3}, i 6= j and that σ2

i = I for any i ∈ {1, 2, 3}
(Exercise 2.41), the above simplifies to:

ρ2 =

(
1

4
+ a2

2 + a2
3 + a2

4

)
I + a2X + a3Y + a4Z

Taking the trace of ρ2 we have that:

tr
(
ρ2
)

=

(
1

4
+ a2

2 + a2
3 + a2

4

)
tr(I) + a2 tr(X) + a3 tr(Y ) + a4 tr(Z) = 2

(
1

4
+ a2

2 + a2
3 + a2

4

)
From the previous exercise (Exercise 2.71) we know that tr

(
ρ2
)
≤ 1, so:

2

(
1

4
+ a2

2 + a2
3 + a2

4

)
≤ 1 =⇒ a2

2 + a2
3 + a2

4 ≤
1

4
=⇒

√
a2

2 + a2
3 + a2

4 ≤
1

2

Hence we can write:

ρ =
I + rxX + ryY + rzZ

2
=
I + r · σ

2

with ‖r‖ ≤ 1.

(2) The Bloch representation for the state ρ = I
2 is the above form with r = 0. This vector corresponds

to the center of the Bloch sphere, which is a maximally mixed state (tr
(
ρ2
)

is minimized, with

tr
(
ρ2
)

= 1
2 ).
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(3) From the calculation in part (1), we know that for any ρ:

tr
(
ρ2
)

= 2

(
1 + r2

x + r2
y + r2

z

4

)
=

1 + r2
x + r2

y + r2
z

2

if ‖r‖ = 1, then r2
x + r2

y + r2
z = 1. Hence, tr

(
ρ2
)

= 1 and ρ is pure by Exercise 2.71. Conversely,

suppose ρ is pure. Then, tr
(
ρ2
)

= 1, so:

1 + r2
x + r2

y + r2
z

2
= 1 =⇒ r2

x + r2
y + r2

z = 1 =⇒ ‖r‖ = 1.

(4) In section 1.2, we looked at states that lie on the surface of the Bloch sphere, which we parameterized

as:

|ψ〉 = cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉.

Calculating the density operator corresponding to |ψ〉, we have:

ρ = |ψ〉〈ψ| = cos2

(
θ

2

)
|0〉〈0|+ cos

(
θ

2

)
sin

(
θ

2

)
e−iϕ |0〉〈1|

+ cos

(
θ

2

)
sin

(
θ

2

)
eiϕ |1〉〈0|+ sin2

(
θ

2

)
|1〉〈1|

= cos2

(
θ

2

)
|0〉〈0|+ sin(θ)e−iϕ

2
|0〉〈1|+ sin(θ)eiϕ

2
|1〉〈0|+ sin2

(
θ

2

)
|1〉〈1|

Conversely, we have that (in the computational basis) our proposed form of ρ = I+r·σ
2 can be

represented as:

ρ =
1 + rz

2
|0〉〈0|+ rx − iry

2
|0〉〈1|+ rx + iry

2
|1〉〈0|+ 1− rz

2
|1〉〈1|

Solving for rx, ry, rz by equating the two expressions for ρ (using Euler’s formula and sin(2θ) =

2 cos(θ) sin(θ)), we have:

rx = cos(ϕ) sin(θ), ry = sin(ϕ) sin(θ), rz = 2 cos2

(
θ

2

)
− 1 = cos(θ)

Calculating ‖r‖ we have that:

‖r‖ =
√
r2
x + r2

y + r2
z =

√
cos2(ϕ) sin2(θ) + sin2(ϕ) cos2(θ) + cos2(θ)

=

√
sin2(θ) + cos2(θ)

= 1

so we see that indeed, the two definitions coincide for pure states (as ‖r‖ = 1).
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Exercise 2.73

(∗) Let ρ be a density operator. A minimal ensemble for ρ is an ensemble
{
pi, |ψi〉

}
containing a number

of elements equal to the rank of ρ. Let |ψ〉 be any state in the support of ρ. (The support of a Hermitian

operator A is the vector space spanned by the eigenvectors of A with non-zero eigenvalues.) Show that

there is a minimal ensemble for ρ that contains |ψ〉, and moreover that in any such ensemble |ψ〉 must

appear with probability

pi =
1

〈ψi| ρ−1 |ψi〉
,

where ρ−1 is defined to be the inverse of ρ, when ρ is considered as an operator acting only on the support

of ρ. (This definition removes the problem that ρ may not have an inverse.)

Solution

Concepts Involved: Below, we will use the unitary freedom in the ensemble for density matrices which

is also known as Uhlmann’s theorem. Specifically recall that ρ =
∑
i pi|ψi〉〈ψi| =

∑
j qj |ϕj〉〈ϕj | for

ensembles
{
pi, |ψi〉

}
and

{
qj , |ϕj〉

}
if and only if

√
pi |ψi〉 =

∑
j

uij
√
qj
∣∣ϕj〉

for some unitary matrix uij .

Using the spectral decomposition of the density matrix we have

ρ =

r∑
k=1

λk|k〉〈k| with λk > 0

where all the eigenvectors with eigenvalue 0 have been removed. Thus, the set of vectors S =
{
|k〉
}r
k=1

forms a spanning set set for the support of ρ. An element in the support of ρ can thus be decomposed as

|ψi〉 =
∑
k

cik|k〉 =
∑
k

〈k|ψi〉|k〉

Assuming that |ψi〉 occurs with probability pi, we can use the Uhlmann’s theorem quoted above to arrive

at the relation

√
pi|ψi〉

?
=
∑
k

uik
√
λk|k〉 =

√
pi
∑
k

〈k|ψi〉|k〉,

which allows us relate the elements of one of the columns (i th) of the unitary matrix to

uik
√
λk

?
=
√
pi〈k|ψi〉.
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Such a relation can always be satisfied for a unitary matrix with dimension r. As u is unitary, we have

∑
k

|uik|2 = 1 =⇒ 1 =
∑
k

pi〈ψi|k〉〈k|ψi〉
λk

=⇒ pi =
∑
k

λk
〈ψi|k〉〈k|ψi〉

=
1

〈ψi|
∑
k

1
λk
|k〉〈k|ψi〉

=
1

〈ψi|ρ−1|ψi〉
.

|ψj〉 = ρρ−1|ψi〉

: =

r∑
i=1

pi|ψi〉〈ψi|ρ−1|ψj〉

=

r∑
i=1

pi〈ψi|ρ−1|ψj〉|ψi〉.

But now note that {|ψj〉}rj=1 are linearly independent and |ψj〉 :=
∑r
i=1 δij |ψi〉.

=⇒ pi〈ψi|ρ−1|ψi〉 = 1.

Thus, the probability associated with the state |ψi〉 in the ensemble is given by

pi =
1

〈ψi|ρ−1|ψi〉
.

Remark:

Exercise 2.74

Suppose a composite of systems A and B is in the state |a〉 |b〉, where |a〉 is a pure state of system A,

and |b〉 is a pure state of system B. Show that the reduced density operator of system A alone in a pure

state.

Solution

Concepts Involved: Linear Algebra, Density Operators, Reduced Density Operators, Partial Trace, Pure

States.

Suppose we have |a〉|b〉 ∈ A ⊗ B. Then, the density operator of the combined system is given as

ρAB = (|a〉|b〉)(〈a|〈b|) = |a〉〈a| ⊗ |b〉〈b|. Calculating the reduced density operator of system A by tracing
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out system B, we have

ρA = trB(ρAB) = trB( |a〉〈a| ⊗ |b〉〈b|) = |a〉〈a| tr
(
|b〉〈b|

)
= |a〉〈a| 〈b|b〉 = |a〉〈a| .

Hence we find that ρA = |a〉〈a| is indeed a pure state.

Exercise 2.75

For each of the four Bell states, find the reduced density operator for each qubit.

Solution

Concepts Involved: Linear Algebra, Density Operators, Reduced Density Operators, Partial Trace.

For the bell state |B00〉, we have the density operator:

ρ =

(
|00〉+ |11〉√

2

)(
〈00|+ 〈11|√

2

)
=
|00〉〈00|+ |11〉〈00|+ |00〉〈11|+ |11〉〈11|

2

Obtaining the reduced density operator for qubit A, we have:

ρA = trB(ρ) =
trB( |00〉〈00|) + trB( |00〉〈11|) + trB( |11〉〈00|) + trB( |11〉〈11|)

2

=
|0〉〈0| 〈0|0〉+ |0〉〈1| 〈1|0〉+ |1〉〈0| 〈0|1〉+ |1〉〈1| 〈1|1〉

2

=
|0〉〈0|+ |1〉〈1|

2

=
I

2

Obtaining the reduced density operator for qubit B, we have:

ρB = trA(ρ) =
trA( |00〉〈00|) + trA( |00〉〈11|) + trA( |11〉〈00|) + trA( |11〉〈11|)

2

=
〈0|0〉 |0〉〈0|+ 〈1|0〉 |0〉〈1|+ 〈0|1〉 |1〉〈0|+ 〈1|1〉 |1〉〈1|

2

=
|0〉〈0|+ |1〉〈1|

2

=
I

2
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We repeat a similar process for the other four bell states. For |B01〉, we have:

ρ =

(
|00〉 − |11〉√

2

)(
〈00| − 〈11|√

2

)
=
|00〉〈00| − |00〉〈11| − |11〉〈00|+ |11〉〈11|

2

ρA =
trB( |00〉〈00|)− trB( |00〉〈11|)− trB( |11〉〈00|) + trB( |11〉〈11|)

2

=
|0〉〈0| 〈0|0〉 − |0〉〈1| 〈1|0〉 − |1〉〈0| 〈0|1〉+ |1〉〈1| 〈1|1〉

2

=
I

2

ρB =
trA( |00〉〈00|)− trA( |00〉〈11|)− trA( |11〉〈00|) + trA( |11〉〈11|)

2

=
〈0|0〉 |0〉〈0|+ 〈1|0〉 |0〉〈1|+ 〈0|1〉 |1〉〈0|+ 〈1|1〉 |1〉〈1|

2

=
I

2

For |B10〉, we have:

ρ =

(
|01〉+ |10〉√

2

)(
〈01|+ 〈10|√

2

)
=
|01〉〈01|+ |01〉〈10|+ |10〉〈01|+ |10〉〈10|

2

ρA =
trB( |01〉〈01|) + trB( |01〉〈10|) + trB( |10〉〈01|) + trB( |10〉〈10|)

2

=
|0〉〈0| 〈1|+〉 |0〉〈1| 〈0|1〉+ |1〉〈0| 〈1|0〉+ |1〉〈1| 〈0|0〉

2

=
I

2

ρB =
trA( |01〉〈01|) + trA( |01〉〈10|) + trA( |10〉〈01|) + trA( |10〉〈10|)

2

=
〈0|0〉 |1〉〈1|+ 〈1|0〉 |1〉〈0|+ 〈0|1〉 |0〉〈1|+ 〈1|1〉 |1〉〈1|

2

=
I

2
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Finally, for |B11〉 we have:

ρ =

(
|01〉 − |10〉√

2

)(
〈01| − 〈10|√

2

)
=
|01〉〈01| − |01〉〈10| − |10〉〈01|+ |10〉〈10|

2

ρA =
trB( |01〉〈01|)− trB( |01〉〈10|)− trB( |10〉〈01|) + trB( |10〉〈10|)

2

=
|0〉〈0| 〈1|−〉 |0〉〈1| 〈0|1〉 − |1〉〈0| 〈1|0〉+ |1〉〈1| 〈0|0〉

2

=
I

2

ρB =
trA( |01〉〈01|)− trA( |01〉〈10|)− trA( |10〉〈01|) + trA( |10〉〈10|)

2

=
〈0|0〉 |1〉〈1| − 〈1|0〉 |1〉〈0| − 〈0|1〉 |0〉〈1|+ 〈1|1〉 |1〉〈1|

2

=
I

2

Exercise 2.76

Extend the proof of the Schmidt decomposition to the case where A and B may have state space of

different dimensionality.

Solution

Concepts Involved: Schmidt Decomposition, Singular Value Decomposition.

Note that for this problem we will use a more general form of the Singular Value Decomposition than

proven in Nielsen and Chuang (that may have been encountered in a linear algebra course). Given an

arbitrary m× n rectangular matrix A, there exists an m×m unitary matrix U and n× n unitary matrix

V such that A = UΣV where Σ is a m × n rectangular diagonal matrix with non-negative reals on the

diagonal (see https://en.wikipedia.org/wiki/Singular_value_decomposition).

Let |m〉, |n〉 be orthonormal bases for A and B. We can then write:

A =
∑
mn

amn|m〉|n〉

for some m× n matrix of complex numbers a. Using the generalized SVD, we can write:

A =
∑
min

umidiivin|m〉|n〉

where dii is a rectangular diagonal matrix. We can then define |iA〉 =
∑
m umi |m〉, |iB〉 =

∑
n uin|n〉,

and λi = dii to yield the Schmidt decomposition. Note that we take i = min(m,n) and our sum only

has as many terms as the dimensionality of the smaller space.
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Exercise 2.77

(∗) Suppose ABC is a three component quantum system. Show by example that there are quantum

states |ψ〉 of such systems which can not be written in the form

|ψ〉 =
∑
i

λi|iA〉|iB〉|iC〉

where λi are real numbers, and |iA〉, |iB〉, |iC〉 are orthonormal bases of the respective systems.

Solution

Concepts Involved: Linear Algebra, Schmidt Decomposition.

Consider the state:

|ψ〉 = |0〉 ⊗ |B00〉 =
|000〉+ |011〉√

2

we claim that this state cannot be written in the form:

|ψ〉 =
∑
i

λi|iA〉|iB〉|iC〉

for orthonormal bases |iA〉, |iB〉, |iC〉. Suppose for the sake of contradiction that we could write it in this

form. We then make the observation that:

ρA = trBC( |ψ〉〈ψ|) =
∑
i

λ2
i |iA〉〈iA|

ρB = trAC( |ψ〉〈ψ|) =
∑
i

λ2
i |iB〉〈iB |

ρC = trAB( |ψ〉〈ψ|) =
∑
i

λ2
i |iC〉〈iC | .

From this, we conclude that if it is possible to write |ψ〉 in such a form, then the eigenvalues of the reduced

density matrices must all agree and be equal to λ2
i . Computing the density matrix of the proposted

|ψ〉 = |0〉 ⊗ |B00〉, we have:

ρ =
|000〉〈000|+ |000〉〈011|+ |011〉〈000|+ |011〉〈011|

2

Computing the reduced density matrices ρA and ρB , we find that:

ρA = trBC(ρ) = |0〉〈0|

ρB = trAC(ρ) =
|0〉〈0|+ |1〉〈1|

2
.

However, the former reduced density matrix has eigenvalues λ2
1 = 1, λ2

2 = 0, and the latter has λ2
1 = 1

2 ,

λ2
2 = 1

2 . This contradicts the fact that the λ2
i s must match.
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Remark: Necessary and Sufficient conditions for the tripartite (and higher order) Schmidt decompositions

can be found here https://arxiv.org/pdf/quant-ph/9504006.pdf.

Exercise 2.78

Prove that a state |ψ〉 of a composite system AB is a product state if and only if it has a Schmidt number

1. Prove that |ψ〉 is a product state if and only if ρA (and thus ρB) are pure states.

Solution

Concepts Involved: Linear Algebra, Schmidt Decomposition, Schmidt Number, Reduced Density Oper-

ators.

Suppose |ψ〉 is a product state. Then, |ψ〉 = |0A〉|0B〉 for some |0A〉, |0B〉, and we therefore have that

|ψ〉 has Schmidt number 1 (it is already written in Schmidt decomposition form, and has one nonzero λ).

Conversely, suppose |ψ〉 has Schmidt number 1. Then, |ψ〉 = 1|0A〉|0B〉+ 0|1A〉|1B〉 when writing |ψ〉 in

its Schmidt decomposition. Therefore, |ψ〉 = |iA〉|iB〉 and |ψ〉 is a product state.

Next, take any |ψ〉 and write out its Schmidt decomposition. We then get:

|ψ〉 =
∑
i

λi|iA〉|iB〉.

Hence:

ρ =
∑
i

λ2
i |iA〉〈iA| ⊗ |iB〉〈iB | .

Taking the partial trace of ρ to obtain ρA, we have:

ρA = trB(ρ) =
∑
i

λ2
i trB( |iA〉〈iA| ⊗ |iB〉〈iB |) =

∑
i

λ2
i |iA〉〈iA| tr

(
|iB〉〈iB |

)
=
∑
i

λ2
i |iA〉〈iA| .

Identically:

ρB = trA(ρ) =
∑
i

λ2
i |iB〉〈iB | .

Now, suppose that |ψ〉 is a product state. Then, |ψ〉 has Schmidt number 1. Hence, only one of λ1, λ2 is

nonzero. Hence, ρA = |iA〉〈iA| and ρB = |iB〉〈iB |, so ρA, ρB are pure. Conversely, suppose ρA, ρB are

pure. Then, we have that ρA = |iA〉〈iA| and ρB = |iB〉〈iB |, so it follows that one of λ1, λ2 in the above

equations for ρA, ρB must be zero. Therefore, |ψ〉 has Schmidt number 1, and is hence a product state.
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Exercise 2.79

Consider a composite system consisting of two qubits. Find the Schmidt decomposition of the states

|00〉+ |11〉√
2

;
|00〉+ |01〉+ |10〉+ |11〉

2
; and

|00〉+ |01〉+ |10〉√
3

Solution

Concepts Involved: Linear Algebra, Schmidt Decomposition, Reduced Density Matrices, Partial Trace.

For the first two expressions, by inspection we find that:

|00〉+ |11〉√
2

=
1√
2
|0〉|0〉+

1√
2
|1〉|1〉

|00〉+ |01〉+ |10〉+ |11〉
2

= 1|+〉|+〉+ 0|−〉|−〉

For the third expression, we require a little more work. We first note that the existence of the

Schmidt decomposition guarantees that the state |ψ〉 = |00〉+|01〉+|10〉√
3

can be written in the form

|ψ〉 =
∑2
i=1 λi|iA〉|iB〉 for some choice of orthonormal bases |iA〉, |iB〉. By the definition of reduced

density matrices/partial trace, we can make the observation that:

ρA = trB(ρ) = trB( |ψ〉〈ψ|) =

2∑
i=1

λ2
i |iA〉〈iA| trB( |iB〉〈iB |) =

2∑
i=1

λ2
i |iA〉〈iA|

and similarly that ρB =
∑2
i=1 λ

2
i |iB〉〈iB |. Hence, to find the Schmidt decomposition of |ψ〉, we can

compute the reduced density matrices and then solve for their eigenvalues λ2
i and eigenvectors |i〉. First

solving for ρ, we have:

ρ =
|00〉〈00|+ |00〉〈01|+ |00〉〈10|+ |01〉〈00|+ |01〉〈01|+ |01〉〈10|+ |10〉〈00|+ |10〉〈01|+ |10〉〈10|

3

Solving for the reduced density matrix ρA we have:

ρA = trB(ρ) =
2 |0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|

3
∼=

1

3

[
2 1

1 1

]

Solving for the eigenvalues and (normalized) eigenvectors, we have:

λ2
1 =

3 +
√

5

6
, |1A〉 =

1√
10 + 2

√
5

(
(1 +

√
5)|0〉+ 2|1〉

)
λ2

2 =
3−
√

5

6
, |2A〉 =

1√
10− 2

√
5

(
(1−

√
5)|0〉+ 2|1〉

)
.
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Next solving for the reduced density matrix ρB , we have:

ρB = trA(ρ) =
2 |0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|

3
∼=

1

3

[
2 1

1 1

]
.

This (of course) has the same eigenvectors and eigenvalues:

λ2
1 =

3 +
√

5

6
, |1B〉 =

1√
10 + 2

√
5

(
(1 +

√
5)|0〉+ 2|1〉

)
λ2

2 =
3−
√

5

6
, |2B〉 =

1√
10− 2

√
5

(
(1−

√
5)|0〉+ 2|1〉

)
.

Hence the Schmidt decomposition of |ψ〉 is given by:

|ψ〉 = λ1|1A〉|1B〉+ λ2|2A〉|2B〉

where the expressions for the eigenvalues/eigenvectors are given above.

Exercise 2.80

Suppose |ψ〉 and |ϕ〉 are two pure states of a composite quantum system with components A and B, with

identical Schmidt coefficients. Show that there are unitary transformations U on a system A and V on

system B such that |ψ〉 = (U ⊗ V )|ϕ〉.

Solution

Concepts Involved: Linear Algebra, Schmidt Decomposition, Unitary Operators.

We first prove a Lemma. Suppose we have two (orthonormal) bases
{
|i〉
}
,
{
|i′〉
}

of a (n-dimensional)

vector space A. We claim that the change of basis transformation U where |i′〉 = U |i〉 is unitary.

To see this is the case, let U =
∑
i |i′〉〈i|. By orthonormality, we see that U |i〉 = |i′〉 as desired.

Computing U†, we have that U† =
∑
i( |i′〉〈i|)† =

∑
i

∣∣i〉〈i′∣∣. By orthonormality, we then see that

U†U =
∑
i |i〉〈i| = I and hence U is unitary.

We now move onto the actual problem. By assumption, we can write |ψ〉 =
∑
i λi|iA〉|iB〉 and |ϕ〉 =∑

j λj |jA〉|jB〉 where λi = λj if i = j. By the lemma, there exists unitary change-of-basis matrices U, V

such that |iA〉 = U |jA〉 and |iB〉 = V |jB〉. Hence, we have that:

|ψ〉 =
∑
i

λi|iA〉|iB〉 =
∑
j

λj(U |jA〉)(V |jB〉) = (U ⊗ V )
∑
j

λj |jA〉|jB〉 = (U ⊗ V )|ϕ〉

which is what we wanted to prove.

Exercise 2.81: Freedom in purifications

Let |AR1〉 and |AR2〉 be two purifications of a state ρA to a composite system AR. Prove that there

exists a unitary transformation UR acting on system R such that |AR1〉 = (IA ⊗ UR)|AR2〉.
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Solution

Concepts Involved: Linear Algebra, Schmidt Decomposition, Purification, Unitary Operators

Let |AR1〉, |AR2〉 be two purifications of ρA to a composite system AR. We can write the orthonormal

decomposition of ρA as ρA =
∑
i pi |iA〉〈iA|, from which it follows that we can write:

|AR1〉 =
∑
i

√
pi|iA〉|iR〉

|AR2〉 =
∑
i

√
pi|iA〉|i′R〉

for some bases
{
|i〉
}
,
{
|i′〉
}

of R. By the Lemma proven in the previous exercise, the transformation UR
such that |i〉 = UR|i′〉 is unitary, so hence:

|AR1〉 =
∑
i

√
pi|iA〉|iR〉 =

∑
i

√
pi|iA〉(UR|i′R〉) =

∑
i

√
pi(IA|iA〉)(UR|i′R〉)

= (IA ⊗ UR)
∑
i

√
pi|iA〉|i′R〉

= (IA ⊗ UR)|AR2〉

which proves the claim.

Exercise 2.82

Suppose
{
pi, |ψi〉

}
is an ensemble of states generating a density matrix ρ =

∑
i pi|ψi〉〈ψi| for a quantum

system A. Introduce a system R with orthonormal basis |i〉.

(1) Show that
∑
i

√
pi|ψi〉|i〉 is a purification of ρ.

(2) Suppose we measure R in the basis |i〉, obtained outcome i. With what probability do we obtain

the result i, and what is the corresponding state of system A?

(3) Let |AR〉 be any purification of ρ to the system AR. Show that there exists an orthonormal basis

|i〉 in which R can be measured such that the corresponding post-measurement state for system A

is |ψi〉 with probability pi.

Solution

Concepts Involved: Linear Algebra, Purification, Schmidt Decomposition.
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(1) To verify that
∑
i

√
pi|ψi〉|i〉 is a purification, we see that:

trR


∑

i

√
pi|ψi〉|i〉

∑
j

√
pj〈ψj |〈j|


 =

∑
i

∑
j

√
pipj |ψi〉〈ψj | trR(|i〉〈j|)

=
∑
i

∑
j

√
pipj |ψi〉〈ψj |δij

=
∑
i

√
p2
i |ψi〉〈ψi|

=
∑
i

pi |ψi〉〈ψi|

= ρ

(2) We measure the observable Mi = IA⊗
∑
i Pi = IA⊗

∑
i |i〉〈i|. The probability of obtaining outcome

i is given by p(i) = 〈AR|(IA ⊗ Pi)|AR〉 (where |AR〉 =
∑
i

√
pi|ψi〉|i〉), which we can calculate to

be:

p(i) = 〈AR|(IA ⊗ |i〉〈i|)|AR〉

=

∑
j

√
pj〈ψj |〈j|

 (IA ⊗ |i〉〈i|)

∑
k

√
pk|ψk〉|k〉


=
∑
j

∑
j

√
pj
√
pk〈ψj |ψk〉δjiδik

= pi

The post measurement state is given by:

(IA ⊗ Pi)|AR〉√
p(i)

=
(IA ⊗ |i〉〈i|)

∑
j

√
pj |ψj〉|j〉

√
pi

=

∑
j

√
pj |ψj〉|j〉δij
√
pi

=

√
pi|ψi〉|i〉√

pi

= |ψi〉|i〉

so the corresponding state of system A is |ψi〉.

(3) Let |AR〉 be any purification of ρ to the combined system AR. We then have that |AR〉 has Schmidt

Decomposition:

|AR〉 =
∑
i

λi|iA〉|iR〉

for orthonormal bases |iA〉, |iR〉 of A and R respectively. Define a linear transformation U such that
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λi|iA〉 =
∑
j Uijpj |ψj〉. We then have that:

|AR〉 =
∑
i

∑
j

Uijpj |ψj〉

 |iR〉 =
∑
j

pj |ψj〉
∑
i

Uij |iR〉.

We note that we can move the Uij to system R as R has the same state space as A by construction.

Letting |j〉 =
∑
i Uij |iR〉 be our orthonormal basis of R, the claim follows (by part (2) of the

question.

Problem 2.1: Functions of the Pauli matrices

Let f(·) be any function from complex numbers to complex numbers. Let n be a normalized vector in

three dimensions, and let θ be real. Show

f(θn · σ) =
f(θ) + f(−θ)

2
I +

f(θ)− f(−θ)
2

n · σ

Solution

Concepts Involved: Linear Algebra, Spectral Decomposition, Operator Functions.

From Exercise 2.35, we recall that n · σ has spectral decomposition n · σ = |n+〉〈n+| − |n−〉〈n−|. We

then have that (by the definition of operator functions):

f(θn · σ) = f
(
θ( |n+〉〈n+| − |n−〉〈n−|)

)
= f(θ) |n+〉〈n+|+ f(−θ) |n−〉〈n−| .

We then use the fact proven in the solution to Exercise 2.60 that we can write the projectors P± = |n±〉〈n±|
in terms of the operator n · σ as:

|n±〉〈n±| =
I ± n · σ

2
.

Hence making this substitution we have:

f(θn · σ) = f(θ)

(
I + n · σ

2

)
+ f(−θ)

(
I − n · σ

2

)
.

Grouping terms, we obtain the desired relation:

f(θn · σ) =
f(θ) + f(−θ)

2
I +

f(θ)− f(−θ)
2

n · σ.

Remark:

Arguably, the most used application of the above identity in quantum information is when f(θn · σ) =
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exp
{
i(θ/2)n · σ

}
. In this case (as in Exercise 2.35), we have

exp
{
i(θ/2)n · σ

}
=

exp
{
θ/2
}

+ exp
{
−θ/2

}
2

I +
exp
{
θ/2
}
− exp

{
−θ/2

}
2

n · σ

= cos

(
θ

2

)
I + i sin

(
θ

2

)
n · σ .

Problem 2.2: Properties of Schmidt numbers

Suppose |ψ〉 is a pure state of a composite system with components A and B.

(1) Prove that the Schmidt number of |ψ〉 is equal to the rank of the reduced density matrix ρA ≡
trB(|ψ〉〈ψ|). (Note that the rank of a Hermitian operator is equal to the dimension of its support.)

(2) Suppose |ψ〉 =
∑
j |αj〉|βj〉 is a representation for |ψ〉, where |αj〉 and |βj〉 are (un-normalized)

states for systems A and B, respectively. Prove that the number of terms in a such a decomposition

is greater than or equal to the Schmidt number of |ψ〉, Sch(ψ).

(3) Suppose |ψ〉 = α|ϕ〉+ β|γ〉. Prove that

Sch(ψ) ≥
∣∣Sch(ϕ)− Sch(γ)

∣∣
Solution

Concepts Involved: Linear Algebra, Schmidt Decomposition, Schmidt Number, Reduced Density Oper-

ators.

(1) We write the Schmidt decomposed |ψ〉, and therefore the density matrix ρψ as:

|ψ〉 =
∑
i

λi |iA〉 |iB〉 =⇒ |ψ〉〈ψ| =
∑
ii′

λ2
i |iA〉〈iA| ⊗ |iB〉〈iB |

Taking the partial trace of subsystem B in the |iB〉 basis, we obtain the reduced density matrix ρA
to be:

ρA = trB(|ψ〉〈ψ|) =
∑
i

λ2
i |iA〉〈iA|

Sch(ψ) of the λis are nonzero, and therefore ρA has Sch(ψ) nonzero eigenvalues - therefore the

rank of its support is Sch(ψ).

(2) Suppose for the sake of contradiction that some decomposition |ψ〉 =
∑N
j=1

∣∣αj〉 ∣∣βj〉 had less terms

than the Schmidt decomposition of |ψ〉, i.e. N < Sch(ψ).

The density matrix of |ψ〉 is:

ρψ = |ψ〉〈ψ| =
N∑

j=1,k=1

∣∣αj〉〈αk∣∣⊗ ∣∣βj〉〈βk∣∣ (1)
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Tracing out subsystem B, we obtain the reduced density matrix of subsystem A:

ρA = TrB(ρψ) =

N∑
j=1,k=1

∣∣αj〉〈αk∣∣ 〈βj∣∣βk〉 (2)

where we have used that Tr
(
|β1〉〈β2|

)
= 〈β1|β2〉. From the above, it is clear that ρA has rank at

most N , as the support of ρA is spanned by
{
|α1〉 , . . . , |αN 〉

}
. But then the rank of ρA is less than

Sch(ψ), which contradicts our finding in part (a).

(3) If Sch(ϕ) = Sch(γ) then there is nothing to prove as Sch(ψ) is non-negative by definition. Suppose

then that Sch(ϕ) 6= Sch(γ). WLOG suppose Sch(ϕ) > Sch(γ). We can then write:

|ϕ〉 =
β

α
|γ〉 − 1

α
|ψ〉

If we Schmidt decompose |ϕ〉 and |ψ〉, we have written |ϕ〉 as the sum of Sch(γ) + Sch(ψ) (unnor-

malized) bipartite states. Applying the result from part (2) of this problem, we then have that:

Sch(ϕ) ≤ Sch(γ) + Sch(ψ)

which we rearrange to obtain:

Sch(ψ) ≥ Sch(ϕ)− Sch(γ) =
∣∣Sch(ϕ)− Sch(γ)

∣∣
which proves the claim.

Problem 2.3: Tsirelson’s inequality

Suppose Q = q · σ, R = r · σ, S = s · σ, T = t · σ, where q, r, s, and t are real unit vectors in three

dimensions. Show that

(Q⊗ S +R⊗ S +R⊗ T −Q⊗ T )2 = 4I + [Q,R]⊗ [S, T ]

Use this result to prove that

〈Q⊗ S〉+ 〈R⊗ S〉+ 〈R⊗ T 〉 − 〈Q⊗ T 〉 ≤ 2
√

2

so the violation of the Bell inequality found in Equation (2.230) is the maximum possible in quantum

mechanics.

Solution

Concepts Involved: Tensor Products, Commutators
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We first show that N2 = I for any N = n ·σ where n is a unit vector in three dimensions. We have that:

N2 = (

3∑
i=1

niσi)
2

= n2
1σ

2
1 + n2

2σ
2
2 + n2

3σ
2
3 + n1n2(σ1σ2 + σ2σ1) + n1n3(σ1σ3 + σ3σ1) + n2n3(σ2σ3 + σ3σ2)

By Exercise 2.41, σ2
i = I and

{
σi, σj

}
= 0 for i 6= j, so the above reduces to:

N2 = n2
1I + n2

2I + n2
3I = (n2

1 + n2
2 + n2

3)I = I

where we use the fact that n is of unit length. Using this fact, we have that:

(Q⊗ S +R⊗ S +R⊗ T −Q⊗ T )2 = Q2 ⊗ S2 +QR⊗ S2 +QR⊗ ST −Q2 ⊗ ST
+RQ⊗ S2 +R2 ⊗ S2 +R2 ⊗ ST −RQ⊗ ST
+RQ⊗ TS +R2 ⊗ TS +R2 ⊗ T 2 −RQ⊗ T 2

−Q2 ⊗ TS −QR⊗ TS −QR⊗ T 2 +Q2 ⊗ T 2

= I ⊗ I +QR⊗ I +QR⊗ ST − I ⊗ ST
+RQ⊗ I + I ⊗ I + I ⊗ ST −RQ⊗ ST
+RQ⊗ TS + I ⊗ TS + I ⊗ I −RQ⊗ I
− I ⊗ TS −QR⊗ TS −QR⊗ I + I ⊗ I
= 4I ⊗ I +RQ⊗ TS −RQ⊗ ST +QR⊗ ST −QR⊗ TS
= 4I +QR⊗ (ST − TS)−RQ⊗ (ST − TS)

= 4I + [Q,R]⊗ [S, T ]

which proves the first equation. We have that 〈4I〉 = 4 〈I〉 = 4. Since each of Q,R, S, T have eigenvalues

±1 (Exercise 2.35), we also ave that
〈
[Q,R]⊗ [S, T ]

〉
≤ 4 as the tensor product of commutators consists

of 4 terms, each of which has expectation less than or equal to 1. We therefore have by the linearity of

expectation (Exercise A1.4) that:〈
(Q⊗ S +R⊗ S +R⊗ T −Q⊗ T )2

〉
=
〈
4I + [QR]⊗ [S, T ]

〉
≤ 8.

Furthermore, we have that:〈
(Q⊗ S +R⊗ S +R⊗ T −Q⊗ T )

〉2 ≤ 〈(Q⊗ S +R⊗ S +R⊗ T −Q⊗ T )2
〉

so combining the two inequalities we obtain:〈
(Q⊗ S +R⊗ S +R⊗ T −Q⊗ T )

〉2 ≤ 8.

Taking square roots on both sides, we have:〈
(Q⊗ S +R⊗ S +R⊗ T −Q⊗ T )

〉
≤ 2
√

2
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and again by the linearity of expectation:

〈Q⊗ S〉+ 〈R⊗ S〉+ 〈R⊗ T 〉 − 〈Q⊗ T 〉 ≤ 2
√

2

which is the desired inequality.
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3 Introduction to computer science

Exercise 3.1: Non-computable processes in Nature

How might we recognize that a process in Nature computes a function not computable by a Turing

machine?

Solution

Concepts Involved: Turing Machines.

One criteria is natural phenomena that appear to be truly random; Turing machines as defined in the text

are deterministic (though there are probabilistic variations that would solve this issue) and hence would

not be able to compute a random function. From a more direct point, if a process in Nature was to

be found to compute a known non-computable problem (e.g. solve the Halting problem or the Tiling

problem) then we may conclude (trivially) that the process would not be computable. However since the

domain of inputs that we could provide top such a natural process would have to be finite, there would be

no concrete method in which one could actually test if such a process was truly computing a non-Turing

computable function (as a Turing machine that works on a finite subset of inputs for an uncomputable

problem could be devised).

Exercise 3.2: Turing numbers

Show that single-tape Turing machines can each be given a number from the list 1, 2, 3, . . . in such a way

that the number uniquely specifies the corresponding machine. We call this number the Turing number

of the corresponding Turing machine. (Hint: Every positive integer has a unique prime factorization

pa11 pa22 . . . pakk , where pi are distinct prime numbers, and a1, . . . ak are non-negative integers.)

Exercise 3.3: Turing machine to reverse a bit string

Describe a Turing machine which takes a binary number x as input, and outputs the bits of x in reverse

order. (Hint: In this exercise and the next it may help to use a multi-tape Turing machine and/or symbols

other than ., 0, 1 and the blank.)

Exercise 3.4: Turing machine to add modulo 2

Describe a Turing machine to add two binary numbers x and y modulo 2. The numbers are input on the

Turing machine tape in binary, in the form x, followed by a single blank, followed by a y. If one number

is not as long as the other then you may assume that it has been padded with leading 0s to make the two

numbers the same length.

Exercise 3.5: Halting problem with no inputs

Show that given a Turing machine M there is no algorithm to determine whether M halts when the input

to the machine is a blank tape.
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Exercise 3.6: Probabilistic halting problem

Suppose we number the probabilistic Turing machines using a scheme similar to that found in Exercise 3.2

and define the probabilistic halting function hp(x) to be 1 if machine x halts on input of x with probability

at least 1/2 and 0 if machine x halts on input of x with probability less than 1/2. Show that there is no

probabilistic Turing machine which can output hp(x) with probability of correctness strictly greater than

1/2 for all x.

Exercise 3.7: Halting oracle

Suppose a black box is made available to us which takes a non-negative integer x as input, and then

outputs the value of h(x), where h(·) is the halting function defined in Box 3.2 on page 130. This type

of black box is sometimes known as an oracle for the halting problem. Suppose we have a regular Turing

machine which is augmented by the power to call the oracle. One way of accomplishing this is to use a

two-tape Turing machine, and add an extra program instruction to the Turing machine which results in the

oracle being called, and the value of h(x) being printed on the second tape, where x is the current contents

of the second tape. It is clear that this model for computation is more powerful than the conventional

Turing machine model, since it can be used to compute the halting function. Is the halting problem for

this model of computation undecidable? That is, can a Turing machine aided by an oracle for the halting

problem decide whether a program for the Turing machine with oracle will halt on a particular input?

Exercise 3.8: Universality of NAND

Show that the NAND gate can be used to simulate the AND, XOR, and NOT gates, provides wires, ancilla bits

and FANOUT are available.

Solution

Concepts Involved: Logic Gates.

We start by showing how we can get a 1 qubit using two 0 ancilla bits and a NAND gate.

0

0
1

We will now show how to simulate the NOT, AND, and XOR gates. We note that we will use “1” to denote

as shorthand a 1 bit constructed using two ancilla bits (as above). a/b represent the input bits. We start

with the NOT gate.

a

1
¬a

Next, we simulate the AND gate.

a

b 1
a ∧ b

For the XOR simulated gate, we note that we first use FANOUT twice to copy both input bits.
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a

1

b

1

b

a

a⊕ b

Having simulated the three gates using the NAND gate only, we conclude that the NAND is universal.

Exercise 3.9

Prove that f(n) is O(g(n)) if and only if g(n) is Ω(f(n)). Deduce that f(n) is Θ(g(n)) if and only if

g(n) is Θ(f(n)).

Solution

Concepts Involved: Asymptotic Notation.

Suppose f(n) is O(g(n)). Then, there exists c > 0 such that for all n > n0, f(n) ≤ cg(n). Therefore,

we have 1
c > 0 such that for all n > n0, 1

cf(n) ≤ g(n). Hence, g(n) is Ω(f(n)). Conversely, if g(n) is

Ω(f(n)), there exists c > 0 such that for all n > n0, cf(n) ≤ g(n). Hence, we have 1
c > 0 such that for

all n > n0, f(n) ≤ 1
cg(n) and hence f(n) is O(g(n)).

Therefore, if f(n) is Θ(g(n)) then f(n) is O(g(n)) and Ω(g(n)), and by the above argument, g(n) is

O(f(n)) and Ω(f(n)) and hence g(n) is Θ(f(n)). The converse holds in the same way.

Exercise 3.10

Suppose g(n) is a polynomial of degree k. Show that g(n) is O(nl) for any l ≥ k.

Solution

Concepts Involved: Asymptotic Notation.

By assumption, g(n) = a0 + a1n
1 + a2n

2 + . . .+ akn
k with ak 6= 0. For n ≥ 1 we have that nl ≥ nk if

l ≥ k, and hence if l ≥ k we have that ain
l ≥ aini for all i ∈ {0, . . . , k}. Therefore, we have that:

(a0 + a1 + . . .+ ak)nl ≥ a0 + a1n
1 + . . .+ akn

k = g(n)

for n ≥ 1 and hence g(n) is O(nl).

Exercise 3.11

Show that log n is O(nk) for any k > 0.
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Solution

Concepts Involved: Asymptotic Notation.

Let k > 0 and c > 0. By the definition of the exponential we have that:

exp
(
cnk
)

=

∞∑
j=0

(ank)j

j!
=

∞∑
j=0

akjnkj

j!

now, there exists some j0 ∈ Z for which kj0 > 1. Since for n ≥ 0 the terms in the above sum are

non-negative, we find:

exp
(
cnk
)
≥ ckj0nkj0

j0!

Now, choose c sufficiently large such that ckj0 ≥ j0!. We then find that:

exp
(
cnk
)
≥ ckj0nkj0

j0!
≥ nkj0

Then for n ≥ 1 it follows that nkj0 ≥ n as kj0 ≥ 1 and so:

exp
(
cnk
)
≥ n

Since the logarithm is monotonic, we may take the log of both sides and preserve the inequality:

cnk ≥ log n

So we have shown that for any k > 0, there exists c > 0 such that for all n > 1, cnk ≥ log n. Hence,

log n is O(nk) for any k > 0.

Exercise 3.12: nlogn is super-polynomial

Show that nk is O(nlogn) for any k, but that nlogn is never O(nk).

Solution

Concepts Involved: Asymptotic Notation.

First, note that for any k, ek ≤ n for sufficiently large n > n0 and so k ≤ log n by monotonicity of the

logarithm. Therefore, for n > n0 it follows by monotonicity (of exponentiation) that nk ≤ nlogn and so

nk is O(nlogn).

Now, consider an arbitrary a > 0. It still follows for sufficiently large n > n0 that eak ≤ n and so

ak ≤ log n and nank ≤ nlogn. But for any c > 0 na > c for sufficiently large n and so:

cnk ≤ nlogn

So since for any c > 0 there exists some n′0 for which n > n′0 implies cnk ≤ nlogn, it follows that nlogn

is never O(nk).
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Exercise 3.13: nlogn is sub-exponential

Show that cn is Ω(nlogn) for any c > 1, but that nlogn is never Ω(cn).

Solution

Concepts Involved: Asymptotic Notation.

First note from Exercise 1.11 that log n is O(nk) for any k > 0. Specifically, take k = 1/2; then there

exists a > 0 such that for n > n0:

an1/2 ≥ log n

and therefore squaring both sides:

a2n ≥ log n log n = log nlogn

Now for any c > 1, we can define a′ = a2

log c > 0 and write:

na′ log c = log cna
′
≥ log nlogn

Exponentiating both sides preserves the inequality, and so:

cna
′

= ca
′
cn ≥ nlogn

and so there exists a constant 1
ca′

> 0 such that for n > n0, cn ≥ 1
ca′
nlogn and therefore cn is Ω(nlogn).

Now, let b > 0 be some arbitrarily small constant. For sufficiently large n, we have that na′logc+log b > 0

and so for sufficiently large n it further follows that:

log b+ na′ log c = log
(
bcna

′
)
≥ log nlogn

where a′ is defined as it was previously. Therefore exponentiating both sides:

bcna
′

= bca
′
cn ≥ nlogn

so for sufficiently large n, for any arbitrarily small constant b′ it follows that b′cn ≥ nlogn and so nlogn is

never Ω(cn).

Exercise 3.14

Suppose e(n) is O(f(n)) and g(n) is O(h(n)). Show that e(n)g(n) is O(f(n)h(n)).

Solution

Concepts Involved: Asymptotic Notation.

By assumption, we have that e(n) ≤ c1f(n) for some c1 > 0 and for all n > n1 and that g(n) ≤ c2h(n)

77



for some c2 > 0 and for all n > n2. Let n0 = maxn1, n2. We then have that for n > n0 that:

e(n)g(n) ≤ c1f(n)c2h(n) = (c1c2)(f(n)h(n))

so therefore e(n)g(n) is O(f(n)h(n)).

Exercise 3.15: Lower bound for compare-and-swap based sorts

Suppose an n element list is sorted by applying some sequence of compare-and-swap operations to the list.

There are n! possible initial orderings of the list. Show that after k of the compare-and-swap operations

have been applied, at most 2k of the possible initial orderings will have been sorted into the correct order.

Conclude that Ω(n log n) compare and swap operations are required to sort all possible initial orderings

into the correct order.

Solution

Concepts Involved: Asymptotic Notation, Compare-and-Swap.

We prove the first statement by induction. After 0 steps, we have that 1 = 20 out of the n! possible

orderings are already sorted. Let k ∈ N, k ≥ 0 and suppose that after k swaps, at most 2k of the initial

orderings have been sorted into the correct order. We now consider the state of the list after the k + 1th

swap. Each of the 2k initial orderings from the previous step are correctly sorted already (so the swap does

nothing), and there are a further 2k initial orderings that are one swap away from the 2k from the previous

step, and hence the k+ 1th swap will put 2k more initial orderings into the correct order. Therefore, after

2k+1 compare and swaps, there are at most 2k + 2k = 2k+1 possible initial orderings that are sorted into

the correct order. This proves the claim.

Using the above fact, we have that in order to have all n! possible initial orderings correct after k

steps that 2k ≥ n!. Taking logarithms on both sides, we have that log
(
2k
)
≥ log(n!) and hence k ≥

log(n!). Using Stirling’s approximation for factorials (https://en.wikipedia.org/wiki/Stirling%

27s_approximation), we have that:

k ≥ n log n− n log e+O(log n)

from which we conclude that k is Ω(n log n) and hence Ω(n log n) compare and swap operations are

required to sort all possible initial orderings into the correct order.

Exercise 3.16: Hard-to-compute functions exist

Show there exist Boolean functions on n inputs which require at least 2n/ log n logic gates to compute.

Exercise 3.17

Prove that a polynomial-time algorithm for finding the factors of a number m exists if and ony if the

factoring decision problem is in P.

Exercise 3.18

Prove that if coNP 6= NP then P 6= NP.
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Exercise 3.19

The Reachability problem is to determine whether there is a path between two specified vertices in a

graph. Show that Reachability can be solved using O(n) operations if the graph has n vertices. Use

the solution to Reachability to show that it is possible to decide whether a graph is connected in O(n2)

operations.

Exercise 3.20: Euler’s theorem

Prove Euler’s theorem. In particular, if each vertex has an even number of incident edges, give a construc-

tive procedure for finding an Euler cycle.

Exercise 3.21: Transitive property of reduction

Show that if a language L1 is reducible to the language L2 and the language L2 is reducible to L3 then

the language L1 is reducible to the language L3.

Exercise 3.22

Suppose L is complete for a complexity class, and L′ is another language in the complexity class such

that L reduces to L′. Show that L′ is complete for the complexity class.

Exercise 3.23

Show that SAT is NP-complete by first showing that the SAT is in NP, and then showing that CSAT

reduces to SAT.

Exercise 3.24: 2SAT has an efficient solution

Suppose ϕ is a Boolean formula in conjunctive normal form, in which each clause contains only two literals.

(1) Construct a (directed) graph G(ϕ) with directed edges in the following way: the vertices of G

correspond to variables xk and their negations ¬xj in ϕ. There is a (directed) edge (α, β) in G if

and only if the clause (¬α∨β) or the clause (β ∧¬α) is present in ϕ. Show that ϕ is not satisfiable

if and only if there exists a variable x such that there are paths from x and ¬x and from ¬x to x

in G(ϕ).

(2) Show that given a directed graph G containing n vertices it is possible to determine whether two

vertices v1 and v2 are connected in polynomial time.

(3) Find an efficient algorithm to solve 2SAT.

Exercise 3.25: PSPACE ⊆ EXP

The complexity class EXP (for exponential time) contains all decision problems which may be decided

by a Turing machine running in exponential time, that is time O(2n
k

), where k is any constant. Prove

that PSPACE ⊆ EXP. (Hint: If a Turing machine has l internal states, an m letter alphabet, and uses

space p(n), argue that the machine can exist in one of at most lmp(n) different states, and that if the

Turing machine is to avoid infinite loops then it must halt before revisiting a state.)
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Exercise 3.26: L ⊆ P

The complexity class L (for logarithmic space) contains all decision problems which may be decided by a

Turing machine running in logarithmic space, that is, in space O(log(n)). More precisely, the class L is

defined using a two-tape Turing machine. The first tape contains the problem instance, of size n, and is a

read-only tape, in the sense that only program lines which don’t change the contents of the first tape are

allowed. The second tape is a working tape which initially contains only blanks. The logarithmic space

requirement is imposed on the second, working tape only. Show that L ⊆ P.

Exercise 3.27: Approximation algorithm for VERTEX COVER

Let G = (V,E) be an undirected graph. Prove that the following algorithm finds a vertex cover for G

that is within a factor of two of being a minimial vertex cover.

V C = ∅
E′ = E

while E′ = ∅ do
let (α, β) be any edge of E′

V C = V C ∪ {α, β}
remove from E′ every edge incident on α or β

end

return VC

Exercise 3.28: Arbitrariness of the constant in the definition of BPP

Suppose k is a fixed constant, 1/2 < k ≤ 1. Suppose L is a language such that there exists a Turing

machine M with the property that whenever x ∈ L, M accepts x with probability at least k, and whenever

x /∈ L, M rejects x with probability at least k. Show that L ∈ BPP.

Exercise 3.29: Fredkin gate is self-inverse

Show that applying two consecutive Fredkin gates gives the same outputs as inputs.

Solution

Concepts Involved: Fredkin Gates. Recall the input/output table of the Fredkin gate:

Inputs Outputs

a b c a′ b′ c′

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 1 0 1

1 0 0 1 0 0

1 0 1 0 1 1

1 1 0 1 1 0

1 1 1 1 1 1
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We check for all possible 8 input states that applying the Fredkin gate returns the original input state.

F [F [(0, 0, 0)]] = F [(0, 0, 0)] = (0, 0, 0)

F [F [(0, 0, 1]] = F [(0, 0, 1)] = (0, 0, 1)

F [F [(0, 1, 0]] = F [(0, 1, 0)] = (0, 1, 0)

F [F [(0, 1, 1)]] = F [(1, 0, 1)] = (0, 1, 1)

F [F [(1, 0, 0)]] = F [(1, 0, 0)] = (1, 0, 0)

F [F [(1, 0, 1)]] = F [(0, 1, 1)] = (1, 0, 1)

F [F [(1, 1, 0)]] = F [(1, 1, 0)] = (1, 1, 0)

F [F [(1, 1, 1)]] = F [(1, 1, 1)] = (1, 1, 1)

We conclude that the Fredkin gate is self-inverse.

Exercise 3.30

Verify that the billiard ball computer in Figure 3.14 computes the Fredkin gate.

Exercise 3.31: Reversible half-adder

Construct a reversible circuit which, when two bits x and y are input, outputs (x, y, c, x⊕ y), where c is

the carry bit when x and y are odd.

Exercise 3.32: From Fredkin to Toffoli and back again

What is the smallest number of Fredkin gates needed to simulate a Toffoli gate? What is the smallest

number of Toffoli gates needed to simulate a Fredkin gate?

Problem 3.1: Minsky machines

A Minsky machine consists of a finite set of registers, r1, r2, . . . , rk, each capable of holding an arbitrary

non-negative integer, and a program, made up of orders of one of two types. The first type has the form:

The interpretation is that at point m in the program register rj is incremented by one, and execution

proceeds to point n in the program. The second type of order has the form:
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The interpretation is that at point m in the program, register rj is decremented if it contains a positive

integer, and execution proceeds to point n in the program. If register rj is zero then execution simply

proceeds to point p in the program. The program for the Minsky machine consists of a collection of such

orders, of a form like:

The starting and all possible halting points for the program are conventionally labeled zero. This program

takes the contents of register r1 and adds them to register r2, while decrementing r1 to zero.

(1) Prove that all (Turing) computable functions can be computed on a Minsky machine, in the sense

that given a computable function f(·) there is a Minsky machine program that when the registers

start in the state (n, 0, . . . , 0) gives as output (f(n), 0, . . . , 0).

(2) Sketch a proof that any function which can be computed on a Minsky machine, in the sense just

defined, can also be computed on a Turing machine.

Problem 3.2: Vector games

A vector game is specified by a finite list of vectors, all of the same dimension, and with integer co-

ordinates. The game is to start with a vector x of non-negative integer co-ordinates and to add to x

the first vector from the list which preserves the non-negativity of all the components, and to repeat this

process until it is no longer possible. Prove that for any computable function f(·) there is a vector game

which when started with the vector (n, 0, . . . , 0) reaches (f(n), 0, . . . , 0) (Hint: Show that a vector game

in k + 2 dimensions can simulate a Minsky machine containing k registers.)

Problem 3.3: Fractran

A Fractran program is defined by a list of positive rational numbers q1, . . . , qn. It acts on a positve integer

m by replacing it by qim where i is the least number such that qim is an integer. If there is ever a time

when there is no i such that qim is an integer, then execution stops. Prove that for any computable

function f(·) there is a Fractran program which when started with 2n reaches 2f(n) without going through

any intermediate powers of 2. (Hint: use the previous problem.)

Problem 3.4: Undecidability of dynamical systems

A Fractran program is essentially just a very simple dynamical system taking positive integers to positive

integers. Prove that there is no algorithm to decide whether such a dynamical system ever reaches 1.

Problem 3.5: Non-universality of two bit reversible logic

Suppose we are trying to build circuits using only one and two bit reversible logic gates, and ancilla bits.

Prove that there are Boolean functions which cannot be computed in this fashion. Deduce that the Toffoli
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gate cannot be simulated using one and two bit reversible gates, even with the aid of ancilla bits.

Problem 3.6: Hardness of approximation of TSP

Let r ≥ 1 and suppose that there is an approximation algorithm for TSP which is guaranteed to find the

shorted tour among n cities to within a factor r. Let G = (V,E) be any graph on n vertices. Define

an instance of TSP by identifying cities with vertices in V , and deefinign the distance between cities i

and j to be 1 if (i, j) is an edge of G, and to be dre|V | + 1 otherwise. Show that if the approximation

algorithm is applied to this instance of TSP then it returns a Hamiltonian cycle for G if one exists, and

otherwise returns a tour of length more than dre|V |. From the NP-completeness of HC it follows that no

such approximation algorithm can exist unless P = NP.

Problem 3.7: Reversible Turing machines

(1) Explain how to construct a reversible Turing machine that can compute the same class of functions

as is computable on an ordinary Turing machine. (Hint: It may be helpful to use a multi-tape

construction.)

(2) Give general space and time bounds for the operation of your reversible Turing machine, in terms

of the time t(x) and space s(x) required on an ordinary single-tape Turing machine to compute a

function f(x).

Problem 3.8: Find a hard-to-compute class of functions (Research)

Find a natural class of functions on n inputs which requires a super-polynomial number of Boolean gates

to compute.

Problem 3.9: Reversible PSPACE = PSPACE

It can be shown that the problem ‘quantified satisfiability’, or QSAT, is PSPACE-complete. That is, every

other language in PSPACE can be reduced to QSAT in polynomial time. The language QSAT is defined

to consist of all Boolean formulae ϕ in n variables x1, . . . , xn, and in conjunctive normal form, such that:

∃x1
∀x2
∃x3

. . . ∀xn
ϕ if n is even;

∃x1∀x2∃x3 . . . ∃xnϕ if n is odd.

Prove that a reversible Turing machine operating in polynomial space can be used to solve QSAT. Thus, the

class of languages decidable by a computer operating reversibly in polynomial space is equal to PSPACE.

Problem 3.10: Ancilla bits and efficiency of reversible computation

Let pm be the mth prime number. Outline the construction of a reversible circuit which, upon the input of

m and n such that n > m, outputs the product pmpn, that is (m,n) 7→ (pmpn, g(m,n)) where g(m,n)

is the final state of the ancilla bits used by the circuit. Estimate the number of ancilla qubits your circuit

requires. Prove that if a polynomial (in log n) size reversible circuit can be found that uses O(log(log n))

ancilla bits then the problem of factoring a product of two prime numbers is in P.
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4 Quantum circuits

Exercise 4.1

In Exercise 2.11, which you should do now if you haven’t already done it, you computed the eigenvectors of

the Pauli matrices. Find the points on the Bloch sphere which correspond to the normalized eigenvectors

of the different Pauli matrices.

Solution

Concepts Involved: Linear Algebra.

Recall that a single qubit in the state |ψ〉 = a|0〉+ b|1〉 can be visualized as a point (θ, ϕ) on the Bloch

sphere, where a = cos
(
θ/2
)

and b = eiϕ sin
(
θ/2
)
.

We recall from 2.11 that Z (and I) has eigenvectors |0〉, |1〉, X has eigenvectors |+〉 = |0〉+|1〉√
2
, |−〉 =

|0〉−|1〉√
2

, and Y has eigenvectors |y+〉 = |0〉+i|1〉√
2

, |y−〉 = |0〉−i|1〉√
2

. Expressing these vectors as points on the

Bloch sphere (using spherical coordinates), we have:

|0〉 ∼= (0, 0) ; |1〉 ∼= (π, 0) ; |+〉 ∼=
(
π

2
, 0

)
;

|−〉 ∼=
(
π

2
, π

)
; |y+〉 ∼=

(
π

2
,
π

2

)
; |y−〉 ∼=

(
π

2
,

3π

2

)
.

Exercise 4.2

Let x be a real number and A a matrix such that A2 = I. Show that

exp(iAx) = cos(x)I + i sin(x)A

Use this result to verify Equations (4.4) through (4.6).

Solution

Concepts Involved: Linear Algebra, Operator Functions.

Let |v〉 be an eigenvector of A with eigenvalue λ. It then follows that A2|v〉 = λ2|v〉, and furthermore

we have that A2|v〉 = I|v〉 = |v〉 by assumption. We obtain that λ2 = 1 and therefore the only possible

eigenvalues of A are λ = ±1. Let |v1〉, . . . , |vk〉 be the eigenvectors with eigenvalue 1 and |vk+1〉, . . . , |vn〉
be the eigenvectors with eigenvalue −1. By the spectral decomposition, we can write:

A =

k∑
i=1

|vi〉〈vi| −
n∑

i=k+1

|vi〉〈vi|
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so by the definition of operator functions we have:

exp(iAx) =

k∑
i=1

exp(ix) |vi〉〈vi|+
n∑

i=k+1

exp(−ix) |vi〉〈vi| .

By Euler’s identity we have:

exp(iAx) =

k∑
i=1

(
cos(x) + i sin(x)

)
|vi〉〈vi|+

n∑
i=k+1

(
cos(x)− i sin(x)

)
|vi〉〈vi| .

Grouping terms, we obtain:

exp(iAx) = cos(x)

n∑
i=1

|vi〉〈vi|+ i sin(x)

 k∑
i=1

|vi〉〈vi| −
n∑

i=k+1

|vi〉〈vi|

 .

Using the spectral decomposition and definition of I, we therefore obtain the desired relation:

exp(iAx) = cos(x)I + i sin(x)A.

Since all of the Pauli matrices satisfy A2 = I (Exercise 2.41), for θ ∈ R we can apply this obtained relation

to obtain:

exp
(
−iθX/2

)
= cos

(
θ

2

)
I − i sin

(
θ

2

)
X =

[
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

]

exp
(
−iθY/2

)
= cos

(
θ

2

)
I − i sin

(
θ

2

)
Y =

[
cos θ2 − sin θ

2

sin θ
2 cos θ2

]

exp
(
−iθZ/2

)
= cos

(
θ

2

)
I − i sin

(
θ

2

)
Z =

[
cos θ2 − i sin θ

2 0

0 cos θ2 − i sin θ
2

]
=

[
e−iθ/2 0

0 eiθ/2

]

which verifies equations (4.4)-(4.6).

Exercise 4.3

Show that, up to a global phase, the π/8 gate satisfies T = Rz(π/4)

Solution

Concepts Involved: Linear Algebra, Quantum Gates.

Recall that the T gate is defined as:

T =

[
1 0

0 exp
(
iπ/4

)]
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We observe that:

Rz(π/4) =

[
e−iπ/8 0

0 eiπ/8

]
= e−iπ/8

[
1 0

0 eiπ/4

]
= e−iπ/8T.

Exercise 4.4

Express the Hadamard gate H as a product of Rx and Rz rotations and eiϕ for some ϕ.

Solution

Concepts Involved: Linear algebra, Quantum Gates

We claim that H = Rz(π/2)Rx(π/2)Rz(π/2) up to a global phase of e−iπ/2. Doing a computation to

verify this claim, we see that:

Rz(π/2)Rx(π/2)Rz(π/2) =

[
e−iπ/4 0

0 eiπ/4

][
cos π4 −i sin π

4

−i sin π
4 cos π4

][
e−iπ/4 0

0 eiπ/4

]

=

[
e−iπ/4 0

0 eiπ/4

][
1√
2
− i√

2

− i√
2

1√
2

][
e−iπ/4 0

0 eiπ/4

]

=
1√
2

[
e−iπ/4 0

0 eiπ/4

][
e−iπ/4 −ieiπ/4
−ie−iπ/4 eiπ/4

]

=
1√
2

[
e−iπ/2 −i
−i eiπ/2

]

=
1√
2

[
e−iπ/2 −e−iπ/2
−e−iπ/2 eiπ/2

]

=
e−iπ/2√

2

[
1 1

1 −1

]
= e−iπ/2H
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Remark: If you are more algebraically minded, the following may appeal to you.

Rz(π/2)Rx(π/2)Rz(π/2) =
1

2
√

2
(1− iZ) (1− iX) (1− iZ)

=
1

2
√

2
(1− iZ − iX − ZX) (1− iZ)

=
1

2
√

2
(1− iZ − iX − ZX − iZ −XZ − 1 + iZXZ)

=
1

2
√

2
(−2iX − 2iZ) (using ZXZ = −X)

=: −iH

Exercise 4.5

Prove that (n̂ · σ)2 = I, and use this to verify Equation (4.8)

Solution

Concepts Involved: Linear Algebra

Expanding out the expression, we see that:

(n̂ · σ)2 = (nxX + nyY + nzZ)2

= n2
xX

2 + n2
yY

2 + n2
zZ

2 + nxny(XY + Y X) + nxnz(XZ + ZX) + nynz(Y Z + ZY )

Using the result from Exercise 2.41 that
{
σi, σj

}
= 0 if i 6= j and σ2

i = I, we have that:

(n̂ · σ)2 = (n2
x + n2

y + n2
z)I = I

where we use the fact that n̂ is a vector of unit length. With this shown, we can use the result of Exercise

4.2 to conclude that:

exp
(
−iθn̂ · σ/2

)
= cos

(
θ

2

)
− i sin

(
θ

2

)
(n̂ · σ)

which verifies equation (4.8).

Exercise 4.6: Bloch sphere interpretation of rotations

(∗) One reason why the Rn̂(θ) operators are referred to as rotation operators is the following fact, which

you are to prove. Suppose a single qubit has a state represented by the Bloch vector λ. Then, the effects

of the rotation Rn̂(θ) on the state is to rotate it by an angle θ about the n̂ axis of the Bloch sphere. This

fact explains the rather mysterious looking factors of two in the definition of the rotation matrices.
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Solution

Concepts Involved: Linear Algebra, Quantum Gates.

Let λ be an arbitrary Bloch vector. WLOG, we can express λ in a coordinate system such that n̂ is

aligned with the ẑ axis, so it suffices to consider how the state behaves under application Rz(θ). Let

λ = (λx, λy, λz) be the vector expressed in this coordinate system. By Exercise 2.72, the density operator

corresponding to this Bloch vector is given by:

ρ =
I + λ · σ

2

We now observe how ρ transforms under conjugation by Rz(θ):

Rz(θ)ρRz(θ)
† = Rz(θ)ρRz(−θ)

= Rz(θ)

(
I + λxX + λyY + λzZ

2

)
Rz(−θ)

Using that XZ = −ZX from Exercise 2.41, we make the observation that:

Rz(θ)X =

(
cos

(
θ

2

)
I − i sin

(
θ

2

)
Z

)
X

= X

(
cos

(
θ

2

)
I + i sin

(
θ

2

)
Z

)

= X

(
cos

(
−θ
2

)
I − i sin

(
−θ
2

)
Z

)
= XRz(−θ)

Similarly, we find that Rz(θ)Y = Rz(−θ)Y (same anticommutation) and that Rz(θ)Z = ZRz(θ) (all

terms commute). With this, the expression for Rz(θ)ρRz(θ)
† simplifies to:

Rz(θ)ρRz(θ)
† = Rz(θ)

(
I + λxX + λyY + λzZ

2

)
Rz(−θ)

=

(
IRz(θ) + λxXRz(−θ) + λyY Rz(−θ) + λzZRz(θ)

2

)
Rz(−θ)

=
I + λxXRz(−2θ) + λyY Rz(−2θ) + λzZ

2

Calculating each of the terms in the above expression, we have:

XRz(−2θ) = X

(
cos

(
−2θ

2

)
− i sin

(
−2θ

2

)
Z

)
= X

(
cos(θ) + i sin(θ)Z

)
= cos(θ)X + i sin(θ)XZ

= cos(θ)X + i sin(θ)(−iY )

= cos(θ)X + sin(θ)Y
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Y Rz(−2θ) = Y
(
cos(θ) + i sin(θ)Z

)
= cos(θ)Y + i sin(θ)Y Z

= cos(θ)Y + i sin(θ)(iX)

= cos(θ)Y − sin(θ)X.

Plugging these back into the expression for Rz(θ)ρRz(θ)
† and collecting like terms, we have:

Rz(θ)ρRz(θ)
† =

I + (λx cos(θ)− λy sin(θ))X + (λx sin(θ) + λy cos(θ))Y + λzZ

2
.

From this expression, we can read off the new Bloch vector λ′ after conjugation by Rz(θ) to be:

λ′ = (λx cos(θ)− λy sin(θ), λx sin(θ) + λy cos(θ), λz).

Alternatively, suppose we apply the 3-dimensional rotation matrix Az(θ) to the original bloch vector λ.

We have that:

Az(θ)λ =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1


λxλy
λz

 =

λx cos θ − λy sin θ

λx sin θ + λy cos θ

λz

 .
We see that we end up with the same resulting vector λ′. We conclude that the conjugation of ρ under

Rz(θ) has the equivalent effect to rotating the Bloch vector by θ about the ẑ-axis, and hence the effect

of Rn̂(θ) on a one qubit state is to rotate it by an angle θ about n̂.

Exercise 4.7

Show that XYX = −Y and use this to prove that XRy(θ)X = Ry(−θ).

Solution

Concepts Involved: Linear Algebra, Quantum Gates.

For the first claim, we use that XY = −Y X and X2 = I (Exercise 2.41) to obtain that:

XYX = −Y XX = −Y I = −Y.
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Using this, we have that:

XRy(θ)X = X

(
cos

(
θ

2

)
I − i sin

(
θ

2

)
Y

)
X

= cos

(
θ

2

)
XIX − i sin

(
θ

2

)
XYX

= cos

(
θ

2

)
I + i sin

(
θ

2

)
Y

= cos

(
−θ

2

)
I − i sin

(
−θ

2

)
Y

= Ry(−θ).

Exercise 4.8

An arbitrary single qubit unitary operator can be written in the form

U = exp(iα)Rn̂(θ)

for some real numbers α and θ, and a real three-dimensional unit vector n̂.

1. Prove this fact.

2. Find values for α, θ, and n̂ giving the Hadamard gate H.

3. Find values for α, θ, and n̂ giving the phase gate

S =

[
1 0

0 i

]

Solution

Concepts Involved: Linear Algebra, Unitary Operators, Quantum Gates

1. By definition, for any unitary operator U we have that U†U = I, so for any state vector 〈ψ|ψ〉 =

〈ψ|U†U |ψ〉. Therefore, all unitary Us are norm-preserving, and hence for a single qubit correspond

to some reflection/rotation in 3-dimensional space (up to a global phase factor). Hence, we can

write U = exp(iα)Rn̂(θ) for some n̂ (rotation axis), θ (rotation angle) and α (global phase).

2. Using the fact that H = X+Z√
2

, and that modulo a factor of i that X/Z correspond to rotations
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Rx(π) and Rz(π), we find that:

H =
iRx(π) + iRz(π)√

2
= i

(
2 cos

(
π
2

)
I − i sin

(
π
2

)
X − i sin

(
π
2

)
Z

√
2

)

= i

(
cos

(
π

2

)
I − i sin

(
π

2

)(
1√
2
X + 0Y +

1√
2
Z

))

= eiπ/2

(
cos

(
π

2

)
I − i sin

(
π

2

)(
1√
2
X + 0Y +

1√
2
Z

))

Note that in the second last equality we use that cos
(
π
2

)
= 0 and hence 2√

2
cos
(
π
2

)
= cos

(
π
2

)
. From

the last expression, we can read off using the definition of Rn̂(θ) that n̂ =
(

1√
2
, 0, 1√

2

)
, θ = π, and

α = π
2 .

3. We observe that:

Rz

(
π

2

)
=

[
e−iπ/4 0

0 eiπ/4

]
= e−iπ/4

[
1 0

0 i

]

Hence:

S = eiπ/4Rz

(
π

2

)
from which we obtain that n̂ = ẑ = (0, 0, 1), θ = π

2 , and α = π
4 .

Remark: For part (2), one just can use the definition

Rn̂(θ) ≡ exp
(
−iθn̂ · ~σ/2

)
= cos

(
θ

2

)
I − i sin

(
θ

2

)(
nxX + nyY + nzZ

)
,

and the fact H = (X + Z) /
√

2, to arrive at cos
(
θ
2

)
= 0, nx = nz = 1√

2
, ny = 0.

Exercise 4.9

Explain why any single qubit unitary operator may be written in the form (4.12).

Solution

Concepts Involved: Linear Algebra, Unitary Operators, Quantum Gates.

Recall that (4.12) states that we can write any single qubit unitary U as:

U =

[
ei(α−β/2−δ/2) cos γ2 −ei(α−β/2+δ/2) sin γ

2

ei(α+β/2−δ/2) sin γ
2 ei(α+β/2+δ/2) cos γ2

]

where α, β, γ, δ ∈ R.
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Let U be a single qubit unitary operator. We then have that U†U = I, so identifying:

U =

[
a b

c d

]
=
[
v1 v2

]
we obtain that: [

|a|2 + |c|2 a∗b+ c∗d

ab∗ + cd∗ |b|2 + |d|2

]
=

[
1 0

0 1

]

From the diagonal entries we obtain that |v1| = |v2| = 1 and from the off diagonal entries we obtain that

〈v1,v2〉 = 0 and hence the columns of U are orthonormal. From the fact that |v|1 is normalized, we can

parameterize the magnitude of the entries with γ ∈ R such that:

|a| = cos
γ

2
, |c| = sin

γ

2
.

From the orthogonality, we further obtain that b = −c∗ and d = a∗, from which we have that |b| = |c|
and |d| = |a|. Furthermore, (also from the orthogonality) we can parameterize arg(a) = −β2 −

δ
2 and

arg(b) = β
2 −

δ
2 For β, δ ∈ R. Finally, multiplying U by a complex phase eiα for α ∈ R preserves the

unitarity of U and the orthonormality of the colums. Combining these facts gives the form of (4.12) as

desired.

Exercise 4.10: X − Y decomposition of rotations

Give a decomposition analogous to Theorem 4.1 but using Rx instead of Rz.

Exercise 4.11

Suppose m̂ and n̂ are non-parallel real unit vectors in three dimensions. Use Theorem 4.1 to show that

an arbitrary single qubit unitary U may be written

U = eiαRn̂(β)Rm̂(γ)Rn̂(δ)

Exercise 4.12

Give A,B,C, and α for the Hadamard gate.

Solution

Concepts Involved: Linear Algebra, Decomposition of Rotations.

Recall that any single qubit unitary U can be written as U = eiαAXBXC where ABC = I and α ∈ R.

First, observe that we can write:

H =
1√
2

[
1 1

1 −1

]
= i

[
−i 0

0 i

][
1√
2

1√
2

−1√
2

1√
2

][
1 0

0 1

]
= eiπ/2Rz(π)Ry(−π/2)Rz(0)
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so defining A,B,C according to the proof of Corollary 4.2, we have:

A = Rz(π)Ry(−π/4)

B = Ry(π/4)Rz(−π/2)

C = Rz(−π/2)

and α = π
2 .

Exercise 4.13: Circuit identities

It is useful to be able to simplify circuits by inspection, using well-known identities. Prove the following

three identities:

HXH = Z; HYH = −Y ; HZH = X.

Solution

Concepts Involved: Linear Algebra, Quantum Gates.

By computation, we find:

HXH =
1

2

[
1 1

1 −1

][
0 1

1 0

][
1 1

1 −1

]
=

1

2

[
2 0

0 −2

]
=

[
1 0

0 −1

]
= Z

HYH =
1

2

[
1 1

1 −1

][
0 −i
i 0

][
1 1

1 −1

]
=

1

2

[
0 −2i

2i 0

]
= −

[
0 −i
i 0

]
= −Y

HZH =
1

2

[
1 1

1 −1

][
1 0

0 −1

][
1 1

1 −1

]
=

1

2

[
0 2

2 0

]
=

[
0 1

1 0

]
= X

Remark: Notice once we have proved HXH = Z, we can directly say HZH = H(HXH)H = X as

H2 = I. If one wants to prove everything algebraically, the following calculation suffices.

HXH :=
1

2
(X + Z)X (X + Z) =

1

2
(I + ZX) (X + Z) =

1

2
(X + Z + Z +XZX) = Z

HYH :=
1

2
(X + Z)Y (X + Z) =

1

2
(XY + ZY ) (X + Z) =

1

2
(XYX + ZXY + ZY X + ZY Z) = −Y

Exercise 4.14

Use the previous exercise to show that HTH = Rx(π/4), up to a global phase.

Solution

Concepts Involved: Linear Algebra, Quantum Gates.
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From Exercise 4.3, we know that T = Rz(π/4) up to a global phase e−iπ/8. We hence have that:

HTH = e−iπ/8HRz(π/4)H

= e−iπ/8H

(
cos

(
π

8

)
I − i sin

(
π

8

)
Z

)
H

= e−iπ/8

(
cos

(
π

8

)
I − i sin

(
π

8

)
X

)
= e−iπ/8Rx(π/4)

where in the second last equality we use the previous exercise, as well as the fact that HIH = H2 = I

from Exercise 2.52.

Exercise 4.15: Composition of single qubit operations

The Bloch representation gives a nice way to visualize the effect of composing two rotations.

(1) Prove that if a rotation through an angle β1 about the axis n̂1 is followed by a rotation through an

angle β2 about an axis n̂2, then the overall rotation is through an angle β12 about an axis n̂12 given

by

c12 = c1c2 − s1s2n̂1 · n̂2

s12n̂12 = s1c2n̂1 + c1s2n̂2 − s1s2n̂2 × n̂1,

where ci = cos
(
βi/2

)
, si = sin

(
βi/2

)
, c12 = cos

(
β12/2

)
, and s12 = sin

(
β12/2

)
.

(2) Show that if β1 = β2 and n̂1 = ẑ these equations simplify to

c12 = c2 − s2ẑ · n̂2

s12n̂12 = sc(ẑ + n̂2)− s2n̂2 × ẑ

Solution

Concepts Involved: Linear Algebra

(1) It suffices to show that Rn̂2
(β2)Rn̂1

(β1) is equivalent to Rn̂12
(β12).

Rn̂2
(β2)Rn̂1

(β1) = (c2I − is2n̂2 · σ) · (c1I − is1n̂1 · σ̂)

= c2c1I − i (c1s2n̂2 · σ + c2s1n̂1 · σ)− s2s1 (n̂2 · σ) · (n̂1 · σ)︸ ︷︷ ︸
(n̂2·n̂1)I + i(n̂2×n̂1)·σ

=
[
c2c1 − s2s1 (n̂2 · n̂1)

]
I − i

[
c1s2n̂2 + c2s1n̂1 + s2s1 (n̂2 × n̂1)

]
· σ

Identifying this operation to a single rotation Rn̂12(β12) ≡ c12I − is12n̂12 · σ, we arrive at the

required relations (up to a presumable typesetting error)
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c12 = c2c1 − s2s1 (n̂2 · n̂1)

s12n̂12 = c1s2n̂2 + c2s1n̂1 + s2s1 (n̂2 × n̂1)

(2) Setting β1 = β2 and n̂1 = ẑ in the formulas proven above combined with the fact that c = c1 =

cos
(
β1/2

)
= cos

(
β2/2

)
= c2 (and similiarly s = s1 = s2), we have:

c12 = c2 − s2ẑ · n̂2

s12n̂12 = scẑ + csn̂2 − s2n̂2 × ẑ = sc(ẑ + n̂2)− s2n̂2 × ẑ.

Remark: For the sake of completeness, we provide a proof of the identity used in part 1 of the solution.

First note the familiar Pauli matrix relation σiσj = δijI + iεijkσk (Exercise 2.43). Now massaging this

equation gives

aiσibjσj = aibjδij + i
(
aibjεijk

)
σk

= (a · b) I + i (a× b)k σk,

where we have used standard Einstein index notation. Thus in matrix form, we have

(a · σ) · (b · σ) = (a · b) I + i (a× b) · σ .

Exercise 4.16

What is the 4× 4 unitary matrix for the circuit

x2 H

x1

in the computational basis? What is the unitary matrix for the circuit

x2

x1 H

Solution

Concepts Involved: Linear Algebra, Quantum Gates, Tensor Products.

The unitary matrix for the first circuit is given by:

I1 ⊗H2 =

[
1 0

0 1

]
⊗ 1√

2

[
1 1

1 −1

]
=

1√
2


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

 .
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The unitary matrix for the second circuit is given by:

H1 ⊗ I2 =
1√
2

[
1 1

1 −1

]
⊗

[
1 0

0 1

]
=

1√
2


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1



Exercise 4.17: Building a CNOT from controlled-Z gates

Construct a CNOT gate from one controlled-Z gate, that is, the gate whose action in the computational

basis is specified by the unitary matrix 
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


Solution

Concepts Involved: Linear Algebra, Quantum Gates, Controlled Operations.

We showed in Exercise 4.13 that HZH = X. Hence, to obtain a CNOT gate from a single controlled Z

gate, we can conjugate the target qubit with Hadamard gates:

c

t H Z H

=
c

t

We can verify this via matrix multiplication, using the result from the previous exercise:

(I1 ⊗H2)(CZ1,2)(I1 ⊗H2) =
1

2


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1



=
1

2


2 0 0 0

0 2 0 0

0 0 0 2

0 0 2 0


= CX1,2
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Remark:

CX1,2 : = |0〉〈0| ⊗ I + |0〉〈0| ⊗X
= |0〉〈0| ⊗HH + |0〉〈0| ⊗HZH
=: (I ⊗H)(CZ1,2)(I ⊗H).

Exercise 4.18

Show that

Z

=
Z

Solution

Concepts Involved: Linear Algebra, Quantum Gates, Controlled Operations.

It suffices to verify that the two gates have the same effect on the 2-qubit computational basis states (as

it will then follow by linearity that they will have the same effect on any such superposition of the basis

states). Checking the 8 necessary cases, we then have that:

CZ1,2(|0〉1 ⊗ |0〉2) = |0〉1 ⊗ |0〉2
CZ2,1(|0〉1 ⊗ |0〉2) = |0〉1 ⊗ |0〉2
CZ1,2(|1〉1 ⊗ |0〉2) = |1〉1 ⊗ Z|0〉2 = |1〉1 ⊗ |0〉2
CZ2,1(|1〉1 ⊗ |0〉2) = |1〉1 ⊗ |0〉2
CZ1,2(|0〉1 ⊗ |1〉2) = |0〉1 ⊗ |1〉2
CZ2,1(|0〉1 ⊗ |1〉2) = Z|0〉1 ⊗ |1〉2 = |0〉1 ⊗ |1〉2
CZ1,2(|1〉1 ⊗ |1〉2) = |1〉1 ⊗ Z|1〉2 = |1〉1 ⊗−|1〉2 = −(|1〉1 ⊗ |1〉1)

CZ2,1(|1〉1 ⊗ |1〉2) = Z|1〉1 ⊗ |1〉2 = −|1〉1 ⊗ |1〉2 = −(|1〉1 ⊗ |1〉1)

from which we observe equality for each. The claim follows.

Remark: More compactly, we have CZ1,2|b1b2〉 = |b1〉 ⊗ Zb1 |b2〉 = (−1)b1.b2 |b1b2〉 for computational

basis states b1, b2 ∈ {0, 1}.
Using this form we can write

CZ1,2|b1b2〉 = (−1)b1.b2 |b1b2〉
= (−1)b2.b1 |b1b2〉
= Zb2 |b1〉 ⊗ |b2〉
=: CZ2,1|b1b2〉.
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Exercise 4.19: CNOT action on unitary matrices

The CNOT gate is a simple permutation whose action on a density matrix ρ is to rearrange the elements

in the matrix. Write out this action explicitly in the computational basis.

Solution

Concepts Involved: Linear Algebra, Quantum Gates, Controlled Operations, Density Operators

Let ρ be an arbitrary density matrix corresponding to a 2-qubit state. In the computational basis, we can

write ρ as:

ρ ∼=


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 .
Studying the action of the CNOT gate on this density matrix, we calculate:

CX1,2 ρCX1,2 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



=


a11 a12 a13 a14

a21 a22 a23 a24

a41 a42 a43 a34

a31 a32 a33 a34




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



=


a11 a12 a14 a13

a21 a22 a24 a23

a41 a42 a44 a33

a31 a32 a34 a33


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Exercise 4.20: CNOT basis transformations

Unlike ideal classical gates, ideal quantum gates do not have (as electrical engineers say) ‘high-impedance’

inputs. In fact, the role of ‘control’ and ‘target’ are arbitrary – they depend on what basis you think of a

device as operating in. We have described how the CNOT behaves with respect to the computational basis,

and in this description the state of the control qubit is not changed. However, if we work in a different

basis then the control qubit does change: we will show that its phase is flipped depending on the state of

the ‘target’ qubit! Show that

H H

H H

=

Introducing basis states |±〉 ≡ (|0〉 ± |1〉)/
√

2, use this circuit identity to show that the effect of a CNOT

with the first qubit as control and the second qubit as target is as follows:

|+〉|+〉 7→ |+〉|+〉
|−〉|+〉 7→ |−〉|+〉
|+〉|−〉 7→ |−〉|−〉
|−〉|−〉 7→ |+〉|−〉.

Thus, with respect to this new basis, the state of the target qubit is not changed, while the state of the

control qubit is flipped if the target starts as |−〉, otherwise it is left alone. That is, in this basis, the

target and control have essentially interchanged roles!

Solution

Concepts Involved: Linear Algebra, Quantum Gates, Controlled Operations.

First, we have that:

H1 ⊗H2 =
1

2

[
1 1

1 −1

]
⊗

[
1 1

1 −1

]
=

1

2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


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Now conjugating CNOT1,2 under H1 ⊗H2, we have:

(H1 ⊗H2)CX1,2(H1 ⊗H2) =
1

4


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



=
1

4


4 0 0 0

0 0 0 4

0 0 4 0

0 4 0 0


= CX2,1

which proves the circuit identity. We know already that:

CX2,1|0〉|0〉 = |0〉|0〉
CX2,1|1〉|0〉 = |1〉|0〉
CX2,1|0〉|1〉 = |1〉|1〉
CX2,1|1〉|1〉 = |0〉|1〉

so using the proven circuit identity and the fact that H|0〉 = |+〉, H|1〉 = |−〉, we obtain the map:

|+〉|+〉 7→ |+〉|+〉
|−〉|+〉 7→ |−〉|+〉
|+〉|−〉 7→ |−〉|−〉
|−〉|−〉 7→ |+〉|−〉

which is exactly what we wanted to prove.

Remark: Algebraically,

(H ⊗H)CX1,2(H ⊗H) = (H ⊗H)(I ⊗H)(CZ1,2)(I ⊗H)(H ⊗H)

= (H ⊗ I)(CZ1,2)(H ⊗ I)

= (H ⊗ I)(CZ2,1)(H ⊗ I)

= CX2,1.
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Exercise 4.21

Verify that Figure 4.8 implements the C2(U) operation.

U

=

V V † V

Exercise 4.22

Prove that a C2(U) gate (for any single qubit unitary U) can be constructed using at most eight one-qubit

gates, and six controlled-NOTs.

Exercise 4.23

Construct a C1(U) gate for U = Rx(θ) and U = Ry(θ), using only CNOT and single qubit gates. Can you

reduce the number of single qubit gates needed in the construction from three to two?

Exercise 4.24

Verify that Figure 4.9 implements the Toffoli gate.
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Exercise 4.25: Fredkin gate construction

Recall that the Fredkin (controlled-swap) gate performs the transform

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1


(1) Give a quantum circuit which uses three Toffoli gates to construct the Fredkin gate (Hint: think of

the swap gate construction – you can control each gate, one at a time).

(2) Show that the first and last Toffoli gates can be replaced by CNOT gates.

(3) Now replace the middle Toffoli gate with the circuit in Figure 4.8 to obtain a Fredkin gate construc-

tion using only six two-qubit gates.

(4) Can you come up with an even simpler construction, with only five two-qubit gates?

Exercise 4.26

Show that the circuit:

differs by a Toffoli gate only by relative phases. That is, the circuit that takes |c1, c2, t〉 to

eiθ(c1,c2,t) |c1, c2, t⊕ c1 · c2〉, where eiθ(c1,c2,t) is some relative phase factor. Such gates can be some-

times be useful in experimental implementations, where it may be much easier to implement a gate that

is the same as the Toffoli gate up to relative phases than it is to do the Toffoli directly.
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Exercise 4.27

Using just CNOTs and Toffoli gates, construct a quantum circuit to perform the transformation

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0


This kind of partial cyclic permutation operation will be useful later, in Chapter 7.

Exercise 4.28

For U = V 2 with V unitary, construct a C5(U) gate analogous to that in Figure 4.10, but using no work

qubits. You may use controlled-V and controlled-V † gates.

Exercise 4.29

Find a circuit containing O(n2) Toffoli, CNOT and single qubit gates which implements a Cn(X) gate (for

n > 3), using no work qubits.

Exercise 4.30

Suppose U is a single qubit unitary operation. Find a circuit containing O(n2) Toffoli, CNOT and single

qubit gates which implements a Cn(U) gate (for n > 3), using no work qubits.
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Exercise 4.31: More circuit identities

Let subscripts denote which qubit an operator acts on, and ket C be a CNOT with qubit 1 the control qubit

and qubit 2 the target qubit. Prove the following identities:

CX1C = X1X2

CY1C = Y1X2

CZ1C = Z1

CX2C = X2

CY2C = Z1Y2

CZ2C = Z1Z2

Rz,1(θ)C = CRz,1(θ)

Rx,2(θ)C = CRx,2(θ).

Exercise 4.32

Let ρ be the density matric describing a two qubit system. Suppose we perform a projective measurement

in the computational basis of the second qubit. Let P0 = |0〉〈0| and P1 = |1〉〈1| be the projectors onto

the |0〉 and the |1〉 states of the second qubit, respectively. Let ρ′ be the density matrix which would be

assigned to the system after the measurement by an observer who did not learn the measurement result.

Show that

ρ′ = P0ρP0 + P1ρP1

Also show that the reduced density matrix for the first qubit is not affected by the measurement, that is

tr2(ρ) = tr2(ρ′).

Exercise 4.33: Measurement in the Bell basis

The measurement model we have specified for the quantum circuit model is that measurements are

performed only in the computational basis. However, often we want to perform a measurement in some

other basis, defined by a complete set of orthonormal states. To perform this measurement, simply unitarily

transform from the basis we wish to perform the measurement in to the computational basis, then measure.

For example, show that the circuit

H

performs a measurement in the basis of the Bell states. More precisely, show that this circuit results in

a measurement being performed with corresponding POVM elements the four projectors onto the Bell

states. What are the corresponding measurement operators?
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Exercise 4.34: Measuring an operator

Suppose we have a single qubit operator U with eigenvalues ±1, so that U is both Hermitian and unitary, so

it can be regarded as both an observable and a quantum gate. Suppose we wish to measure the observable

U . That is, we desire to obtain a measurement result indicating one of the two eigenvalues, and leaving

a post-measurement state which is the corresponding eigenvector. How can this be implemented by a

quantum circuit? Show that the following circuit implements a measurement of U :

|0〉 H H

|ψin〉 U |ψout〉

Exercise 4.35: Measurement commutes with controls

A consequence of the principle of deferred measurement is that measurements commute with quantum

gates when the qubit being measured is a control qubit, that is:

U

=

U

=

U

(Recall that the double lines represent classical bits in this diagram.) Prove the first equality. The rightmost

circuit is simply a convenient notation to depict the use of a measurement result to classically control a

quantum gate.

Exercise 4.36

Construct a quantum circuit to add two two-bit numbers x and y modulo 4. That is, the circuit should

perform the transformation |x, y〉 7→ |x, x+ ymod 4〉.

Exercise 4.37

Provide a decomposition of the transform

1

2


1 1 1 1

1 i −1 −i
1 −1 1 1

1 −i −1 i


into a product of two-level unitaries. This is a special case of the quantum Fourier transform, which we

study in more detail in the next chapter.

Exercise 4.38

Prove that there exist a d× d unitary matrix U which cannot be decomposed as a product of fewer than

d− 1 two-level unitary matrices.
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Exercise 4.39

Find a quantum circuit using single qubit operations and CNOTs to implement the transformation

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 a 0 0 0 0 c

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 b 0 0 0 0 d



where Ũ =

[
a c

b d

]
is an arbitrary 2× 2 unitary matrix.

Exercise 4.40

For arbitrary α and β show that

E(Rn̂(α), Rn̂(θ)n) <
ε

3

and use this to justify (4.76).

Exercise 4.41

This and the next two exercises develop a construction showing that the Hadamard, phase, controlled-NOT

and Toffoli gates are universal. Show that the circuit in Figure 4.17 applies the operation Rz(θ) to the

third (target) qubit if the measurement outcomes are both 0, where cos θ = 3/5, and otherwise applies Z

to the target qubit. Show that the probability of both measurement outcomes being 0 is 5/8, and explain

how repeated use of this circuit and Z = S2 gates may be used to apply a Rz(θ) gate with probability

approaching 1.
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Exercise 4.42: Irrationality of θ

Suppose cos θ = 3/5. We give a proof by contradiction that θ is an irrational multiple of 2π.

(1) Using the fact that eiθ = (3 + 4i)/5, show that if θ is rational, then there must exist a positive

integer m such that (3 + 4i)m = 5m.

(2) Show that (3+4i)m = 3+4i (mod 5) for all m > 0, and conclude that no m such that (3+4i)m =

5m can exist.

Exercise 4.43

Use the results of the previous two exercises to show that the Hadamard, phase, controlled-NOT and Toffoli

gates are universal for quantum computation.

Exercise 4.44

Show that the three qubit gate G defined by the circuit:

iRx(πα)

is universal for quantum computation whenever α is irrational.

Exercise 4.45

Suppose U is a unitary transform implemented by an n qubit quantum circuit constructed from H,S,

CNOT and Toffoli gates. Show that U is of the form 2−k/2M for some integer k, where M is a 2n × 2n

matrix with only complex integer entries. Repeat this exercise with the TOffoli gate replaced by the π/8

gate.

Exercise 4.46: Exponential complexity growth of quantum systems

Let ρ be a density matrix describing the state of n qubits. Show that describing ρ requires 4n − 1

independent real numbers.

Exercise 4.47

For H =
∑L
k Hk, prove that e−iHt = e−iH1te−iH2t . . . e−iHLt for all i if [Hj , Hk] = 0, for all j, k.

Exercise 4.48

Show that the restriction of Hk to at most c particles implies that in the sum (4.97), L is upper bounded

by a polynomial in n.
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Exercise 4.49: Baker–Campbell–Hausdorf formula

Prove that

e(A+B)∆t = eA∆teB∆te−
1
2 [A,B]∆t2 +O(∆t3)

and also prove Equations (4.103) and (4.104).

Exercise 4.50

Let H =
∑L
k Hk, and define

U∆t =
[
e−iH1∆te−iH2∆t . . . e−iHL∆t

] [
e−iHL∆te−iHL−1∆t . . . e−iH1∆t

]
(a) Prove that U∆t = e−2iH∆t +O(∆t3)

(b) Use the results in Box 4.1 to prove that for a positive integer m,

E(Um∆t, e
−2miH∆t) ≤ mα∆t3,

for some constant α.

Exercise 4.51

Construct a quantum circuit to simulate the Hamiltonian

H = X1 ⊗ Y2 ⊗ Z3

performing the unitary transform e−i∆tH for any ∆t.

Problem 4.1: Computable phase shifts

Let m and n be positive integers. Suppose f : {0, . . . , 2m − 1} 7→ {0, . . . , 2n − 1} is a classical function

from m to n bits which may be computed reversibly using T Toffoli gates, as described in Section 3.2.5.

That is, the function (x, y) 7→ (x, y ⊕ f(x)) may be implemented using T Toffoli gates. Give a quantum

circuit using 2T +n (or fewer) one, two and three qubit gates to implement the unitary operation defined

by

|x〉 7→ exp

(
−2iπf(x)

2n

)
|x〉

Problem 4.2

Find a depth O(log n) construction for the Cn(X) gate. (Comment: The depth of a circuit is the number

of distinct timesteps at which gates are applied; the point of this problem is that it is possible to parallelize

the Cn(X) construction by applying many gates in parllel during the same timestep.)
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Problem 4.3: Alternate universality construction

Suppose U is a unitary matrix on n qubits. Define H ≡ i ln(U). Show that

(1) H is Hermitian, with eigenvalues in the range 0 to 2π.

(2) H can be written

H =
∑
g

hgg,

where hg are real numbers and the sum is over all n-fold tensor products g of the Pauli matrices

{I,X, Y, Z}.

(3) Let ∆ = 1/k, for some positive integer k. Explain how the unitary operation exp
(
−ihgg∆

)
may be

implemented using O(n) one and two qubit operations.

(4) Show that

exp(−iH∆) =
∏
g

exp
(
−ihgg∆

)
+O(4n∆2)

where the product is taken with respect to any fixed ordering of the n-fold tensor products of Pauli

matrices, g.

(5) Show that

U =

∏
g

exp
(
−ihgh∆

)k +O(4n∆)

(6) Explain how to approximate U to within a distance ε > 0 using O(n16n/ε) one and two qubit

unitary operations.

Problem 4.4: Minimal Toffoli construction (Research)

The following problems concern constructions of the Toffoli with some minimal number of other gates. ‘

(1) What is the smallest number of two qubit gates that can be used to implement the Toffoli gate?

(2) What is the smallest number of one qubit gates and CNOT gates that can be used to implement the

Toffoli gate?

(3) What is the smallest number of one qubit gates and controlled-Z gates that can be used to implement

the Toffoli gate?

Problem 4.5: (Research)

Construct a family of Hamiltonians, {Hn} , on n qubits, such that simulating Hn requires a number of

operations super-polynomial in n. (Comment: This problem seems to be quite difficult.)

109



Problem 4.6: Universality with prior entanglement

Controlled-NOT gates and single qubit gates form a universal set of quantum logic gates. Show that

an alternative universal set of resources is comprised of single qubit unitaries, the ability to perform

measurements of pairs of qubits in the Bell basis, and the ability to prepare arbitrary four qubit entangled

states.
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A1 Notes on basic probability theory

Exercise A1.1

Prove Bayes’ rule.

Solution

Concepts Involved: Probability, Conditional Probability.

Recall that conditional probabilities were defined as:

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)

and also recall that Bayes’ rule is given by:

p(x|y) = p(y|x)
p(x)

p(y)

By the definition of conditional probability:

p(y|x)
p(x)

p(y)
=
p(X = x, Y = y)

p(x)

p(x)

p(y)
=
P (X = x, Y = y)

p(y)
= p(x|y)

Exercise A1.2

Prove the law of total probability.

Solution

Concepts Involved: Probability, Conditional Probability.

Recall that the law of total probability is given by:

p(y) =
∑
x

p(y|x)p(x)

Using the identity p(Y = y) =
∑
x p(X = x, Y = y) and Bayes’ rule, we have

p(y) =
∑
x

p(x, y) =
∑
x

p(y|x)p(x)

Exercise A1.3

Prove that there exists a value of x ≥ E(X) such that p(x) > 0.
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Solution

Concepts Involved: Probability, Expectation.

Recall that the expectation of a random variable X is defined by:

E(X) =
∑
x

p(x)x

Let x̃ = max {x : x is a possible value of X}. This maximum exists as we assume X can only take on a

finite set of values. We therefore have that:

E(X) =
∑
x

p(x)x ≤
∑
x

p(x)x̃ = x̃
∑
x

p(x) = x̃

Where in the last equality we use that the sum over all probabilities must be 1.

Exercise A1.4

Prove that E(X) is linear in X

Solution

Concepts Involved: Probability, Expectation.

Let a, b ∈ R and X,Y be random variables. We then have that:

E(aX + bY ) =
∑
x

∑
y

p(x, y)(ax+ by)

=
∑
x

∑
y

p(x, y)ax+
∑
x

∑
y

p(x, y)by

= a
∑
x

∑
y

p(x, y)

x+ b
∑
y

(∑
x

p(x, y)

)
y

= a
∑
x

p(x)x+ b
∑
y

p(y)y

= aE(X) + bE(y)

which shows that expectation is linear.

Exercise A1.5

Prove that for independent random variables X and Y , E(XY ) = E(X)E(Y ).

Solution

Concepts Involved: Probability, Expectation, Independent Random Variables.
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Recall two random variables X,Y are independent if

p(X = x, Y = y) = p(X = x)p(Y = y)

We have that:

E(XY ) =
∑
x

∑
y

xyp(x, y) =
∑
x

∑
y

xyp(x)p(y) =

(∑
x

p(x)x

)∑
y

p(y)y

 = E(x)E(y)

Exercise A1.6

(∗) Prove Chebyshev’s inequality.

Solution

Concepts Involved: Probability, Expectation, Variance.

Recall the definition of the variance and standard deviaiton of a random variable X:

Var(X) = E[(X −E(X))2], ∆(X) =
√

Var(X)

Also, recall that Chebyshev’s inequality reads:

p(
∣∣X −E(X)

∣∣ ≥ λ∆(X)) ≤ 1

λ2

where λ > 0.

We first establish Markov’s inequality for the expectation value E(X). Let a > 0, and then we have that:

E(X) =
∑
x

xp(x) =
∑
x≥a

xp(x) +
∑
x<a

xp(x) ≥
∑
x≥a

ap(x) + 0 = ap(X ≥ a)

Therefore, we obtain that:

p(X ≥ a) ≤ E(X)

a

for any random variable X and a > 0. Next, substitute X with (X −E(X))2 and let a = λ2 Var(X) for

λ > 0. Markov’s inequality then states that:

p((X −E(X))2 ≥ λ2 Var(X)) ≤ E(X −E(X))2

λ2 Var(X)

Since E(X −E(X))2 = Var(X), we have that:

p((X −E(X))2 ≥ λ2 Var(X)) ≤ 1

λ2
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If λ > 0, then p((X −E(X))2 ≥ λ2 Var(X)) = p(
∣∣X −E(X)

∣∣ ≥ λ∆(X)) by taking square roots, so we

obtain:

p(
∣∣X −E(X)

∣∣ ≥ λ∆(X)) ≤ 1

λ2

as desired.
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A2 Group theory

Exercise A2.1

Prove that for any element of g of a finite group, there always exists a positive integer r such that gr = e.

That is, every element of such a group has an order.

Solution

Concepts Involved: Group Axioms, Order.

Suppose G is a finite group, and g ∈ G. Then, there exists some r1, r2 ∈ N such that r1 6= r2 and

gr1 = gr2 . If this was not the case, then gn would be unique for each n ∈ N, contradicting the finiteness

of G. WLOG take r1 < r2, and let r = r2 − r1 ∈ N. Using associativity, we then have that:

gr1 = gr2 = gr1+r = gr1gr

from which we conclude that gr = e.

Exercise A2.2

Prove Lagrange’s Theorem.

Solution

Concepts Involved: Group Axioms, Subgroups, Order, Equivalence Relations.

Let H be a subgroup of a group G and define the relation ∼ by a ∼ b iff a = bh for some h ∈ H. ∼
is reflexive as a = ae (so a ∼ a) where e ∈ H is the identity element. ∼ is symmetric as if a ∼ b, then

a = bh for some h ∈ H so b = ah−1 (so b ∼ a) where h−1 ∈ H as H is closed under inverses. Finally ∼
is transitive as if a ∼ b and b ∼ c, there exist h1, h2 ∈ H such that a = bh1 and b = ch2 so a = ch2h1.

As h2h1 ∈ H (H is closed under multiplication) it follows that a ∼ c. Having shown ∼ to have these

three properties, we conclude it is an equivalence relation. Then, the equivalence classes of ∼ partition

G, where the equivalence class of g ∈ G is [g] =
{
gh|h ∈ H

}
.

Now, let g ∈ G and define the map ϕg : H → [g] as ϕg(h) = gh. ϕg is injective as if ϕg(h1) = ϕg(h2)

then gh1 = gh2 and multiplying by g−1 on both sides h1 = h2. ϕg is surjective as if k ∈ [g], then there

exists some h ∈ H such that k = gh by the definition of ∼. Hence ϕg is bijective.

As per our prior observation, the equivalence classes of ∼ partition G, so G =
⋃n
i=1[gi] and |G| =∣∣⋃n

i=1[gi]
∣∣ =

∑n
i=1

∣∣[gi]∣∣. Further, there is a bijection ϕgi from each equivalence class to H, so
∣∣[gi]∣∣ = |H|

for all i. Thus |G| =
∑n
i=1 |H| = nH and hence |H| divides |G|, as desired.

Exercise A2.3

Show that the order of an element g ∈ G divides |G|.

115



Solution

Concepts Involved: Group Axioms, Subgroups, Order, Lagrange’s Theorem.

Let g ∈ G with order r. Then, define H =
{
gn|n ∈ N

}
. We claim that H is a subgroup of G. First, gn ∈ G

for any n as G is closed under multiplicaton, so H ⊂ G. Next, if gn1 , gn2 ∈ H then gn1 ·gn2 = gn1+n2 ∈ H.

Associativity is inherited from the associativity of multiplication in G. Since gr = e ∈ H, H contains the

identity. Finally, for gk ∈ H we have gr−k ∈ H such that gkgr−k = gr−kgk = gr = e so H is closed

under inverses. Hence the claim is proven.

Next, we observe that |H| = r as H contains the r elements e, g, g2, . . . gr−1. Hence by Lagrange’s

Theorem r divides |G|.

Exercise A2.4

Show that if y ∈ Gx then Gy = Gx

Solution

Concepts Involved: Group Axioms, Conjugacy Classes

Suppose y ∈ Gx. Then there exists some g ∈ G such that g−1xg = y. Multiplying both sides on the left

by g and on the right by g−1 we find that x = gyg−1. We now show the two inclusions.

⊆ Suppose that k ∈ Gx. Then there exists some g′ ∈ G such that k = g′−1xg′. Then using x =

gyg−1 we find k = g′−1gyg−1g′. Now, g−1g′ ∈ G (by closure) and it has inverse g′−1g, and hence

k = g′−1gyg−1g′ ∈ Gy. So, Gx ⊆ Gy.

⊇ Suppose that l ∈ Gy. Then there exists some g′′ ∈ G such that l = g′′−1yg′′. Then with g−1xg = y

we find l = g′′−1g−1xgg′′. Much like before, gg′′ ∈ G (by closure) with inverse g′′−1g−1 so l ∈ Gx. So,

Gy ⊆ Gx.

We conclude that Gy = Gx.

Exercise A2.5

Show that if x is an element of an Abelian group G, then Gx = {x}.

Solution

Concepts Involved: Abelian Groups, Conjugacy Classes.

Evidently x = e−1xe ∈ Gx so {x} ⊆ Gx. Next, if k ∈ Gx then k = g−1xg for some g ∈ G, but since G

is abelian, g−1x = xg−1 so k = xg−1g = xe = x so k ∈ {x} and hence Gx ⊆ {x}. We conclude that

Gx = {x}.

Exercise A2.6

Show that any group of prime order is cyclic.

116



Solution

Concepts Involved: Order, Cyclic Groups.

Suppose |G| = p where p is prime. Since G is finite, every element of G has an order by Exercise A2.1.

Since the order of any element g ∈ G divides |G| = p by Exercise A2.3, and since p is prime, the order of

g is either 1 or p. Since |G| > 1, there exists at least one g ∈ G with order p, and this g is a generator

of G (with g1 = g, g2, g3, . . . , gp = e distinct and comprising all the elements of G. In fact this is true of

any non-identity g). Hence G is cyclic.

Exercise A2.7

Show that every subgroup of a cyclic group is cyclic.

Solution

Concepts Involved: Group Axioms, Subgroups, Cyclic Groups, Euclid’s Division Algorithm.

First we prove a necessary Lemma, namely that any nonempty subset of the natural numbers contains a

least element. We show this by proving the contrapositive. Suppose that A ⊆ N has no least element.

Then 1 /∈ A as then 1 would be the least element. Suppose then that 1, . . . k − 1 /∈ A; then k /∈ A as

then k would be the least element. By strong induction, there exists no k ∈ N such that k ∈ A, i.e. A is

empty. This concludes the proof of the lemma.

Let G = 〈a〉 be a cyclic group and H a subgroup of G. If H = {e}, it is trivially cyclic and we are

done. If H 6= {e}, then there exists some an ∈ H with n 6= 0. Since H is closed under inverses,

(an)−1 = a−n ∈ H as well which ensures that H contains some positive power of a. Then consider

the set A =
{
k ∈ N|ak ∈ H

}
. Any nonempty subset of the naturals has a minimum element; therefore

let d = minA. It is immediate that
〈
ad
〉

is a subgroup of H as ad ∈ H and H is a group. To show

the reverse containment, suppose that g ∈ H. Since H is a subgroup of the cyclic G, it follows that

g = ap for some p ∈ Z. We can then write p = qd + r for 0 ≤ r < d by Euclid’s Division algorithm

(see Appendix 4). We then have that ar = ap−qd = ap(ad)−q ∈ H by closure. Now, since d is the least

positive integer for which ad ∈ H and 0 ≤ r < d, it must follow that r = 0. Therefore, p = qd and hence

aqd = (ad)q ∈
〈
ad
〉
. So, H is a subgroup of

〈
ad
〉
. We conclude that H =

〈
ad
〉

and hence H is cyclic.

Exercise A2.8

Show that if g ∈ G has finite order r, then gm = gn if and only if m = n (mod r).

Solution

Concepts Involved: Order, Modular Arithmetic, Euclid’s Division Algorithm

Suppose g ∈ G has finite order r.

⇐= First suppose that m = n (mod r). Then m − n = kr for some k ∈ N. Therefore gm−n = gkr.

But gkr = (gr)k = ek = e, so gm−n = gmg−n = e, and multiplying both sides by gn we find gm = gn.

=⇒ Suppose gm = gn. Then multiplying both sides by g−n we find gm−n = e. By Euclid’s Division

algorithm there exist integers q, p such that m − n = qr + p with 0 ≤ p < r. We then have that
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gm−n = gqr+p = gqrgp = e. Furthermore, gqr = (gr)q = eq = e so gp = e. But since g has order r and

0 ≤ p < r, it follows that p = 0. Hence m− n = qr and so m ≡ n (mod r).

Exercise A2.9

Cosets define an equivalence relation between elements. Show that g1, g2 ∈ G are in the same coset of

H in G if and only if there exists some h ∈ H such that g2 = g1h.

Solution

Concepts Involved: Equivalence Relations, Cosets

In Exercise A2.2 we showed that the relation ∼ on a group G defined by g1 ∼ g2 iff g1 = g2h for some

h ∈ H was an equivalence relation. The equivalence classes of this equivalence relation were
{
gh|h ∈ H

}
,

i.e. precisely the left cosets of H in G. So, g1, g2 are in the same coset of H in G if and only if g1 = g2h

for some h ∈ H, which is exactly what we wished to show.

Exercise A2.10

How many cosets of H are there in G?

Solution

Concepts Involved: Equivalence Relations, Cosets

We observe that the map ϕg : H → [g] defined in the solution of Exercise A2.2 is a map from H to a right

coset of H in G defined by g. Since we showed that this map was bijective, this shows that |H| = |Hg|
for any g ∈ G. Furthermore, since the cosets define an equivalence relation between elements of G, the

cosets of H in G partition G. So, we conclude that there are |G|/|H| cosets of H in G, each of cardinality

|H|.

Exercise A2.11: Characters

Prove the properties of characters given above.

Solution

Concepts Involved: Matrix Groups, Character (Trace)

Recall that the character of a matrix group G ⊂ Mn is a function on the group defined by χ(g) = tr(g)

where tr is the trace function. It has the properties that (1) χ(I) = n, (2)
∣∣χ(g)

∣∣ ≤ n, (3)
∣∣χ(g)

∣∣ = n

implies g = eiθI, (4) χ is constant on any given conjugacy class of G, (5) χ(g−1) = χ∗(g) and (6) χ(g)

is an algebraic number for all g.

The six properties are proven below.

(1) χ(I) = tr(I) =
∑n
k=1 1 = n.

(2) Let g ∈ G. Since G is finite, by Exercise A2.1 it follows that g has order r such that gr = I. So,

g may be diagonalized with roots of unity e2πij/r, j ∈ {0, 1, . . . , r − 1} on the diagonal. We then
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find using the triangle inequality that:

∣∣χ(g)
∣∣ =

∣∣tr(g)
∣∣ =

∣∣∣∣∣∣
n∑
k=1

e2πijk/r

∣∣∣∣∣∣ ≤
n∑
k=1

∣∣∣e2πijk/r
∣∣∣ =

∑
i

1 = n

which proves the claim.

(3) The (complex) triangle inequality |z1 + z2| ≤ |z1|+ |z2| is saturated when z1 = kz2 for some k ≥ 0.

This can only occur in the above equation when every λi in the sum is identical (as distinct roots

of unity are not related by a non-negative constant). If the λis are identical, then g is diagonal with

diagonal entries of unit modulus, so g = eiθI as claimed.

(4) Let Gx =
{
g−1xg|g ∈ G

}
be the conjugacy class of x in G. We then have for any h ∈ Gx that

χ(h) = χ(g−1xg) = tr
(
g−1xg

)
= tr

(
xgg−1

)
= tr(xI) = tr(x), using the cyclicity of the trace. We

conclude that χ is constant on the conjugacy class.

(5) By the same argument as (2), g ∈ G can be diagonalized with roots of unity e2πij/r on the diagonal:

g =


e2πij1/r

e2πij2/r

. . .

e2πijn/r


It then follows that g−1 is:

g−1 =


e−2πij1/r

e−2πij2/r

. . .

e−2πijn/r


So we have that:

χ(g−1) = tr
(
g−1

)
=

n∑
j=1

e−2πijk/r =

n∑
j=1

(e2πijk/r)∗ =

 n∑
j=1

e2πijk/r

∗ = (tr(g))∗ = χ∗(g).

which proves the claim.

(6) χ(g) is the sum of r-th roots of unity, which are algebraic; hence χ(g) is algebraic as the sum of

algebraic numbers.

Exercise A2.12: Unitary matrix groups

(∗) A unitary matrix group is comprised solely of unitary matrices (those who which satisfy U†U = I).

Show that every matrix group is equivalent to a unitary matrix group. If a representation of a group

consists entirely of unitary matrices, we may refer to it as being a unitary representation.
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Solution

Concepts Involved: Matrix Groups, Character (Trace), Equivalence, Unitary Operators.

Recall that two groups are equivalent if they are isomorphic (i.e. there is a bijection between the groups

that respects the group multiplication) and the isomorphic element have the same character.

Let G = {A1, . . . An} be a finite matrix group. Then define

A =

n∑
i=1

A†iAi.

By Ex. 2.25 each term of the above sum is positive, and by Ex. 2.24 each term is Hermitian. The sum

of Hermitian operators is Hermitian, so A is Hermitian. By Ex. 2.21, A is diagonalizable. Let U be the

unitary matrix that diagonalizes A. We then have that D is a diagonal matrix, with:

D = UAU†.

Let D1/2 be the matrix obtained by taking the square root of the diagonal entries of D. Then define

T = D1/2U . We then claim that GU = {V1, . . . Vn} is a unitary matrix group equivalent to G, where:

Vi = TAiT
−1.

We have three points to verify; (i) That the Vis are unitary, (ii) That ϕ : G → Gu defined by ϕ(Ai) =

TAiT
−1 = Vi is an isomorphism, and (iii) that the characters of Ai and Vi are equivalent.

(i) For any Vi, we have:

V †i Vi = (TAiT
−1)†(TAiT

−1)

= (D1/2UAiU
†D−1/2)†(D1/2UAiU

†D−1/2)

= (D−1/2UA†iU
†D1/2)(D1/2UAiU

†D−1/2)

= (D−1/2UA†iU
†)D(UAiU

†D−1/2)

= (D−1/2UA†iU
†)(UAU†)(UAiU

†D−1/2)

= (D−1/2UA†i )A(A†iU
†D−1/2)

= (D−1/2UA†i )

 n∑
j=1

A†jAj

 (AiU
†D−1/2)

= D−1/2U

 n∑
j=1

(AjAi)
†(AjAi)

U†D−1/2

= D−1/2U

 n∑
k=1

A†kAk

U†D−1/2

= D−1/2UAU†D−1/2

= D−1/2DD−1/2

= I
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Where in the sixth equality we use the unitarity of U , and in the ninth equality we use that AjAi = Ak
iterates over all the group elements as Aj iterates over all the group elements. To see that this

is the case, it suffices to show that the map ψi : Mn → Mn defined by ψi(Aj) = AjAi is

a bijection. To see that it is injective, suppose that ψi(Aj1) = ψi(Aj2). Then it follows that

Aj1Ai = Aj2Ai, and multiplying on the left by A−1
i (which exists) we find that Aj1 = Aj2 . To

see that it is surjective, suppose that Aj′ ∈ Mn. Then, there exists Aj′A
−1
i ∈ Mn such that

ψi(Aj′A
−1
i ) = Aj′A

−1
i Ai = Aj′ . We conclude that ψi is bijective.

(ii) Firstly, ϕ is a homomorphism as for any Ai, Aj we have:

ϕ(Ai)ϕ(Aj) = ViVj = TAiT
−1TAjT

−1 = TAiAjT
−1 = ϕ(AiAj).

Next, ϕ is surjective by construction. Finally, it is injective; suppose that Vi = Vj . Then we have

that:

TAiT
−1 = TAjT

−1

And multiplying both sides on the left by T−1 on the left and T on the right we find that Ai = Aj .

Hence we conclude that ϕ is a bijective homomorphism and hence an isomorphism.

(iii) This is immediate from the cyclicity of the trace:

χ(Vi) = tr
(
TAiT

−1
)

= tr
(
T−1TAi

)
= tr(Ai) = χ(Ai).

The claim is therefore proven.

Exercise A2.13

Show that every irreducible Abelian matrix group is one dimensional.

Exercise A2.14

Show that if ρ is an irreducible representation of G, then |G|/dρ is an integer.

Exercise A2.15

Using the Fundamental Theorem, prove that characters are orthogonal, that is:

r∑
i=1

ri(χ
p
i )
∗χqi = |G|δpq and

r∑
p=1

(χpi )
∗χqj =

|G|
ri
δij

where p, q, and δpq have the same meaning as in the theorem and χpi is the value the character of the

pth irreducible representation takes on the ith conjugacy class of G and ri is the size of the ith conjugacy

class of G and ri is the size of the ith conjugacy class.
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Exercise A2.16

S3 is the group of permutations of three elements. Suppose we order these as mapping 123 to:

123;231;312;213;132, and 321, respectively. Show that there exist two one-dimensional irreducible repre-

sentations of S3, one of which is trivial, and the other of which is 1,1,1,-1,-1,-1, corresponding in order to

the six permutations given earlier. Also show that there exists a two dimensional irreducible representation,

with the matrices [
1 0

0 1

]
,

1

2

[
−1 −

√
3√

3 −1

]
,

1

2

[
−1

√
3

−
√

3 1

]
,[

−1 0

0 1

]
,

1

2

[
1
√

3√
3 −1

]
,

1

2

[
1 −

√
3

−
√

3 1

]

Verify that the representations are orthogonal.

Exercise A2.17

Prove that the regular representation is faithful.

Exercise A2.18

Show that the character of the regular representation is zero except on the representation of the identity

element, for which χ(I) = |G|.

Exercise A2.19

Use Theorem A2.5 to show that the regular representation contains dρp instances of each irreducible

representation ρp. Thus, if R denotes the regular representation, and Ĝ denotes the set of all inequivalent

irreducible representations, then:

χRi =
∑
ρ∈G

dρχ
ρ
i

Exercise A2.20

The character of the regular representation is zero except for the conjugacy class i containing e, the

identity element in G. Show, therefore, that∑
ρ∈G

dρχ
ρ(g) = Nδge.

Exercise A2.21

Show that
∑
ρ∈Ĝ d

2
ρ = |G|.

Exercise A2.22

Substitute (A2.10) into (A2.9) and prove that f̂(ρ) is obtained.
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Exercise A2.23

Let us represent an Abelian group G by g ∈ [0, N − 1], with addition as the group operation, and define

ρh(g) = exp
[
−2πigh/N

]
at the h representation of g. This representation is one-dimensional, so dρ = 1.

Show that the Fourier transform relations for G are

f̂(h) =
1√
N

N−1∑
g=0

f(g)e−2πigh/N and f(h) =
1√
N

N−1∑
g=0

f̂(g)e2πigh/N

Exercise A2.24

Using the results of Exercise A2.16, construct the Fourier transform over S3 and express it as a 6x6 unitary

matrix.
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