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1 Problems

1.1 Heat Engine

Shown below is a 3-step heat engine, where the work medium is monoatomic gas. Step 3→1 is isothermal.

(a) What is the ratio of temperatures between point 3 and 1?

(b) Solve for the pressure at point 3 in terms of P0, V0.

(c) Mark the highest temperature TH and lowest temperature TC on the graph.

(d) Solve for the efficiency of the heat engine, where your answer should not depend on P0, V0, or the
amount of gas in the engine.

1.2 Carnot Efficiency From the Second Law

Using the second law of thermodynamics, prove that the that the carnot efficiency:

e = 1 − TC
TH

(1.1)

is the maximum attainable for any heat engine. To do this, consider an abstract heat engine, where it takes
in heat QH from a hot reservoir at temperature TH , does work W, and throws away waste heat into a cold
reservoir at temperature TH .
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1.3 Adiabatic Compression

(a) Show that PV
χ+2

χ is a constant through an adiabatic process, using the ideal gas law PV = NkT and
U = χ

2 NkT.

(b) Suppose we have a cylinder of volume V0, contaiing air at room temperature T0 and standard pressure
P0 and a piece of paper with combustion temperature TC. The cylinder contains a movable piston. We
hit the piston very quickly, and at some VC the paper combusts - at what volume does this happen?

(c) What is the work done on the gas (from energy conservation)?

(d) What is the work done on the gas (from integration)?

(e) Consider now a very small fractional change of the cylinder volume, from V to V − δV. What is the
fractional change in temperature δT

T in terms of δV
V and γ?

(f) Repeat (d) but for pressure.

(g) Physically, why does the temperature rise?

(h) Physically, why does the pressure rise? Can you reason why the fractional change of (e) greater than
(d)?

1.4 Equilibriation and Entropy

Consider an ideal monoatomic gas in a cylinder with a movable piston in the middle, separating the
cylinder into two parts. The cylinder itself is an isolated system, and the two gas volumes in the cylinder
are closed systems. They can exchange heat and work with one another, but no particles.

In the initial configuration, Vi
L = Vi

R = V/2. The gas pressure in the left part of the container is twice
the right part, pi

R = p0, pi
L = 2p0. The temperature in both parts is T.
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(a) What is the equilibrium position of the piston? What are the temperatures when the final position is
reached?

(b) What is the change in entropy during the equilibriation process?

(c) Show that the entropy in the final configuration is a maximum as Vf
L is varied. Does this make sense?

2 Solutions

2.1 Heat Engine

(a) Since process 3 → 1 is isothermal, T1 = T3. So, the ratio would be 1:1.

(b) Since 3 → 1 is an isothermal process, we have that P1V1 = P3V3. This can then be rearranged to get
that P3 = 2P0.

(c) We can see from the graph that point 2 has the lowest temperature (minimized product of P, V). Since
3 → 1 is isothermal, that means that points 3, 1, and any point on the process between are at the
highest temperature.

(d) We’ll start off by calculating the heat flowing into the engine. Heat must flow into the engine during
processes 2 → 3 (since it gains energy with no work done) and 3 → 1 (since it does work but remains
at the same energy). Since 2 → 3 is isochoric we can say that

Q = ∆U

=
χ

2
Nk∆T

=
χ

2
Nk∆

PV
Nk

applying ideal gas law

=
χ

2
V2(P3 − P2)

=
χ

2
V0

2
(2P0 − P0)

=
χ

4
V0P0

(2.1)

Next, since process 3 → 1 is isothermal we can say that

Q = −W

= −NkT ln
V3

V1

= Nk
P1V1

Nk
ln

V1

V3

= P0V0 ln
V0

V0/2
= P0V0 ln 2

(2.2)

So in total we get that Qin = χ
4 V0P0 + P0V0 ln 2. Next, we’ll deal with the net work done by the system.

Process 1 → 2 is isobaric, so we can pretty quickly calculate that we do P0V0
2 joules of work on the

system. Process 2 → 3 is isochoric and does no work. Since process 3 → 1 is isothermal, we can say
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that W = −Q. Thus, we get that P0V0 ln 2 joules of work is done on the environment. Combining
these together to calculate efficiency we get

η =
Wnet

Qin

=
P0V0 ln 2 − P0V0

2
χ
4 V0P0 + P0V0 ln 2

=
ln 2 − 1

2
χ
4 + ln(2)

(2.3)

For any monoatomic gas, χ = 3, so we get that η ≈ 0.13.

2.2 Carnot Efficiency From the Second Law

let’s consider the entropy of the hot reservoir, the engine, and the cold reservoir at the end of one cycle (in
other words, we consider the change in entropy of the universe after one cycle). We recall that entropy is
a function of state, and therefore at the end of a single cycle, the entropy of the heat engine itself must be
the same as when it started. That is, ∆Sengine = 0 for one full cycle. By the second law of thermodynamics
dS ≥ Q

T , the entropy of the hot reservoir decreases by the amount of heat QH divided by its temperature
TH , so the entropy of the hot reservoir decreases by ∆Shot ≥ −QH

TH
. Conversely, the cold reservoir increases

in one cycle by ∆Scold ≥ QC
TC

(as it receives QC heat at temperature TC. Putting these together, we obtain
the change in entropy of the universe for a single cycle:

∆Suniverse ≥
QC
TC

− QH
TH

Now, the second law of thermodynamics tells us that the entropy of the universe must increase (or, to
phrase it another way, if we treat the two reservoirs and the heat engine as an isolated system, the entropy
of the total system must increase.) This allows us to conclude that:

∆Suniverse ≥
QC
TC

− QH
TH

≥ 0 (2.4)

So we obtain the important inequality:
QC
TC

− QH
TH

≥ 0

Which we can rearrange to obtain:
QC
QH

≥ TC
TH

(2.5)

Note that to derive inequality 2.5, I have made no assumptions whatsoever about what my heat engine
actually looks like; this is a completely general statement, based on the amounts of heat gained/lost
from the hot/cold reservoirs, and the maximum/minimum hot/cold reservoir temperatures. Now, let us
consider out definition of efficiency:

η =
W
QH

(2.6)

Where W is the work done by the engine (what we get out), and QH is the heat that we inject into the
engine in one cycle from the hot reservoir (what we put in). By energy conservation, we find that:

W = QH − QC (2.7)

4



This might look like it came out of nowhere, so let’s think about it a bit further. Just like entropy, internal
energy is also a function of state; the energy something has doesn’t care about how that energy got there!
With this consideration, since the heat engine returns to the original state at the end of one cycle, just
like the entropy change of the heat engine is zero in a single cycle, so must be the total internal energy;
in other words, the heat engine must have the same energy it began with. With this consideration, we
realize that the sum of the work done on the system and the heat given to the system must be 0, leading
to equation 2.7 above (work this out using the first law of thermodynamics if it’s still unclear!). Now, we
can substitute equation 2.7 into equation 2.6, giving us:

e =
QH − QC

QH
= 1 − QC

QH
(2.8)

And now applying inequality 2.5, we have:

1 − QC
QH

≤ 1 − TC
TH

(2.9)

And therefore:
e ≤ 1 − TC

TH
(2.10)

We have hence proven Carnot’s theorem, and can see that for any arbitrary heat engine, the efficiency is
bounded by the Carnot efficiency.

2.3 Adiabatic Compression

(a) As a consequence of zero heat flow, by the first law of thermodynamics we have that:

∆E = W (2.11)

So then for an adiabatic process, we can get that:

W =
χ

2
Nkb∆T (2.12)

We consider an infinitesimal amount of energy change/work:

dE = δW
χ

2
NkbdT = −PdV

(2.13)

We make a substitution with ideal gas law, namely

NkbdT = d(PV) (2.14)

We use that d(PV) = VdP + PdV by product rule. Making all of these substitutions gives

χ

2
(VdP + PdV) = −PdV (2.15)

At this point you have all the parts necessary to rearrange this equation into

χ

2
dP
P

= −
(

χ

2
+ 1
)

dV
V

(2.16)

Integrating this: ∫ P2

P1

χ

2
dP
P

=
∫ V2

V1

−
(

χ

2
+ 1
)

dV
V

(2.17)
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Again, we can factor out the constant terms to get:

χ

2

∫ P2

P1

dP
P

= −
(

χ

2
+ 1
) ∫ V2

V1

dV
V

(2.18)

Now evaluating the integral:
χ

2
ln
(

P2

P1

)
= −

(
χ

2
+ 1
)

ln
(

V2

V1

)
(2.19)

Multiplying both sides of this equation by 2
χ yields:

ln
(

P2

P1

)
= −

(
χ + 2

χ

)
ln
(

V2

V1

)
(2.20)

We then take the natural exponent of both sides of the equation to get:

e
ln
(

P2
P1

)
= e

−
(

χ+2
χ

)
ln
(

V2
V1

)

P2

P1
= e

ln

((
V2
V1

)−

(
χ+2

χ

))

P2

P1
=

(
V2

V1

)−
(

χ+2
χ

) (2.21)

Raise both sides to the exponent -1, rearrange a bit, and you get:

P1V1
χ+2

χ = P2V2
χ+2

χ (2.22)

And we can call γ = χ+2
χ .

(b) Since we hit the piston quickly the process is adiabatic, and thus it holds that PVγ = Const. where for
diatomic gases (air is composed of nitrogen/oxygen) γ = χ+2

χ = 7
5 . Using the ideal gas law PV = NkT

we can rewrite this as:
TVγ−1 = Const. (2.23)

And hence VC/V0 = (T0/TC)
1

γ−1 and so:

VC = V0

(
T0

TC

) 5
2

(2.24)

(c) By energy conservation, since no heat is transferred between the cylinder and the surroundings, the
work is given by the change in internal energy of the gas. The gas has N = P0V0

kBT0
molecules, so the

work is given by:

W = ∆E = NkBCV∆T =
5
2

kB
P0V0

kBT0
(TC − T0) =

5
2

P0V0

(
TC
T0

− 1
)

(2.25)

(d) The work done is:

W = −
∫ VC

V0

P(V)dV = −
∫ VC

V0

P0Vγ
0

Vγ
dV = −P0Vγ

0

∫ VC

V0

V−γdV = −
P0Vγ

0
γ − 1

V1−γ

∣∣∣∣∣
V2

V1

=
P0V0

γ − 1

((
VC
V0

)1−γ

− 1

)

=
5
2

P0V0

(
TC
T0

− 1
)

(2.26)
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(e) We give two derivations. The first uses the given formula (twice), the second a clever derivative.

Derivation 1: Since TVγ−1 remains constant for an adiabatic process, for initial temperature/volume
T1, V1 and final temperature/volume T2, V2 we have that:

T1Vγ−1
1 = T2Vγ−1

2 (2.27)

We have that T1 = T, V1 = V, T2 = T + δT (temperature increases in adiabatic compression) and
V2 = V − δV, so substituing these in we have:

TVγ−1 = (T + δT)(V − δV)γ−1. (2.28)

Now factoring out T and Vγ−1 from the RHS we have:

TVγ−1 = TVγ−1(1 +
δT
T
)(1 − δV

V
)γ−1 (2.29)

so cancelling terms we get:

1 = (1 +
δT
T
)(1 − δV

V
)γ−1. (2.30)

As the piston is pushed inwards a small distance, δV is small and hence, δV/V ≪ 1. Hence we can
apply the suggested binomial approximation to get:

1 ≈ (1 +
δT
T
)(1 − (γ − 1)

δV
V

) (2.31)

We can now isolate δT/T to obtain:

δT
T

≈
(

1 − (γ − 1)
δV
V

)−1
− 1 (2.32)

Again using that δV/V ≪ 1, we can apply the suggested formula a second time to obtain:

δT
T

≈
(

1 − (−1)(γ − 1)
δV
V

)
− 1 (2.33)

Hence we obtain the result:
δT
T

≈ (γ − 1)
δV
V

(2.34)

and putting in γ = 5/3 we have:
δT
T

≈ 2
3

δV
V

(2.35)

Derivation 2: We start with TVγ−1 = C for some constant C. Taking the derivative of this equation and
using the product and chain rule, we have:

dT · Vγ−1 + T(γ − 1)Vγ−2dV = 0 (2.36)

Dividing out by TVγ−1 we obtain:
dT
T

+ (γ − 1)
dV
V

= 0 (2.37)

Rearranging we have:
dT
T

= −(γ − 1)
dV
V

(2.38)
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And letting dT = δT, dV = −δV (the volume decreases), we obtain:

δT
T

≈ (γ − 1)
δV
V

(2.39)

and again with γ = 5/3 we have:
δT
T

≈ 2
3

δV
V

(2.40)

in agreement with (2.35).

(f) Using an identical argument as (d) (either the binomial approximation or the derivative method)
works. To see this, note that PVγ is constant in a fast adiabatic process, of nearly identical form to
TVγ−1, just by substituting T for P and γ − 1 for γ. Hence we can just make this subsitution into our
final result in (2.34) to obtain:

δP
P

≈ γ
δV
V

=
5
3

δV
V

(2.41)

(g) Molecules that hit the piston gain velocity, and hence the average kinetic energy (and therefore tem-
perature) of the gas increases.

(h) Molecules that his the piston gain velocity and collisions increase in frequency, raising average force
against container walls and hence pressure. The fractional change is greater for pressure than for
temperature, as we have two factors contributing to increase in pressure.

2.4 Equilibriation and Entropy

(a) The temperature is uniform after equilibration. Since the cylinder is isolated, its total energy is con-
served, and therefore the final temperature equals the initial temperature:

Tf
L = Tf

R = T (2.42)

The equilibrium position is reached when the pressure pL on the left equals the pressure pR on the
right, so by the ideal gas law (noting that NLkT, NRkBT are constant through the evolution):

p f
LV f

L = pi
LVi

L = p0V (2.43)

p f
RV f

R = pi
RVi

R = p0B/2 (2.44)

at equilibrium p f
L = p f

R and so V f
L /V f

R = 2. Furthermore, V f
L + V f

R = V, so:

V f
L =

2
3

V, V f
R =

1
3

V (2.45)

(b) The entropy change is:

∆S = NLkB ln(
V f

L
Vi

L
) + NRkB ln(

V f
R

Vi
R
) +

3
2

NLkB ln(
T f

L
Ti

L
) +

3
2

NRkV ln(
T f

R
Ti

R
) (2.46)

Since T f = Ti = T for both sides the temperature terms drop out, and from the ideal gas law:

NL =
P0V
kBT

, NR =
P0V

2kBT
(2.47)
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so using the V f from part (a):

∆S =
P0V

T
ln(

2
3 V
V
2
) +

P0V
2T

ln(
1
3 V
V
2
) =

P0V
2T

(
ln(
(

4
3

)2
) + ln(

2
3
)

)
=

P0V
2T

ln(
32
27

) (2.48)

(c) Let us denote V f
L as v and express the final entropy as a function of v, and K = P0V

2T then:

S f = Si + ∆S = Si + 2K ln(
v
V
2
) + K ln(

V − v
V/2

) (2.49)

Then:
dS f

dv
= 2K

1
v
− K

1
V − v

(2.50)

Setting this to zero, we find:
dS f

dv
= 0 =⇒ v =

2V
3

(2.51)

Which tells us that V f
L = 2

3 V is an extremum, and furthermore:

d2S f

dv2

∣∣∣∣∣
v=2V/3

= −27
2

K
V2 < 0 (2.52)

so the final entropy is maximized there.
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