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1 Problems

1.1 Relativistic Doppler Effect

You saw the non-relativistic Doppler effect in class, and somewhat showed the relativistic version, but
here we derive it from what we know from relativistic mechanics.

Consider a distance star emitting light with period T in its own frame, moving with v = vx̂ relative to
an observer on Earth. The light has component v cos θ towards the observer. We want to calculate the
period/frequency that the observer sees. For simplicity, suppose that the pulse that the star emits is as
long as one wavelength of light.

(a) What is the time between t1 (the start of the pulse) and t2 (the end of the pulse) in the observer frame?

(b) Let t1 = 0. Determine the difference of time between when the beginning of the pulse reaches the
telescope at t3 and when the end reaches the telescope at t4. Deduce what t2, t3, t4, L1, L2 are in the
below figure in terms of the given parameters of the question.
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(c) Write Tobs in terms of T, γ, v, c, θ, and use this to write λobs and ωobs.

(d) What is λobs if a star is moving away from the observer? Check also ωobs in this case and that it
matches what you saw in class. How could this effect be useful for astronomers?

(e) What is λobs if the start is moving perpendicular to the observer? Is the shift more or less severe than
the case where it is moving away? How does the transverse doppler effect differ in the

(f) (Probably will skip in discussion) It turns out that the redshift:

z =
λobs − λe

λe
(1.1)

can be used to date the age of galaxies in an expanding universe! Let’s derive this. If the universe is
isotropically expanding (such as ours!), then distances between points have the form r(t) = a(t)r(t0)
where a(t) is the scale factor. In such a universe, the distance that a light beam covers in time dt is
given by:

cdt = a(t)dr (1.2)

By considering a galaxy that emits wavelength λem and the times of emission/observation, show that
the redshift of the galaxy is related to the scale factor as:

1 + z =
a(to)

a(te)
(1.3)

Hence the redshift of a galaxy (or other celestial object) tells us the scale factor at time te!

1.2 Dispersion of Exotic Waves

For waves on a string/in air/EM waves, the dispersion relation is linear ω = ck, so we don’t see a distinct
difference between group and phase velocities. Let’s discuss some examples where we do see a distinction!

In quantum mechanics, the state of a particle in space/time is described by the wavefunction ψ(x, t),
where the probability of finding the particle in the interval [a, b] is given by:

P(a ≤ x ≤ b) =
∫ b

a
|ψ(x, t)|2dx. (1.4)
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The evolution of this wavefunction is given by the Schrodinger equation:

ih̄
∂ψ

∂t
= − h̄2

2m
∂2ψ

∂x2 + V(x)ψ (1.5)

(a) Consider V(x) = 0 (i.e. no potential/the particle is free) and the travelling wave ansatz ψ(x, t) =

Aei(kx−ωt). Derive the dispersion relation between ω and k. Given that the wave momentum is given
by p = h̄k and the wave energy is given by E = h̄ω, then what does this dispersion relation remind
you of?

(b) Compute the phase velocity and the group velocity. How do they differ? Which one corresponds to
the classical velocity of the particle (and why does this make sense)?

There are also cases where the group/phase velocity can differ in some limits, but converge in others.
For example, we can derive ocean wave solutions (see https://uw.pressbooks.pub/ocean285/chapter/

depth-dependent-ocean-surface-wave-solution/) of the form Φ(z, t) = A cosh[k(z + h)] cos(kx − ωt)
(with h the depth of the water) which have the dispersion relation:

ω2 = gktanh(kh) (1.6)

(c) (Probably will skip in discussion) Derive the phase and group velocities in the general case, and check
that they differ.

(d) Consider the limit where the water is shallow, and the wavelength is much larger than the depth.
What are the phase and group velocies in this case?

(e) Consider the limit where the water is deep, and the wavelength is much smaller than the depth. What
are the phase and group velocies in this case?

(f) Imagine a packet of waves in the deep ocean - what happens to the packet in this case as the packet
travels? Now, imagine a packet of large-wavelength waves in shallow waters - what happens to the
packet in this case as the packet travels? Which one is more dangerous?
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2 Solutions

2.1 Relativistic Doppler Effect

(a) Time dilation tells us that:
t2 − t1 = γT (2.1)

where γ = 1√
1− v2

c2

.

(b) Referring to the figure

we have that:
t2 = γT (2.2)

from the assumption that t1 = 0, and otherwise (from geometry):

L1 = vγT (2.3)

L2 = L1 cos θ = γvT cos θ (2.4)

t3 =
D + L2

c
(2.5)

t4 =
D
c
+ t2 (2.6)

(c) Computing Tobs in terms of what we found in (b):

Tobs = t4 − t3 =

(
D
c
+ t2

)
−

(
D
c
+

L2

c

)
= t2 −

L2

c
= γT − γTv cos θ

c
= γT(1 − v

c
cos θ) (2.7)

Now since Tobs =
λobs

c and T = λ
c

λobs = γλ(1 − v
c

cos θ) (2.8)

We can also find the frequency from Tobs =
2π

ωobs
and T = 2π

ω so:

ωobs =
ω

γ(1 − v
c cos θ)

(2.9)
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(d) If the star is moving away, θ = π and so:

λobs = γ(1 +
v
c
)λ =

1√
1 − v2

c2

(1 +
v
c
)λ =

√
1 + v

c
1 − v

c
λ. (2.10)

for frequency:

ωobs =

√
1 − v

c
1 + v

c
ω (2.11)

which is what you saw in class. We see that λobs > λ, and this can be used by astronomers to study
the speed of planets based on shifts to their spectra.

(e) If the star is moving perpendicular, then θ = π/2 so:

λobs = γλ (2.12)

The doppler shift arises from time dilation, vs. in the non-relativistic case arose from sound waves
travelling in different speeds at different frames.

(f) Rearranging the given relation:

c
ddt

da(t)
= dr (2.13)

If the galaxy emits light with wavelength λe, and supposing the crest is emitted at time te and observed
at to:

c
∫ to

te

dt
a(t)

=
∫ r

0
dr = r (2.14)

The next crest is emitted at te = λe/c and observed at t0 + λ0/c, so:

c
∫ to+λo/c

te+λe/c

dt
a(t)

=
∫ r

0
dr = r (2.15)

hence: ∫ to

te

dt
a(t)

=
∫ to+λo/c

te+λe/c

dt
a(t)

(2.16)

Which subtracting
∫ to

te+λe/c
dt

a(t) from both sides:

∫ te+λe/c

te

dt
a(t)

=
∫ to+λo/c

to

dt
a(t)

(2.17)

Since a(t) is effectively a constant in the integrals above (assuming the universe expands sufficiently
slowly - which is true given our measured data), we can take it out:

1
a(te)

∫ te+λe/c

te
dt =

1
a(to)

∫ to+λo/c

to
dt (2.18)

so:
λe

a(te)
=

λo

a(to)
(2.19)

and so:
λe

λo
= 1 + z =

a(to)

a(te)
=

1
a(te)

(2.20)

where by convention a(to) = 1.

5



2.2 Dispersion of Exotic Waves Solution

(a) Putting in the travelling wave ansatz:

ih̄(−iω)Aei(kx−ωt) = − h̄2

2m
(ik)2 Aei(kx−ωt) =⇒ h̄ω =

h̄2k2

2m
=⇒ ω =

h̄k2

2m
(2.21)

Given that p = h̄k and E = h̄ω, this reminds us of the classical relationship of the (kinetic) energy and

momentum of a free particle, E = p2

2m .

(b) The phase velocity is given by:

vp =
ω

k
=

h̄k
2m

(2.22)

The group velocity is given by:

vg =
dω

dk
=

d
dk

h̄k2

2m
=

h̄k
m

(2.23)

The classical velocity of the particle is v = p
m , so corresponds to the group velocity. This makes sense

as the group velocity describes the velocity of a packet/excitation of a wave (and hence corresponds to
a particle trajectory), while the phase velocity might describe the motion of a delocalized probability
wave (and not a localized particle in space).

(c) The phase velocity is given by:

vp =
ω

k
=

√
gktanh(kd)

k
(2.24)

The group velocity we obtain by implicitly differentiating the expression for ω2 with respect to k:

2ω
dω

dk
= gtanh(kd) + gkdsech2(kd) (2.25)

Hence:

vg =
dω

dk
=

gtanh(kd) + gkdsech2(kd)
2ω

(2.26)

And substituting ω:

vg =
gtanh(kd) + gkdsech2(kd)

2
√

gktanh(kd)
(2.27)

(d) In the limit where kh ≪ 1, then tanh(kh) ≈ kh so:

ω2 ≈ ghk2 =⇒ ω =
√

ghk (2.28)

at this point we already know that the phase/group velocities will be the same since the dispersion is
linear. The phase velocity is given by:

vp =
ω

k
=

√
gh (2.29)

and the group velocity is obtained via implicit differentiation:

vg =
dω

dk
=

d
dk

√
ghk =

√
gh (2.30)

so for shallow water waves vp = vg.
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(e) In the limit where kh ≫ 1, then tanh(kh) ≈ 1 so:

ω2 = gk =⇒ ω =
√

gk (2.31)

the phase velocity is:

vp =
ω

k
=

√
gk

k
=

√
g
k

(2.32)

the group velocity is:

vg =
dω

dk
=

d
dk

√
gk =

1
2

√
g
k

(2.33)

so vg = 1
2 vp.

(f) From (e) we know a packet of short-wavelength waves in deep water will disperse/travel at different
rates, so the waves will disperse in time and not be harmful. Conversely, from (D) a packet of long-
wavelength waves in shallow water all stay together and travel at the same rate, so we expect this to
be more dangerous.
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