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This document was typeset on April 29, 2025

(Discussion Week 4 was just midterm review, so no write-up).

1 Problem Statement

In this problem, we’ll show that a charged particle in the presence of an electromagnetic (monochromatic)
plane wave exhibits oscillations in two directions (at different frequencies) plus a drift. Fun fact: I had to
solve a version of this problem to pass out of graduate EM1!

(a) Write down the Maxwell equations in the absence of sources (charges and currents).

(b) By taking the curl of Faraday’s Law, derive a 3-D wave equation for E.

(c) By using the ansatz of a travelling wave, derive a dispersion relation.

(d) Using Gauss’ Law on the above ansatz, show that the direction of propagation k̂ and the direction of
the field E are orthogonal.

(e) Consider a wave of the form:
E = E0 cos(kz − ωt)x̂ (1.1)

What direction does the wave travel in (and is this consistent with what you found in (d))? What is
the corresponding magnetic field?

(f) Consider now a particle of charge q and mass m. Write down Newton’s equation for the particle.
Show that if r(t = 0) = ṙ(t = 0) = 0 (the particle is at rest) then the motion is in the (x, z) plane at all
times.

(g) In physics, it is common to treat problems perturbatively - solving an easier/analytically tractable
problem first and then adding on more complicated terms as (smaller) corrections to the initial solu-
tion. To leading order, set the magnetic field to zero in the equations of (f) and solve for the position
of the particle in the (x, z) plane with the given initial conditions.

(h) Now, add the leading effect of the magnetic field on the z-component of the trajectory of the particle,
by substituting in the trajectory. You may assume the long wavelength approximation where kz ≪ 1
(or in terms of the wavelength, z

λ ≪ 1). What is the self consistency condition on q, m, ω, E0 for the
calculation to be reliable?
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2 Solution

(a) With ρ = 0, J = 0, the Maxwell equations read:

∇ · E = 0 (2.1)

∇× E = − ∂B
∂t

(2.2)

∇ · B = 0 (2.3)

∇× B =
1
c2

∂E
∂t

(2.4)

(b) Taking the curl of Eq. (2.2):

∇× (∇× E) = −∇× ∂B
∂t

= − ∂

∂t
(∇× B) (2.5)

where we have used that partial derivatives commute. Now if we use ∇× (∇× A) = ∇(∇ · A)−
∇2A on the LHS and apply Ampere’s Law Eq. (2.4) on the RHS, then:

∇(∇ · E)−∇2E = − ∂

∂t
(

1
c2

∂E
∂t

) = − 1
c2

∂2E
∂t2 (2.6)

Now using Gauss’ Law Eq. (2.1) on the LHS, the first term vanishes and we are left with:

∇2E =
1
c2

∂2E
∂t2 (2.7)

which is the desired wave equation.

(c) Substituting in the travelling wave ansatz E(x, t) = E0ei(k·x−ωt) into the wave equation, we find the
dispersion:

(ik)2E0ei(k·x−ωt) =
1
c2 (−iω)2E0ei(k·x−ωt) =⇒ ω2 = c2|k|2 =⇒ ω = c|k| (2.8)

(d) Applying Gauss’ Law:
∇ · E = ik · E0ei(k·x−ωt) = 0 =⇒ k · E0 = 0 (2.9)

so it must be that k̂ and Ê are orthogonal.

(e) The wave travels in ẑ , which is consistent with our result in (d) as this is orthogonal to x̂. To find the
B-field, we use Faraday’s Law:

∇× (E0 cos(kz − ωt)x̂) = − ∂B
∂t

(2.10)

Evaluating the curl:

−E0k sin(kz − ωt)ŷ = − ∂B
∂t

(2.11)

Thus:

B(t) =
∫

E0k sin(kz − ωt)ŷ =
E0k
ω

cos(kz − ωt)ŷ =
E0

c
cos(kz − ωt)ŷ (2.12)
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(f) Newton’s 2nd law combined with hte Lorentz force law reads:

mr̈ = F = q(E + ṙ × B) (2.13)

Which if we evaluate the cross product and write in vector notation reads:ẍ
ÿ
z̈

 =
q
m

E0 cos(kz − ωt)− ż E0
c cos(kz − ωt)

0
ẋ E0

c cos(kz − ωt)

 (2.14)

Since We see that if y(t = 0) = ẏ(t = 0) = 0 and there are no forces in ŷ, it must be that y(t) = 0 for
all time and the motion is confined to the (x, y) plane.

(g) Setting the magnetic field terms to zero, we have:ẍ
ÿ
z̈

 =
q
m

E0 cos(kz − ωt)
0
0

 (2.15)

We then find that z(t) = 0 for all time (as z(t = 0) = ż(t = 0) = 0) at leading order. Solving for the
x-motion, we have:

ẍ =
qE0

m
cos(−ωt) =

qE0

m
cos(ωt) =⇒ x(t) = − qE0

mω2 cos(ωt) + At + B (2.16)

Now applying the initial conditions of x(t = 0) = ẋ(t = 0) = 0 we get:

A = 0, B =
qE0

mω2 (2.17)

so:

x(t) =
qE0

mω2

[
1 − cos(ωt)

]
(2.18)

(h) We now look at the leading order z-motion, plugging in our leading order x(t) solution. We note that:

ẋ(t) =
qE0

mω
sin(ωt) (2.19)

and so:

z̈ =
q
m

qE0

mω
sin(ωt)

E0

c
cos(kz − ωt) ≈

q2E2
0

m2ωc
sin(ωt) cos(ωt) =

q2E2
0

2m2ωc
sin(2ωt) (2.20)

Which has general solution:

z(t) = −
q2E2

0
8m2ω3c

sin(2ωt) + Ct + D (2.21)

With z(t = 0) = ż(t = 0) = 0 we find:

C =
q2E2

0
4m2ω2c

, D = 0 (2.22)

And so:

z(t) = −
q2E2

0
8m2ω3c

sin(2ωt) +
q2E2

0
4m2ω2c

t (2.23)
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The self-consistency condition is for the force from the magnetic field to be small in comparison to the
electric field, so:

q
m ẋ E0

c cos(kz − ωt)
qE0
m cos(kz − ωt)

=
ẋ
c
≪ 1 (2.24)

which is the non-relativistic limit; if we substitute in our expression for x:

qE0
mω sin(ωt)

c
∼ qE0

mωc
≪ 1 (2.25)

Note that we also had our second approximation of the long wavelength approximation kz ≪ 1; of
the two terms for z(t) found above, the linear drift term is more significant (the sine term is bounded
in time, and is smaller in magnitude assuming ω is of order 1 or larger), so the consistency condition
on this is:

k
q2E2

0
4m2ω2c

t ≪ 1 =⇒
q2E2

0
4m2ωc2 t =

1
4

(
qE0

mωc

)2
ωt ≪ 1 (2.26)

so this is not respected for all times (which makes sense - after a long enough time, the electron will
have drifted past the length scale of a wavelength), but since qE0

mωc is small it is obeyed for ωt ∼ O(1).
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