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Problem 1 - Sawtooth Series

Consider the sawtooth function sketched above, with f (t) = At for − T
2 ≤ t ≤ T

2 and f (t) = f (t + T). (We
replace x → t, L → T in the above)

(a) Expand f (t) with trigonometric functions of the same period T:

f (t) = a0 +
∞

∑
n=1

(an cos(
2πnt

T
) + bn sin(

2πnt
T

)) (0.1)

and determine a0, an, bn.

(b) Now, expand f (t) using an exponential series of the same period:

f (t) =
n=∞

∑
n=−∞

cnei 2πnt
T (0.2)

and determine cn.

(c) Fourier transform f (t) over the entire range:

f (t) =
∫

f̃ (ω)eiωtdω (0.3)

and determine f (ω).

Problem 2 - Basel Problem

You have likely seen the infinite series:
∞

∑
n=1

1
n2 (0.4)

before. Indeed, from convergence tests you also likely know that this converges. But how do we determine
its value? Using Fourier series, there is actually a very easy way to compute it!
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In particular, Consider the fourier series expansion of f (x) = x2 for −π ≤ x ≤ π using sines and
cosines. Then, evaluate this expression at x = π to find that:

∞

∑
n=1

1
n2 =

π2

6
. (0.5)

Bonus Problem (no solution included) - ∑n
1

n4

By considering the Fourier series of the function f (x) = x4 − 2π2x2 from −π to π, show that:

∞

∑
n=1

1
n4 =

π4

90
(0.6)

Solution 1

(a) All of the an coefficients vanish, because looking at:

an =
2
T

∫ T/2

−T/2
dtAt cos(

2πnt
T

) = 0 (0.7)

using that the integrand is an odd function. For the bns, we have:

bn =
2
T

∫ T/2

−T/2
dtAt sin(

2πnt
T

) (0.8)

Using integration by parts, we know that:∫
x sin(rx)dx = − x

r
cos(rx) +

1
r2 sin(rx) (0.9)

and thus:

bn =
2A
T

−t
(

T
2πn

cos(
2πnt

T
)

)∣∣∣∣T/2

−T/2
+

(
T

2πn

)2
sin(

2πnt
T

)

∣∣∣∣∣
T/2

−T/2


=

(
− AT

2πn
cos(πn) +

AT
2πn

cos(−πn)
)
+ 0

= (−1)n+1 AT
πn

(0.10)

Hence we have the Fourier series:

f (t) =
AT
π

∞

∑
n=1

(−1)n+1 1
n

sin(
2πnt

T
) (0.11)

Which we can plot:
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to see that the more terms we add, we can converge towards the form of the sawtooth. Note that there
is an overshoot at ± T

2 - this phenomenon, known as the Gibbs phenomenon, is a general phenomena
when looking at Fourier series.

Note also that if we take t = T
4 :

f (
T
4
) = A

T
4
=

AT
π

∞

∑
n=1

(−1)n+1 1
n

sin(
πn
2
) =⇒ π

4
=

∞

∑
n=1

(−1)n+1 1
2n − 1

(0.12)

so Fourier series give us nice sum identities! We will explore another famous example in the last
problem. Note that the above result is also what you get if you evaluate the Taylor series of arctan(x)
at x = 1.

(b) Now we compute:

cn =
1
T

∫ T/2

−T/2
dtAte−i2πnt/T (0.13)

If n = 0, then we have the integral of an odd function, so c0 = 0. For n ̸= 0, we can use the result from
integration by parts that: ∫

xe−rxdx = − x
r

e−rx − 1
r2 e−rx (0.14)
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and so:

cn = − A
T

 tT
i2πn

e−i2πnt/T
∣∣∣∣T/2

−T/2
+

(
T

i2πn

)2
e−i2πnt/T

∣∣∣∣∣
T/2

−T/2


= − A

T

(
T
2

)
T

i2πn
(e−iπn + eiπn) +

A
T

(
T

i2πn

)2
(e−iπn − eiπn)

= (−1)n iAT
2πn

(0.15)

So then:
f (t) = ∑

n ̸=0
(−1)n iAT

2πn
ei2πnt/T (0.16)

(c) To get f̃ (ω) we take the inverse Fourier transform:

f̃ (ω) =
1

2π

∫ ∞

−∞
dt f (t)e−iωtdt

=
1

2π

∫ ∞

−∞
dt ∑

n ̸=0
(−1)n iAT

2πn
ei2πnt/Te−iωt

=
iAT
4π2 ∑

n ̸=0
(−1)n 1

n

∫ ∞

−∞
dtei2πnt/T−iωt

=
iAT
4π2 ∑

n ̸=0
(−1)n 1

n
2πδ(ω − 2πn

T
)

=
iAT
2π ∑

n ̸=0
(−1)n 1

n
2πδ(ω − 2πn

T
)

(0.17)

which (as would be expected for a periodic function) is just a series of delta functions as the frequencies
we found in (b).

Solution 2

We want to find the coefficients in the expansion:

x2 = a0 +
∞

∑
n=1

[
an cos(nx) + bn sin(nx)

]
(0.18)

Note the factor of 1
2 on the a0 as we look at the symmetric interval [−π, π] (you can check that this is

necessary to reproduce the correct expression if we just had a constant function). First finding a0:

a0 =
1

2π

∫ π

−π
dxx2 =

1
π

∫ π

−π
dxx2 =

1
π

(
1
3

x3
∣∣∣∣π
−π

)
=

π2

3
(0.19)

Then finding an:

an =
1
π

∫ π

−π
dxx2 cos(nx) =

2
π

∫ π

0
dxx2 cos(nx) = (−1)n 4

n2 (0.20)

where we use integration by parts. Then computing bn:

bn =
1
π

∫ π

−π
dxx2 sin(nx) = 0 (0.21)
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where we have used that x2 sin(nx) is odd. Hence:

x2 =
π2

3
+

∞

∑
n=1

(−1)n 4
n2 cos(nx) (0.22)

Taking x = π we find cos(nπ) = (−1)n and so the above becomes:

π2 =
π2

3
+

∞

∑
n=1

4
n2 (0.23)

which we can rearrange to get:
∞

∑
n=1

1
n2 =

π2

6
(0.24)
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