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Problem Statement
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Consider a 1-D chain of atoms, alternating between mass m; (odds) and mass mp > m; (evens),
connected by springs of spring constant x, with equilibrium spacing a (This is a toy-model for diatomic
crystals, for example NaCl). Denote by x; the displacement of mass i from equilibrium.

(a) Use Newton’s law to write down the equation of motion for atom i = 2n as a function of x5, _1, X2, X2 41-
Do the same for atom i = 21 + 1. Then write down the entire system of equations of motion in matrix

form:
Mx = —Kx 0.1)
where x = (x1(t), x2(t), x3(t),...)T.
(b) Consider the travelling wave ansatz:
xon(t) = Apexp(i(2nka — wt)) 0.2)
Xon+1(t) = Brexp(i(2nka — wt)) (0.3)

with k = 27t /x the wavevector(number). Substitute this into your result from (a) to obtain a system of
equations for Ay, By.

(c) Use the result from (b) and solve for the normal mode frequencies w4 of the system (as a function
k), and sketch them for —7. < k < 7. (this is the so-called “First Bruillion Zone” - since the ws are
periodic, it suffices to look at their behaviour in this one region). The lower band of modes with
frequency w_ are called “acoustic” modes, while the upper bound of modes with frequency w, are
called “optical” modes. How large is the frequency gap between the two bands, and what is the
interpretation of this gap?

(d) Let’s try to get a bit more intuition for the acoustic mode dispersion - consider it in the limit where
ka < a. You should recover the dispersion equation of the continuum wave equation. To make the
connection more concrete, derive the wave equation from masses m connected by springs.

(e) Let’s get more intuition for the normal mode motion in certain limits for the two bands. Calculate

<1];1:> for both the acoustic/optical modes for ka = 0 and comment on the result. Also, calculate

(gk> for both the acoustic/optical modes for ka = =7 and comment on the result.
k



Solution

(a) Using Hooke’s Law, we can write down the equation of motion for the even/odd (light/heavy) atoms:
mafon = —K(Xon — Xon—1) = k(xXon — Xop41) == mafoy = =K (—X2n-1 — Xon41 + 2x29) (0.4)

myXoy 1 = —K(Xon41 — Xon) — K(X2uq1 — Xony2) == Mikoy = —Kk (=X — Xoug2 +2%2441)  (0.5)

In matrix form:

mq X1 2 -1 0 0 e X1
my Xo -1 2 -1 0 ... X2

my l=—%1o0 -1 2 -1 ...|]|x3 (0.6)

(b) Plugging in the ansatz into the differential equations from (a):

—w?my Ay exp(i(2nka — wt))

0.7
= —«k(—Brexp(i(2(n — 1)ka — wt)) — Brexp(i(2nka — wt)) + 2Ay exp(i(2nka — wt))) 0.7
—w?my By exp(i(2nka — wt))
. . . (0.8)
= —«k(—Arexp(i(2nka — wt)) — Axexp(i(2(n + 1)ka — wt)) + 2B exp(i(2nka — wt)))
Cancelling out the exp(i(2nka — wt)) from both sides:
—w?myAy = —k(—Byexp(—2ika) — By +2A;) 0.9)
—w?my By = —x(— Ay — Agexp(2ika) + 2By) (0.10)
We can write this in matrix form:
w?my — 2x k(1 +exp(—2ika))\ [Ar) _ 0 0.11)
(1 + exp(2ika)) w?my — 2K By, | ’

(c) We can set the determinant of the above matrix to zero to find the normal mode frequencies:

w?my — 2K k(1 +exp(—2ika))\ [ Ar) _
det (K(l + exp(2ika)) w?my — 2k ) ( ) =0 0.12)

By
Which yields:
mymaw* — 2 (my 4 my)w?* + 4x* — x*(1 + exp(—2ika)) (1 + exp(2ika)) = 0 0.13)
— mympw®* — 2k (my + my)w? + 2k*(1 — cos(2ka)) = 0 '
Which is a quadratic equation in w?:
o 2x(my +my) £ \/Ax2(my + mo)2 — dmymy(2x2(1 — cos(2ka)))
w3 =
2mqimy
=_* (ml—i-mz)i\/(m1+m2)2—2m1m2(1—(1—2sin2(ka)))
My
K (0.14)
= + 24 in?(k
p— <(m1 + my) \/(m1 +my) mynp sin” ( a))

_ K(maitmy) f4 A 2 (ka)
mqmy (Wl] + WIQ)



Frequencies are positive and so taking the positive square root:

wy = K(my + mp) 14+ ,/1— Lmzz sin?(ka) (0.15)
mimy (m1 + mz)

Sketching (taking my =a =« =1,m; =2) fork € [-Z, Z):

Frequency vs. k
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The difference in frequency between the two bands we can evaluate at k = 7_:

1 4 4
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mymy my + my)? my + my)? (0.16)
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the interpretation of the gap is that there are no sound waves in the material which can take frequency
values in the gap.

Comment: Much like photons are “quanta” of the electromagnetic field, phonons are “quanta” of
vibrations/sound (with the field the elastic medium). Therein, the energies of the photons are given
by E = hw where w are the frequencies you found above. This tells us that phonon energies appear
in bands, with a gap.

(d) Looking at the acoustic band dispersion:

w_ = K(m +my) 1—.,/1— Lmzz sin?(ka) (0.17)
mymy (my +mp)



For ka < 1 this becomes:

o~ K (my 4 my) 1 [p . Ammo (ka)?
mymy (m1 +m)

(my + my) (1 B (1 _ % dmymy > (ka)2> (0.18)
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This looks like the wave equation dispersion:

Q

w=ck (0.19)
with wave speed:
2 2
L (0.20)
my + my

For N masses, we have total mass %N , total spring constant K = §;, and total length L = aN, so:

2 _ KL

“TM

(0.21)

To make the connection more concrete - we consider the same setup, just with all masses the same m:

\ \ \
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¢(x) measures the distance from equilibrium of a mass situated at position x. The force on mass m at
X + a is (as we derived before):

Frooke = Fxqa + Fx—g = k[p(x 4+ a,t) —2¢(x,t) + ¢p(x — a, t)] (0.22)
and Newton’s Law says:
32
FNewton = m ﬁ ¢(x/ t) (0.23)
So:
92 K
ﬁ(p(x,t) = %[cp(x—i-a,t) —2¢(x,t) + ¢(x —a,t)] (0.24)

If we have N weights with total length L = Na, total mass M = Nm, and total spring constant K =
(spring constants add as é =Y +), we can write:

02 KL? [p(x +a,t) —2p(x, t) + ¢p(x —a,t
L 0L5)+9(r=a.1) 025
Taking N — co0,a — 0 we can recognize the RHS as a second derivative in space and so:
’¢p  KL? 9%¢p
"M o ©26)



(e)

which is the wave equation with:
2 KL?
SR
So we get the same result as the ka < 1 limit of the discrete model!

c (0.27)

Back to the discrete model. Lets study the eigenvectors for ka = 0. For the acoustic mode, we have:

4
d:ﬂﬂﬂﬁlflmgggﬂﬂmzo (0.28)
mymy (my +my)

—2x 2k A
<2K _2K> (B:> =0 (0.29)
A 1
( B}’:) = <1> (0.30)

and so g—: ~ 1 for ka < 1, i.e. the masses oscillate in phase for acoustic modes for ka < 1 (again as
we would expect for sound waves).

and so:

which tells us that:

For the optical modes, we have:

4 2
2= Mmtm) A gy ) o 26 ) (0.31)
1My (my +my) mymy
so:
2k (my+my) ) )
mymy my K ZK(m1+m2;( ng =0 (032)
2K Wml — 2K k

from which we get:

A m
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So for ka <« 1, ’g—;‘ ~ —m and the atoms oscillate out of phase. This is where this mode gets the

name “acoustic”. When charged ions move out of phase in a crystal, this creates a time-varying dipole
moment, so the vibrations of the lattice can emit or absorb radiation - hence optical!

Let’s also study the dynamics when ka = 47 at the Bruillion zone boundary. There the frequencies
look like:

4
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O mmy ( my + mo (my —m) (0.34)
_ k(my +my) <1i my —mz)
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SO:

For the acoustic mode:

rzn—’;mz—ZK k(1+exp(—im))\ (A _ (O 0 Ag —0
k(1 +exp(in)) %ml—ZK Be )~ \0 2c(72-1)) \ B | —

so Ay =1, By = 0 and so the even atoms oscillate while the odd ones stay fixed.

Then for the optical mode:

%mz—ZK k(1+exp(—in))\ [Ar) _ (5 —1) 0\ (Ag ~0
k(1 + exp(in)) %ml—ZK Br | 0 0/ \Bx/)

so Ay = 0, By = 1 and so the even atoms stay fixed while the odd ones stay fixed.

A nice visual + interactive graph for this problem can be found here.
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https://lampz.tugraz.at/~hadley/ss1/phonons/1d/1d2m.php

