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Problem Statement

m2 κ m1
a

2a

x2n x2n+1x2n−1

. . . . . .

Consider a 1-D chain of atoms, alternating between mass m1 (odds) and mass m2 > m1 (evens),
connected by springs of spring constant κ, with equilibrium spacing a (This is a toy-model for diatomic
crystals, for example NaCl). Denote by xi the displacement of mass i from equilibrium.

(a) Use Newton’s law to write down the equation of motion for atom i = 2n as a function of x2n−1, x2n, x2n+1.
Do the same for atom i = 2n + 1. Then write down the entire system of equations of motion in matrix
form:

Mẍ = −Kx (0.1)

where x = (x1(t), x2(t), x3(t), . . .)T .

(b) Consider the travelling wave ansatz:

x2n(t) = Ak exp(i(2nka − ωt)) (0.2)

x2n+1(t) = Bk exp(i(2nka − ωt)) (0.3)

with k = 2π/κ the wavevector(number). Substitute this into your result from (a) to obtain a system of
equations for Ak, Bk.

(c) Use the result from (b) and solve for the normal mode frequencies ω± of the system (as a function
k), and sketch them for − π

2a < k < π
2a (this is the so-called “First Bruillion Zone” - since the ωs are

periodic, it suffices to look at their behaviour in this one region). The lower band of modes with
frequency ω− are called “acoustic” modes, while the upper bound of modes with frequency ω+ are
called “optical” modes. How large is the frequency gap between the two bands, and what is the
interpretation of this gap?

(d) Let’s try to get a bit more intuition for the acoustic mode dispersion - consider it in the limit where
ka ≪ a. You should recover the dispersion equation of the continuum wave equation. To make the
connection more concrete, derive the wave equation from masses m connected by springs.

(e) Let’s get more intuition for the normal mode motion in certain limits for the two bands. Calculate(
Ak
Bk

)
for both the acoustic/optical modes for ka = 0 and comment on the result. Also, calculate(

Ak
Bk

)
for both the acoustic/optical modes for ka = ±π

2 and comment on the result.
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Solution

(a) Using Hooke’s Law, we can write down the equation of motion for the even/odd (light/heavy) atoms:

m2 ẍ2n = −κ(x2n − x2n−1)− k(x2n − x2n+1) =⇒ m2 ẍ2n = −κ (−x2n−1 − x2n+1 + 2x2n) (0.4)

m1 ẍ2n+1 = −κ(x2n+1 − x2n)− κ(x2n+1 − x2n+2) =⇒ m1 ẍ2n = −κ (−x2n − x2n+2 + 2x2n+1) (0.5)

In matrix form: 
m1

m2
m1

. . .




ẍ1
ẍ2
ẍ3
...

 = −κ


2 −1 0 0 . . .
−1 2 −1 0 . . .
0 −1 2 −1 . . .

. . .




x1
x2
x3
...

 (0.6)

(b) Plugging in the ansatz into the differential equations from (a):

−ω2m2 Ak exp(i(2nka − ωt))
= −κ(−Bk exp(i(2(n − 1)ka − ωt))− Bk exp(i(2nka − ωt)) + 2Ak exp(i(2nka − ωt)))

(0.7)

−ω2m1Bk exp(i(2nka − ωt))
= −κ(−Ak exp(i(2nka − ωt))− Ak exp(i(2(n + 1)ka − ωt)) + 2Bk exp(i(2nka − ωt)))

(0.8)

Cancelling out the exp(i(2nka − ωt)) from both sides:

−ω2m2 Ak = −κ(−Bk exp(−2ika)− Bk + 2Ak) (0.9)

−ω2m1Bk = −κ(−Ak − Ak exp(2ika) + 2Bk) (0.10)

We can write this in matrix form:(
ω2m2 − 2κ κ(1 + exp(−2ika))

κ(1 + exp(2ika)) ω2m1 − 2κ

)(
Ak
Bk

)
= 0 (0.11)

(c) We can set the determinant of the above matrix to zero to find the normal mode frequencies:

det

(
ω2m2 − 2κ κ(1 + exp(−2ika))

κ(1 + exp(2ika)) ω2m1 − 2κ

)(
Ak
Bk

)
= 0 (0.12)

Which yields:

m1m2ω4 − 2κ(m1 + m2)ω
2 + 4κ2 − κ2(1 + exp(−2ika))(1 + exp(2ika)) = 0

=⇒ m1m2ω4 − 2κ(m1 + m2)ω
2 + 2κ2(1 − cos(2ka)) = 0

(0.13)

Which is a quadratic equation in ω2:

ω2
± =

2κ(m1 + m2)±
√

4κ2(m1 + m2)2 − 4m1m2(2κ2(1 − cos(2ka)))
2m1m2

=
κ

m1m2

(
(m1 + m2)±

√
(m1 + m2)2 − 2m1m2(1 − (1 − 2 sin2(ka)))

)
=

κ

m1m2

(
(m1 + m2)±

√
(m1 + m2)2 − 4m1m2 sin2(ka)

)

=
κ(m1 + m2)

m1m2

1 ±
√

1 − 4m1m2

(m1 + m2)2 sin2(ka)


(0.14)
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Frequencies are positive and so taking the positive square root:

ω± =

√√√√√κ(m1 + m2)

m1m2

1 ±
√

1 − 4m1m2

(m1 + m2)2 sin2(ka)

 (0.15)

Sketching (taking m2 = a = κ = 1, m1 = 2) for k ∈ [−π
a , π

a ):
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The difference in frequency between the two bands we can evaluate at k = π
2a :

∆ω = ω+ − ω− =

√
κ(m+1 + m2)

m1m2


√√√√1 +

√
1 − 4m1m2

(m1 + m2)2 −

√√√√1 −
√

1 − 4m1m2

(m1 + m2)2


=

√
2κ| 1√

m1
− 1√

m2
|

(0.16)

the interpretation of the gap is that there are no sound waves in the material which can take frequency
values in the gap.

Comment: Much like photons are “quanta” of the electromagnetic field, phonons are “quanta” of
vibrations/sound (with the field the elastic medium). Therein, the energies of the photons are given
by E = h̄ω where ω are the frequencies you found above. This tells us that phonon energies appear
in bands, with a gap.

(d) Looking at the acoustic band dispersion:

ω− =

√√√√√κ(m1 + m2)

m1m2

1 −
√

1 − 4m1m2

(m1 + m2)2 sin2(ka)

 (0.17)
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For ka ≪ 1 this becomes:

ω− ≈

√√√√√κ(m1 + m2)

m1m2

1 −
√

1 − 4m1m2

(m1 + m2)2 (ka)2



≈

√√√√√κ(m1 + m2)

m1m2

1 −
(

1 − 1
2

4m1m2

(m1 + m2)2 (ka)2

)
=

√
2κa2

m1 + m2
k

(0.18)

This looks like the wave equation dispersion:

ω = ck (0.19)

with wave speed:

c2 =
2κa2

m1 + m2
(0.20)

For N masses, we have total mass m1+m2
2 N, total spring constant K = κ

N , and total length L = aN, so:

c2 =
KL2

M
(0.21)

To make the connection more concrete - we consider the same setup, just with all masses the same m:

mκ
a

ϕ(x − a) ϕ(x) ϕ(x + a)

ϕ(x) measures the distance from equilibrium of a mass situated at position x. The force on mass m at
x + a is (as we derived before):

FHooke = Fx+a + Fx−a = κ[ϕ(x + a, t)− 2ϕ(x, t) + ϕ(x − a, t)] (0.22)

and Newton’s Law says:

FNewton = m
∂2

∂t2 ϕ(x, t) (0.23)

So:
∂2

∂t2 ϕ(x, t) =
κ

m
[ϕ(x + a, t)− 2ϕ(x, t) + ϕ(x − a, t)] (0.24)

If we have N weights with total length L = Na, total mass M = Nm, and total spring constant K = κ
N

(spring constants add as 1
keq

= ∑i
1
ki

), we can write:

∂2

∂t2 ϕ(x, t) =
KL2

M
[ϕ(x + a, t)− 2ϕ(x, t) + ϕ(x − a, t)]

a2 (0.25)

Taking N → ∞, a → 0 we can recognize the RHS as a second derivative in space and so:

∂2ϕ

∂t2 =
KL2

M
∂2ϕ

∂x2 (0.26)
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which is the wave equation with:

c2 =
KL2

M
. (0.27)

So we get the same result as the ka ≪ 1 limit of the discrete model!

(e) Back to the discrete model. Lets study the eigenvectors for ka = 0. For the acoustic mode, we have:

ω2
− =

κ(m1 + m2)

m1m2

1 −
√

1 − 4m1m2

(m1 + m2)2 sin2(0)

 = 0 (0.28)

and so: (
−2κ 2κ
2κ −2κ

)(
Ak
Bk

)
= 0 (0.29)

which tells us that: (
Ak
Bk

)
=

(
1
1

)
(0.30)

and so Ak
Bk

≈ 1 for ka ≪ 1, i.e. the masses oscillate in phase for acoustic modes for ka ≪ 1 (again as
we would expect for sound waves).
For the optical modes, we have:

ω2
+ =

κ(m1 + m2)

m1m2

1 +

√
1 − 4m1m2

(m1 + m2)2 sin2(0)

 =
2κ(m1 + m2)

m1m2
(0.31)

so:  2κ(m1+m2)
m1m2

m2 − 2κ 2κ

2κ
2κ(m1+m2)

m1m2
m1 − 2κ

(Ak
Bk

)
= 0 (0.32)

from which we get: (
Ak
Bk

)
=

(
m1
−m2

)
(0.33)

So for ka ≪ 1, Ak
Bk

≈ −m1
m2

and the atoms oscillate out of phase. This is where this mode gets the
name “acoustic”. When charged ions move out of phase in a crystal, this creates a time-varying dipole
moment, so the vibrations of the lattice can emit or absorb radiation - hence optical!
Let’s also study the dynamics when ka = ±π

2 at the Bruillion zone boundary. There the frequencies
look like:

ω2
± =

κ(m1 + m2)

m1m2

1 ±
√

1 − 4m1m2

(m1 + m2)2 sin2(
π

2
)


=

κ(m1 + m2)

m1m2

(
1 ± 1

m1 + m2

√
(m1 + m2)2 − 4m1m2

)
=

κ(m1 + m2)

m1m2

(
1 ± 1

m1 + m2

√
(m1 − m2)2

)
=

κ(m1 + m2)

m1m2

(
1 ± m1 − m2

m1 + m2

)
=

κ(m1 + m2)

m1m2

(
m1 + m2

m1 + m2
± m1 − m2

m1 + m2

)
=

κ

m1m2
(m1 + m2 ± (m1 − m2))

(0.34)
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so:
ω+ =

2κ

m2
, ω− =

2κ

m1
(0.35)

For the acoustic mode:(
2κ
m2

m2 − 2κ κ(1 + exp(−iπ))

κ(1 + exp(iπ)) 2κ
m2

m1 − 2κ

)(
Ak
Bk

)
=

(
0 0
0 2κ(m2

m1
− 1)

)(
Ak
Bk

)
= 0 (0.36)

so Ak = 1, Bk = 0 and so the even atoms oscillate while the odd ones stay fixed.

Then for the optical mode:(
2κ
m1

m2 − 2κ κ(1 + exp(−iπ))

κ(1 + exp(iπ)) 2κ
m1

m1 − 2κ

)(
Ak
Bk

)
=

(
2κ(m1

m2
− 1) 0

0 0

)(
Ak
Bk

)
= 0 (0.37)

so Ak = 0, Bk = 1 and so the even atoms stay fixed while the odd ones stay fixed.

A nice visual + interactive graph for this problem can be found here.
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