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Problem Statement

Consider two identical masses m constrained to move on a horizontal loop, connected by identical springs
with spring constant k. Neglect gravity and air resistance. One mass is subject to a driving force F;(t) =
F;coswyt. Take x1(t), x2(t) to be the coordinates of the top/bottom particle, measured with respect to the
top/bottom of the ring, which is the equilibrium position of the springs.

(a) Write down the equations of motion of the system, using Newton's laws.

b) First, suppose F; = 0. What do you intuitively expect for the normal mode solutions of the system?
PP y y exp y
(Recall the case in class where we “guessed” the center of mass and relative position movement as
natural choices for the normal modes).

(c) Derive the homogenous solution to the ODEs you found in (a). Do the normal modes you find match
up to what you guessed in (b)?

(d) Next, derive the particular solution, and write down the full solution to the system of ODEs.

(e) What are the equations of motion in the case where:

x1(t=0)) _ F 2w? — w3
<x2(t = 0))  Wi(dw? — w?) ( 2w? d) ©.1)

x1(t=0) vy + 20
(s028) = (23 02

(a) The force on the first particle is —2k(x; — x2) from the two springs and F; cos(w,t) from the driving.
The force on the second particle is just —2k(x; — x1) from the two springs. Thus Newton’s laws read:

and:

Solution

mxy = —2k(x1 — xp) + Fycos(w,t) 03)
mip; = *2k(X2 — Xl) '



(b)

(©

Intuitively, we might guess there be a mode where the masses move in perfect sync around the ring,
without ever compressing/stretching the spring. We might also guess that there is a mode where the
masses move equally and opposite towards/away from each other, oscillating in tandem.

We set F; = 0 to find the homogenous solution.

Method 1: Using the Ansatz (note - for any homogenous system, we can consider such an ansatz):

(i;gg) = At = (ﬁ;) = (0.4)

The system of equations becomes:

ma <(1) (1)> Ae* 4 2k <_11 _11> Ae*t =0 (0.5)
Dividing out by m and defining w? = % we have:
a? + 2w —2w at
( 2w &+ 2w Aet =0 06)

We solve the eigenvalue problem:

0(2+2w —2w 2 2 4 2 2/, 2
det( e a4 2w =0 = (0" +2w)(a"+2w) — (—2w)(—2w) = a* +4wa” = a”(a” +4w) =0

0.7)
which has solutions:
0> =0,—4w = a=0,+2iw (0.8)

So we look for eigenvectors:
0+2w 2w _ 2w 2w . (1
(—Zw 0+2w>A_0:> <—2w 2w>A_0:‘A_(1> ©09)

—4w + 2w —2w _ —2w 2w _ (1
< —2w —4w+2w> A=0—= <—2w —2w> A=0= A= (—1) (0.10)

So we have the homogenous solution:

xy(t) = (i;gg) = G) (Cit+Co) + (11> (Cze2wt 4 Cye 2wt (0.11)

There was one step at the end we skipped over - for the multiplicty 2 solution of a?> = 0, how do
we get a linear solution C1e%t and a linear solution Cye%? First, it is clear that just having Cye% +
Cpe% = C; + C;, as the constant solution is not linearly independent with itself. So, the need for
another solution is clear. We can derive it by considering the w — 0 limit of the oscillatory solutions
Cy sin(wt) + C; cos(wt). Taking the limit of the cosine:

lim C; cos(wt) = C (0.12)
w—0



(d)

we get the constant solution as desired. The sine limit is more subtle, because the limit goes to zero,
which is not a new linearly independent solution. But we are free to multiply solutions by a constant,
so in particular let’s consider C; sin(wt)/w. In this case, the limit becomes:

sin(wt)

lim C1 = lim C1@
w—0 w w—0 w

= Gyt (0.13)

so we recover the linear solution. We’ll also see how the linear + constant solution comes out in the
second method of getting the homogenous solution, as we discuss below.

Method 2: We can add and subtract the two equations

¥H+i=0

m(%y — ip) +4k(x; —xp) =0 (0.14)

Which motivates the two normal coordinate definitions &1 () = x1(¢) + x2(¢) and & () = x1(¢) — x2():
§1(H) =0 = &i(t) = C1t 4+ G, (0.15)

&(t) = —4wis(t) = &(t) = C3e¥ ! + Cye™ 2! (0.16)

Which writing in vector form:

Xy () = (28) = (}) (Cit+Co) + (_11> (Cae®@! 4 Cye2h) (0.17)

In both cases, we can see that our intuitive guess for the two normal modes were in fact correct!

We look for a particular solution to:

mxi + Zk(xl — Xz) =F; COS((Udf)

0.18
miy + 2k(x; —x1) =0 (0-18)

We could write the RHS of the first equation as R(F;e“!) and then propose the ansatz:

(19) - () o1

but since the LHS only has even time derivatives, we can make a simpler guess of the form:

(2%2) = (g;) cos(wgyt) (0.20)

which we can substitute in to obtain (with w? = % and F = %):
2 2
—w45B1 +2w”(B1 — By) =F
4 2< 1= B) (0.21)
—dez + 2w (Bz - Bl) =0
Adding the two equations:
F F
1+ b2 2 1 2 2 (0.22)



(e)

Substituting this into the second equation:

F 2Fw?
~wWiB + 202 (Byt 5 +By) =0 = By= — ot (0.23)
wy wi(4w? — w3)
and then we can also solve for Bj:
p, = LW ) 0.24
1=~ 5 v (0.24)

w3 (4w? — w3)

So the particular solution is:

() F 2w? — w3
xp(t) = (xl(t)) = —W ( 202 d) cos(wyt) (0.25)

The general solution is then the sum of the homogenous and particular solution:

(iigig) = Xp(t) +x(t) = <]i> (Cit+Co) + <_11> (C362iwt + C4672iwt) . W (260;02(05

) cos(wgyt)

d
(0.26)

With the initial condition on the particle positions:

F 202 — w3\ _ (1 1 F 2w? — w3
_wg (74602 — wﬁ) ( 22 =11 C+ 1 (C3 + C4) — —wﬁ (40.)2 — w(%) 22 (0.27)

Which gives:

C+C+Cy=0 028)
Cr—C3—C4=0 '

Adding these two together we find C; = 0 and that leaves us with the condition that C3 + C4 = 0.
Next, applying the initial condition of x(f = 0) = 0:

vy + 20 1 1 . .
(vg N 201) = <1> Ci+ <_1> (2iwCs — 2iwCy) (0.29)

Which gives:
C1 +2iw(C3 —Cy) =vg + 20
12 (C3 = C4) = vo+ 203 0.30)
C1 — 21w(C3 — C4) =09 — 2"01
Adding the two equations we obtain:
2C1 =2vg = C1 =19 (031)
Subtracting the two equations we have:
. .0
416()(C3 — C4) =4v; — C3—C4 = —l; (0.32)
And combining this with C3 + C4 = 0 we find:
N i §
C3 = Zzw, C4 lzw (0.33)
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Then noting that:

2 it O pdiwt 9L sin(2wt) (0.34)
2w 2w w

And thus our solution is:

t 1 1) . F 202 — w?
@8) = (1) oot + (—1) @ M)~ e ( w2wz“’d> cos(wgt)  (035)



