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Introduction:
This is a set of lecture notes taken from UChicago’s PHYS 444 (Quantum Field Theory II), taught by Luca
Delecretaz. Topics covered include representations of the Lorentz group, Quantizing the Dirac field, Path
integrals for fermions, Interacting fermions, Relativistic electrodynamics, Path integral for gauge fields,

Radiative corrections, The electron magnetic dipole moment, Renormalization for QED, LSZ for
fermions/photons, QED scattering, Soft divergences in QED, Non-Abelian gauge fields, QCD and

quantizing Yang-Mills, Wilson line and loop operators.
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1 Fermions - Representations of Lorentz

1.1 Introduction

In QFTI we explored scalar QFT deeply; both perturbatively and non-perturbatively. We looked at the path
integral formalism, renormalization, and scattering. But the elephant in the room is we did this all with
scalar fields, and most particles in the universe... are not. They transform with different representations
of the Lorentz group; the scalar field is simply the simplest one.

In this course, we will look at fermions; they are qualitatively different due to Pauli exclusion and will
lead to new physics. Building on this, we can build Lagrangians in 3+1 dimensions with dimensionless
couplings, and moreover different kinds of dimensionless couplings. This will lead us into quantum
electrodynamics eventually; but let’s start with a discussion of fermions.

1.2 Representations of the Lorentz group; scalar and vector representations

Recall the Lorentz group O(1, 3); it consists of all transformations that leaves spacetime distance invariant,
i.e. all transformations:

xµ → Λµ
ν xν (1.1)

such that:
Λµ

α Λν
βηαβ = ηµν (1.2)

with η = diag(−1, 1, 1, 1) the Minkowski metric.
We have already studied its simplest representation on fields, the scalar field:

ϕ(x)→ ϕ′(x′) = ϕ(x) (1.3)

This is not a trivial representation (the field does transform), but in a way that is completely absorbed by
the transformation of the coordinates.

This is realized on Hilbert space/quantum fields ϕ̂ by a unitary operator:

ϕ̂(x)→ U(Λ)−1ϕ̂(x)U(Λ) = ϕ̂(Λ−1x). (1.4)

Out of scalar fields, we could build composite objects that transform in potentially other representa-
tions. The simplest example is taking higher powers of the field, [ϕ(x)]n still transforms as a scalar. But,
consider Aµ = ∂xµ ϕ(x); this transforms in a 4-vector representation:

Aµ(x) ≡ ∂xµ ϕ(x)→ U(Λ)−1∂xµ ϕ(x)U(Λ) = ∂xµ ϕ(Λ−1x) = ∂xµ ϕ(x̄) =
∂x̄ν

∂x̄µ ∂xµ ϕ(x̄) = Λ ν
µ ∂x̄ν ϕ(x̄) (1.5)

Where in the last equality we use that new coordinates are linearly related to the old coordinates, with:

∂x̄ν

∂xµ = (Λ−1)
µ
ν = Λ ν

µ (1.6)

And thus:
Aµ(x)→ Λ ν

µ Aν(x̄) (1.7)

or:
U(Λ)−1 Aµ(x)U(Λ) = Λ ν

µ Aν(Λ−1x) (1.8)

Under the spatial rotation subgroup O(3) ⊂ O(1, 3), this splits into a scalar part for the time component
A0 and a 3-vector part for the spatial components Ai.

The photon is a particle in this 4-vector representation of Lorentz. In that case, Aµ is the (fundamental)
group field in Maxwell’s equations, with the field:

Fµν = ∂µ Aν − ∂ν Aµ (1.9)

or:
Ei = ∂0 Ai − ∂i A0, Bi = ϵijk∂j Ak (1.10)

4



1.3 General Representation of Lorentz

We will come back to the photon later in the course, but let us turn to the question of building a general
representation of the Lorentz group. To this end, we study its algebra. It contains the generator of rotations
Ji:

[Ji, Jj] = iϵijk Jk (su(2) algebra) (1.11)

which forms a subalgebra. It also contains the generator of boosts Ki:

[Ki, Kj] = −iϵijk Jk (1.12)

[Ji, Kj] = iϵijkKk. (1.13)

but the Ki do not form a closed subalgebra. Rotations and boosts together form the full Lorentz algebra,
which we derived last quarter through the study of infinitesimal transformations.

We consider the following linear combinations of generators:

J±i =
1
2
(Ji ± iKi). (1.14)

It can be easily checked that the J+s form a closed subalgebra:

[J+i , J+j ] =
1
4
[Ji + iKi, Jj + iKj] =

1
2
(iϵijk Jk − ϵijkKk) = iϵijk

1
2
(Jk + iKk) = iϵijk J+ (1.15)

Moreover the J+s commute with the J−s:

[J+i , J−j ] =
1
4
[Ji + iKi, Jj − iKj] = 0. (1.16)

and the J−s have the same commutation relation with each other as the J+s:

[J−i , J−j ] = iϵijk J−k (1.17)

Thus, we conclude that the Lorentz algebra is just 2 commuting su(2) algebras! We thus conclude that:

so(1, 3) = su(2)⊕ su(2) (1.18)

The usual representation of su(2) is labelled by a half-integer, and thus the irreducible representations of
the Lorentz group are thus labelled by two half-integers (j−, j+), with:

j± = 0,
1
2

, 1,
3
2

, . . . (1.19)

Thus a general field Ψab(x) has two indices, with a = 1, . . . , 2j− + 1 and b = 1, . . . , 2j+ + 1.

1.4 Examples of Lorentz Representations

For a scalar field, we have the (0, 0) representation. In this case, the indices a, b run from 1 to 1 so we just
omit the indices and write ϕ(x).

For rotations, we have Ji = J+i + J−i . The (j−, j+) irrep (irreducible representation) of Lorentz therefore
decomposes into spin:

|j− − j+|, |j− − j+|+ 1, . . . , j− + j+ (1.20)

under rotations.
Let’s look at a slightly more interesting example. What is the 4-vector representation? A first guess

is that a vector looks like spin-1, so we might put (1, 0); but this doesn’t work because under rotation it
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doesn’t split into a scalar rotation A0 and a 3-vector Ai. Thus, the correct representation turns out to be
( 1

2 , 1
2 ). Under spatial rotation, this decomposed into a spin 0 (A0) and spin 1 (Ai) piece, which is what

we need.
This skipped one representation though! What about ( 1

2 , 0) or (0, 1
2 ) (these are the smallest non-scalar

irreps)? Well, first note that these reps are related by a parity x → −x, as under this reflection angular
momentum is invariant and boosts are flipped, i.e.:

J→ J, K→ −K (1.21)

and so:
J±i → J∓i (1.22)

Hence a ( 1
2 , 0) particle cannot be parity invariant on its own. We will later study these in “chiral” theories.

This rep is the left or right handed Weyl (or Majorana1) spinor.

1.5 Properties of the Weyl spinor

We’re in the USA, so let’s pick the right-handed representation (0, 1
2 ). In this rep:

Ji
+ =

1
2

σi (1.23)

which satisfy:
[Ji
+, J j

+] = iϵijk Jk (1.24)

which is a 2-d rep of su(2)+. The minus matrices are trivial, with:

Ji
− = 0. (1.25)

giving the 1-d rep of su(2)−. These two objects act on different spaces (one on the right, one on the left
index). If we want to see them as the representation of the entire group SU(2)× SU(2), we can write:

J+i = I⊗ 1
2

σi, J−i = 0⊗ I (1.26)

From this we can also get the generators of rotations and boosts:

Ji = J+i + J−i =
1
2

σi (1.27)

Ki =
1
i
(J+i − J−i ) = − i

2
σi (1.28)

We therefore have a 2-d representation of Lorentz (0, 1
2 ) on fields ψR =

(
ψ1
ψ2

)
. For a Lorentz transforma-

tion Λ of angles θi and rapidities ηi, i.e. Λ = ei(θi Ji+ηiKi), we have the fields transform as:

U(Λ)−1ψR(x)U(Λ) = e
i
2 (θi−iηi)σi ψR(Λ−1x) (1.29)

note that the rotation part is unitary but the boost part is not. Because the boost generators are related to
the J±s via an i, in any representation it will be anti-unitary:

K†
i = −Ki (1.30)

1in 3+1 dimensions they coincide, but in other dimensions they differ, hence the two different names.
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but do not confuse this with the full transformation on the Hilbert space, which is always unitary. Another
comment; this implies that ψR must be complex, as the transformation does not take real to real. In fact,
the anti-unitarity of the Kis implies that ψ∗R transforms in the parity flipped ( 1

2 , 0) representation.
Another interesting feature of this representation is that under a 2π rotation, say, around the ẑ axis (so

θz = 2π), the field transforms to:

ψ′R(x) = e
i
2 (2πσz)ψR(Λ−1x) = eiπσz ψR(x) = −ψR(x) (1.31)

note that Λ−1x = x as the coordinate comes back to itself. So, in scalar field theory a 2π rotation leaves
the field invariant. But here, the field does not transform back into itself due to the negative sign out front.
This is a first hint of the spin-statistics theorem, which we will soon discuss; but this theorem will tell us
that the particles must be fermionic. The statistics are tied to the representation of the Lorentz group.

1.6 Building a Lagrangian for the Weyl spinor

Let us start by building a quadratic/Gaussian Lagrangian for ψR. We could try tensoring ψ∗RaψRb. Since
ψR ∈ (0, 1

2 ) and ψ∗R ∈ ( 1
2 , 0), from group theory:

ψ∗RaψRb ∈ (0,
1
2
)⊗ (

1
2

, 0) = (0⊗ 1
2

,
1
2
⊗ 0) = (

1
2

,
1
2
) (1.32)

which as we discussed previously, transforms like a 4-vector. But it doesn’t look like one... it looks like
a 2× 2 matrix. But there should be a way to map it to a 4-vector. What are the possible bilinears we can
build? Well, we can consider:

A0 = ψ†
RψR (1.33)

Ai = ψ†
RσiψR (1.34)

How do these transform? Under infinitesimal transformations, we have that:

ψR → ψ′R ≈ (1 + i Jiθi)ψR = (1 +
i
2

σiθi)ψR (1.35)

from these we can deduce how the other objects transform. Namely:

A0 → ψ†
R(1−

i
2

σiθi)(1 +
i
2

σiθi)ΨR ≈ ψ†
RψR (1.36)

which we see is invariant under infinitesimal transformations θ ≪ 1, making it a good candidate for
A0/the scalar part. Let’s next consider Ai:

Ai → ψ†
R(1−

i
2

σjθj)σi(1 +
i
2

σjθj)ψR ≈ ψ†
R(σi +

i
2
[σi, σj]θj)ΨR = Ai − ϵijkθj Ak (1.37)

This is how a 3-vector transfrms under spatial rotations, again justifying our guess for what the vector
part Ai should be as a good one. Repeating this exercise with boosts, one finds that the entire object is
indeed a 4-vector under rotations:

Aµ ≡ Ψ†
RσµΨR (1.38)

with:
σµ = (σ0 = I, σi = Paulis) (1.39)

is a 4-vector field under rotations. To recap, we had group theory technology that told us that the product
ψ∗RaψRb should transform like a 4-vector. We then constructed a map which actually gave us what the 4
components should be, inspired by the group theoretic trick.
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Now that we know this, do we have ideas for what Lagrangians we can build out of the Weyl spinor?
Note that the Lagrangian must be a scalar field. Consider as a first go2:

L = ∂µ(ψ
†
RσµψR) (1.40)

but then this is a total derivative, so there is no interesting (bulk) physics. Refining our guess, let’s let the
derivative act on one of the fields:

L = iψ†
Rσµ∂µψR (1.41)

which is indeed the Lagrangian for a (right-handed) Weyl spinor. It is qualitatively different from the
scalar in that it only has one derivative (c.f. the scalar field Lagrangian had two derivatives) - the counting
of degrees of degrees of freedom are different.

On Thursday, we will try to construct a mass term. We will also remedy the fact that L is not a
parity-invariant theory, which is something that we will need for electrons.

2 Fermions - Dirac Fermions

2.1 Review of Representations

A general lorentz-invariant field is labelled by 2 su(2) quantum numbers (j−, j+). For example, ϕ ∈ (0, 0),
Aµ ∈ ( 1

2 , 1
2 ), ψR ∈ (0, 1

2 ), ψL ∈ ( 1
2 , 0). The matrices σµ = (I, σi) provide an explicit map from ψ†

RaψRb ∈
(0, 1

2 ) ⊗ ( 1
2 , 0) = ( 1

2 , 1
2 ) to Aµ ≡ ψ†

RσµψR (you will look at this in more detail in PS1). This gave us the
free-field/Gaussian Lagrangian for ψRs of the form:

LWeyl, R = iψ†
Rσµ∂µψR. (2.1)

This is a fine Lagrangian, and you will study it in PS1, and construct its mass term. However, it’s not good
for describing particles such as the electron, as it is not parity invariant (we saw that parity exchanges
J+i ↔ J−i (with J±i = 1

2 (Ji + iKi))). Our goal today is to construct the simplest parity invariant theory of
spinors. To this end, we will need both ψR and ψL.

2.2 Parity invariant theory of spinors - kinetic term

The Weyl Lagrangian for ψL has the form:

LWeyl, L = iψ†
Lσ̄µ∂µψL (2.2)

but the σ̄µs here are not the same as before - what are they? We could construct them like last time, but we
can instead play a trick. Last class we discussed that ψ∗L ∈ (0, 1

2 ). In PS1, we will show that more precisely,
σ2ψ∗L transforms like ψR. This tells us that we can again build a 4-vector:

(σ2ψ∗L)
†σµσ2ψ∗L = ψT

L σ2σµσ2ψ∗L = (ψT
L σ2σµσ2ψ∗L)

T = −ψ†
LσT

2 σT
µ σT

2 ψL = −ψ†
Lσ2σT

µ σ2ψL (2.3)

from which we find that:

σ̄µ = σ2σT
µ σ2 =

{
I if µ = 0
−σi if µ = 1, 2, 3

(2.4)

which follows from the fact that
{

σi, σj

}
= 2δij (the Paulis anticommute unless they are the same). Thus:

σ̄µ = (I,−σi) (2.5)

2 Aµ Aµ is also a valid choice for Lorentz invariance, but is quartic in ψR, so we will consider it when we go to interacting theories
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It is now easy to make the Lagrangian parity invariant! We simply add both the left and right moving
kinetic terms with the same coefficent:

Lkin = iψ†
Lσ̄µ∂µψL + iψRσµ∂µψR (2.6)

Does this Lagrangian have additional symmetries? Our guiding principle was Lorentz invariance (and
we also have parity and translation invariance). But we have the additional symmetry of U(1)L ×U(1)R,
where ψL → eiαL ψL and ψR → eiαR ψR. It’s good that we have this if we want this theory to model electrons,
because electric charge is conserved (though for electrons we do not need two conserved charges, of
course).

2.3 Parity invariant theory of spinors - mass term

The next question we can ask is whether we can construct a mass term for this theory. We can use our
group theory logic - if we look at:

ψRψR ∈ (0,
1
2
)⊗ (0,

1
2
) = (0,

1
2
⊗ 1

2
) = (0, 0) + (0, 1) (2.7)

we see that we should be able to get a scalar part (0, 0) - so we should get a mass term! In PS1, you will
find the unique way to build this Weyl/Majorana mass term looks like ψT

Rσ2ψR. Now, the issue is this
mass term no longer has the U(1)R symmetry acting in the way we described above. But is there away
to add the mass term to the total Lagrangian (for both spinors) such that the theory still has some U(1)
symmetry? Indeed, we recall that ψ∗L ∈ (0, 1

2 ) and so if we replace ψR → σ2ψ∗L we will be able to recover a
U(1) symmetry. Our candidate mass term is:

(σ2ψ∗L)
Tσ2ψR = ψ†

LσT
2 σ2ψR = −ψ†

LψR (2.8)

To make it real we add this to its complex conjugate, so the mass term is:

Lm = −m(ψ†
LψR + ψ†

RψL) (2.9)

If you doubt the Lorentz invariance of this Lagrangian, you can check that:

δψL = i(θi + iηi)
1
2

σiψi

δψL = i(θi − iηi)
1
2

σiψi

(2.10)

so at linear order the Lagrangian is invariant under Lorentz transformations/the contributions cancel.

2.4 The Dirac Fermion

We can package left and right moving spinors into a single 4-component spinor:

Ψ =

(
ψL
ψR

)
=


ψL,1
ψL,2
ψR,1
ψR,2

 (2.11)

which allows us to write the mass term as:

Lm = −m(ψ†
Lψ†

R)

(
0 I

I 0

)(
ψL
ψR

)
= −mΨ†γ0Ψ = −mΨ̄Ψ (2.12)
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where we have defined Ψ†γ0 = Ψ̄. We use this simplifying notation so that we can quickly identify
Lorentz invariant quantities. Note that (γ0)2 = 1.

Doing the same with the kinetic term, we have:

Lkin = i(ψ†
Lψ†

R)

(
σ̄µ 0
0 σµ

)
∂µ

(
ψL
ψR

)

= iΨ̄γ0

(
σ̄µ 0
0 σµ

)
∂µΨ

= iΨ̄

(
0 I

I 0

)(
σ̄µ 0
0 σµ

)
∂µΨ

= iΨ̄

(
0 σ̄µ

σµ 0

)
∂µΨ

= iΨ̄γµ∂µΨ

(2.13)

where in the second equality we use that (ψ†
Lψ†

R) = (ψ†
Lψ†

R)(γ
0)2 = Ψ̄γ0. And so the total Lagrangian is

that of a Dirac fermion:
LDirac = Lkin + Lm = iΨ̄γµ∂µΨ−mΨ̄Ψ (2.14)

2.5 γ-matrix anticommutation relations

We defined the Dirac γ-matrices above, which have simple anti-commutation relations:

γµγν =

(
0 σ̄µ

σµ 0

)(
0 σ̄ν

σν 0

)
=

(
σ̄µσν 0

0 σµσ̄ν

)
(2.15)

So then: {
γµ, γν

}
= γµγν + (µ↔ ν) =

(
σ̄µσν + σ̄νσµ 0

0 σµσ̄ν + σνσ̄µ

)
(2.16)

If µ = ν = 0 then we get 2I, if µ = 0, ν = i then we get 0, and if µ = i, ν = i we then have −
{

σi, σj
}
=

−2δijI. So at the end of the day, we get:

{
γµ, γν

}
= −2ηµν

(
I 0
0 I

)
= −2ηµν (2.17)

Here we really derived this, but there is an alternative approach that Dirac used. In his approach, you
instead start with {γµ, γν} = −2ηµν as the defining property of γ matrices; this is what you will explore in
PS2. Nevertheless, this anticommutation property will be a very useful one for manipulating/simplifying
expressions (without using the explicit form of the γ matrices).

2.6 The Dirac equation

By varying the action w.r.t. the spinor, we obtain the EoM:

0 =
δS
δΨ̄

=⇒ 0 = (iγµ∂µ −m)Ψ (2.18)

this equation implies the Klein-Gordon equation. How to see this? Apply (iγµ∂µ + m) to both sides:

0 = (iγµ∂µ + m)(iγµ∂µ −m)Ψ = −(m2 + γµγν∂µ∂ν)Ψ (2.19)
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Since derivatives commute ∂µ∂ν is symmetric, WLOG we can replace γµγν with the symmetric part:

0 = −(m2 +
1
2
{

γµ, γν
}

∂µ∂ν)Ψ = (□−m2)Ψ (2.20)

where we have used 1
2 {γµ, γν} ∂µ∂ν = −ηµν∂µ∂ν = −□. This tells us that there will be many similar

structures as we saw in our analysis of the scalar field. Historically, Dirac wanted to find the relativistic
version of the Schrodinger equation; to him Ψ was a wavefunction. To us, it is a field.

2.7 Parity of the Dirac Lagrangian

Let us say one more thing about parity; we wanted L.I. when constructing our Lagrangian, but we also
wanted it to be parity invariant. Parity flips ψL and ψR, so we expect it to flip:

Ψ(t, x)↔ ηγ0Ψ(t,−x) (2.21)

with η ∈ C. We then observe:
(P−1)2ΨP2 = η2γ0γ0Ψ = η2Ψ (2.22)

We may want to say that this should be equal to Ψ because twicefold parity should leave Ψ invariant.
But Ψ in itself is not an observable, but ΨΨ will be. Thus this gives us the option of η2 = ±1. Srednicki
chooses η = i. For now, we take η = 1. Let’s check the invariance of the Dirac lagrangian explicitly. We
start with the mass term:

Lm(x) = −mΨ̄(x)Ψ(x) = −mΨ†(x)γ0Ψ(x)→ −mΨ†(Px)(γ0)†γ0γ0Ψ(Px) = −mΨ̄(Px)Ψ(Px) = Lm(Px)
(2.23)

with Px = (t,−x). Let’s also check the kinetic term:

Lkin(x) = iΨ†(x)γ0γµ∂µΨ(x)→ iΨ†(Px)γ0γ0γµγ0(∂0,−∂i)Ψ(Px) (2.24)

But now γµγ0 = γ0γµ if µ = 0 and = −γ0γµ if µ = 1, 2, 3, so the signs from the derivative and the gamma
matrices cancel, and so:

Lkin(x) = iΨ†(Px)γ0γ0γ0γµ∂µΨ(Px) = iΨ̄(Px)γµ∂µΨ(Px). (2.25)

Thus the Dirac Lagrangian is even under parity. It is also easy to construct Lagrangians that are parity
odd. We could have instead built terms of the form −LL + LR, or by using a final gamma matrix:

γ5 =

(
−I 0
0 I

)
= diag(−1,−1, 1, 1). (2.26)

For example, a parity odd kinetic term would simply be:

iΨ̄γµγ5∂µΨ (2.27)

without the γ5, this evaluates to iψ†
Lσ̄µ∂µψL + iψ†

Rσµ∂µψR. With it, it flips the sign of the left part, so:

iΨ̄γµγ5∂µΨ = −iψ†
Lσ̄µ∂µψL + iψ†

Rσµ∂µψR. (2.28)

We could also have a parity odd mass term:

m̃iΨ̄γ5Ψ = im̃(ψ†
Lψ†

R)γ
0γ5

(
ψL
ψR

)
= im̃(ψ†

Lψ†
R)

(
0 I

−I 0

)(
ψL
ψR

)
= im̃(ψ†

LψR − ψ†
RψL) (2.29)
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It is pretty clear that this is parity odd by looking at the Weyl fermions, but in fact we can check this
directly from the expressions for the Dirac fermions. Using that:

{
γ5, γ0

}
= γ5γ0 + γ0γ5 =

(
0 −I

I 0

)
+

(
0 I

−I 0

)
= 0 (2.30)

(and in fact
{

γ5, γµ
}
= 0) we find:

Ψ̄γ5Ψ→ Ψ†γ0γ0γ5γ0Ψ = −Ψ†γ0γ5Ψ = −Ψ̄γ5Ψ (2.31)

Now that we have the γs, it is easy to build bi-spinor objects in a given Lorentz representation. For
parity-even, we have scalars:

Ψ̄Ψ, Ψ̄□Ψ, . . . (2.32)

we have vectors:
Ψ̄γµΨ, . . . (2.33)

we have tensors:
Ψ̄γµγνΨ, . . . (2.34)

and if we want axial/parity-odd objects we can insert γ5s. For example axial scalars:

Ψ̄γ5Ψ, . . . (2.35)

axial vectors:
Ψ̄γ5γµΨ, . . . (2.36)

and axial tensors:
Ψ̄γ5γµγνΨ, . . . (2.37)

3 Spin-Statistics Theorem, Quantizing the Dirac Lagrangian

3.1 Exchange statistics

We have seen that a general representation of the Lorentz group on a field takes the form:

ψ(x)→ ψ′(x) = U(Λ)−1ψ(x)U(Λ) = D(Λ)ψ(Λ−1x) (3.1)

where D(Λ) is the finite-dimensional representation of the Lorentz group acting on the indices ψa. In
other words, it acts on the coordinate and then also acts on the fields themselves via a matrix.

We have also seen that for half-integer spin representations, D(2π) = −1 (i.e. the matrix that realizes
a 2π rotation of spinors gives negative of the identity). We saw this in the case of Weyl and Dirac
spinors/fermions, but this is much more general; any half-integer representation (any where J = J+ + J−
sums to a half-integer) of SU(2) has this property. This is a hint towards the spin-statistics theorem
and will be an ingredient in its proof. We will show that this requires that the corresponding field has
fermionic statistics, i.e. obey the anticommutation relations:{

ψ̂(x), ψ̂(y)
}
= 0 (x ̸= y) (3.2)

These operators create states/wavefunctions that are antisymmetric under exchange of identical particles,
i.e.:

|. . . , x, y, . . .⟩ = −|. . . , y, x, . . .⟩. (3.3)
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Note that ± are the only options (at least, in 3+1d). Because the particles are indistinguishable, the states
have to be equivalent; they can at most differ by a phase:

|. . . , x, y, . . .⟩ = eiϕ|. . . , y, x, . . .⟩ (3.4)

But exchanging twice is continuously deformable to doing nothing (we can use the “third dimension” to
continuously deform this double exchange to the identity identity), so e2iϕ = 1 which implies eiϕ = ±1.
But note that being in 3-d is crucial; in 2D we are confined to the plane, so if we try to take our particles
and deform the double exchange to the identity, we can only accomplish this by making the particles hit
each other.

So in summary, in 3+1d we can only have bosonic (+1) or fermionic (−1) statistics. But in 2+d1 we can
in general have e2iϕ ̸= 1, and have “any” statistics eiϕ, i.e. we have “anyons”. These are not fundamental
particles (because we don’t live in 2d) but emerge in condensed matter systems such as in the fractional
quantum Hall effect and toric code.

3.2 Proof of spin-statistics in 3+1d (almost)

We consider a two-point function involving two fermionic fields in the vacuum:

G(x) = ⟨0|D(π)ψ̂(x)ψ̂(−x)|0⟩ (3.5)

Let us introduce Û(Λ)Û(Λ)−1 for Û(Λ) = R̂ a rotation by π. We use the Lorentz invariance of the vaccum,
i.e. Û(Λ)|0⟩ = |0⟩.

G(x) = ⟨0|Û(Λ)Û(Λ)−1D(π)ψ̂(x)Û(Λ)Û(Λ)−1ψ̂(−x)Û(Λ)Û(Λ)−1|0⟩
= ⟨0|Û(Λ)−1D(π)ψ̂(x)Û(Λ)Û(Λ)−1ψ̂(−x)Û(Λ)|0⟩
= ⟨0|D(π)D(π)ψ̂(−x)D(π)ψ̂(x)|0⟩
= ⟨0|D(2π)ψ̂(−x)D(π)ψ̂(x)|0⟩
= −⟨0|ψ̂(−x)D(π)ψ̂(x)|0⟩

(3.6)

where in the third equality we note that Û(Λ)−1ψ̂(x)Û(Λ) = D(π)ψ̂(−x) and in the final equality we use
that D(2π) = −1 for fermions (note that D(π) is just a matrix acting on the indices of ψ̂ and so we can
move it around freely in the expression). This establishes that the ψ operators have fermionic statistics.

One thing we swept under the rug is the possibility that G(x) = 0. This comes from the CPT theorem;
invariance under charge/parity/time-reversal symmetry follows that G(x) > 0.
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Rio note: Asked whether it matters that we only showed it for ±x - answer was that it suffices to show
it for one correlator. I think maybe you could argue this (from spatial translation/rotation invariance) that
all possible coordinate pairs would reduce to the ±x case?

Also, note that there are different available proofs of spin-statistics, and each offer a different perspec-
tive; see Schwartz for more details and insight.

3.3 Review of quantizing the free scalar

We follow Srednicki 37-39 for this discussion.
We recall the Dirac Lagrangian we had constructed:

L = iΨ̄/∂Ψ−mΨ̄Ψ (3.7)

where Ψ =

(
ψL
ψR

)
and /∂ = ∂µγµ with γ matrices:

γµ =

(
0 σµ

σ̄µ 0

)
(3.8)

so:

/∂ =


0 0 ∂0 + ∂3 ∂1 − i∂2
0 0 ∂1 + i∂2 ∂0 − ∂3

. . . . . . 0 0

. . . . . . 0 0

 . (3.9)

We want to quantize this Lagrangian, but let us first review how we quantized the free scalar. For the free
scalar that we had the action:

S = −1
2

∫
(∂ϕ)2 + m2ϕ2 (3.10)

the conjugate momenta:

π(x) =
δS
δϕ̇

= ϕ̇ (3.11)

which obeyed the canonical Poisson bracket relation:{
ϕ(x), π(y)

}
PB = δ3(x− y) (3.12)

which we promoted to a commutator relation of operators via canonical quantization:

[ϕ̂(x), Π̂(y)] = iδ3(x− y). (3.13)

We had the Hamiltonian, which we quantized and diagonalized:

H =
∫

Πϕ̇−L

=
∫

d3x
1
2

Π2 +
1
2
(∇ϕ)2 +

1
2

m2ϕ2 =
∫ d3k

(2π)3
1
2
|Πk|2 +

1
2
(k2 + m2)|ϕk|2

=
∫ d3k

(2π)32ϵk
ϵka†

kak

(3.14)

with:

ak = ϵkϕk + iΠk

a†
k = ϵkϕ−k − iΠ−k

(3.15)
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and so:
ϕk =

1
2ϵk

(ak + a†
k) (3.16)

so we found the full time evolution of the fields:

ϕ(t, x) =
∫ d3k

(2π)32ϵk
(akeik·x + a†

ke−ik·x) (3.17)

with k0 = ϵk =
√

k2 + m2. The Hilbert space of our scalar QFT was Fock space, with:

ak|0⟩ = 0 ∀k (3.18)

a†
k|0⟩ = |k⟩, a†

k1
a†

k2
= |k1, k2⟩, . . . (3.19)

3.4 Quantizing the Dirac Lagrangian

With that review under our belt, we want to quantize:

L = iΨ̄γµ pµΨ−mΨ̄Ψ (3.20)

so we have the canonical momenta:

Π =
δS
δΨ̇

= iΨ̄γ0 = iΨ†γ0γ0 = iΨ† =⇒ Πa = iΨ∗a (3.21)

Thus canonical quantization promotes:{
Ψa(x), Πb(y)

}
PB = δ3(x− y)δab (3.22)

to the commutator:
[Ψ̂a(x), Π̂b(y)] = iδ3(x− y)δab. (3.23)

The Hamiltonian reads:
H = ΠΨ̇−L = −iΨ̄γi∂iΨ + mΨ̄Ψ (3.24)

3.5 General Solution for Dirac Equation

Let’s try to find the most general solution Ψ(t, x) of the Dirac equation:

(i/∂ −m)Ψ = 0. (3.25)

Because Ψ(x) satisfies the Klein-Gordon equation (which follows from the Dirac equation):

(□+ m2)Ψ = 0 (3.26)

a general solution will take the form:

Ψ(t, x) = u(p)eipx + v(p)e−ipx (3.27)

where u, v are 4-component spinors:

u(p) =


u1(p)
u2(p)
u3(p)
u4(p)

 (3.28)
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and we have the on-shell condition for p = (p0, p):

p0 = ϵp =
√

p2 + m2. (3.29)

But, the solution also has to solve the Dirac equation, which gives us the further condition on the spinors:

0 = (i/∂ −m)Ψ = (−/p −m)u(p)eipx + (/p −m)v(p)e−ipx =⇒
{
(/p + m)u(p) = 0
(/p −m)v(p) = 0

(3.30)

The trick will be to solve these equations in a preferred frame - namely the rest frame, where pµ
rest = (m, 0)

- and then boost back to an arbitrary frame pµ = Λµ
ν pν

rest:

u(p) = D(Λ)u(0) (3.31)

This works because the Dirac equation is Lorentz invariant, but let’s check:

0 ?
= (/p + m)D(Λ)u(0) = D(Λ)D(Λ)−1(/p + m)D(Λ)u(0)

= D(Λ)(pµD(Λ)−1ΓµD(Λ)−m)u(0)

= D(Λ)(pµΛµ
νγν −m)u(0)

= D(Λ)(/prest −m)u(0)

= 0.

(3.32)

So indeed this strategy works!
In the rest frame we have p0

rest = m and p0,rest = −m and so:

/prest = p0γ0 = −m

(
0 I

I 0

)
(3.33)

Thus our equation for u is:

m

(
I −I

−I I

)
u1
u2
u3
u4

 = 0 (3.34)

This implies that u1 − u3 = 0 and u2 − u4 = 0. One possible basis for the rest frame solution is therefore:

u+(0) =


1
0
1
0

 , u−(0) =


0
1
0
1

 . (3.35)

This basis is convenient because these solutions have a well-defined spin in the ẑ-direction (namely ± 1
2 ).

Let us do the same for v:

m

(
I I

I I

)
v1
v2
v3
v4

 = 0 (3.36)

This implies that v1 + v3 = 0 and v2 + v4 = 0. We then have a basis of solutions:

v+(0) =


0
1
0
−1

 , v−(0) =


−1
0
1
0

 (3.37)
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Now, we boost to get the general solution. What is the Lorentz transformation that takes pµ
rest = (m, 0)

into pµ = (
√

m2 + p2, p)? It is clear that we must boost in the p̂ = p
|p| direction, so we want the boost

eiηp̂·k by an amount (rapidity) η = sinh( |p|m ). What is then D(k) (representation of boosts on spinors)?
This we can construct by recalling that k = J+−J−

i so then:

Ki =

(
i
2 σi 0
0 − i

2 σi

)
. (3.38)

So, in summary:
u(p) = D(Λ)u(0) = eiη p̂iKi (3.39)

with the η, Ki as described the above. There are solutions for u±, v±. At the end of the day, a general
solution to the Dirac equation takes the form of a most general linear combination of these solutions:

Ψ(t, x) = ∑
s=±

∫ d3 p
(2π)32ϵp

[bs(p)us(p)eipx + d†
s (p)vs(p)e−ipx] (3.40)

Classically, b, d† are coefficients, but after we finish quantizing the theory on Thursday we will see that
they play similar roles to the creation/annihilation operators as in the scalar case, and they will cre-
ate/annihilate spin-1/2 particles. Moreover, we will see that they have to come with a particle-pair; the
Dirac equation solutions predict the existence of antiparticles! Historically, this was how the positron (the
antiparticle of the electron) was predicted.

4 The Free Dirac QFT

4.1 Reviewing the General Solution

We found that the general solution to the Dirac equation took the form:

ψ(x) = ∑
s=±

∫ d3 p
(2π)32ϵp

[
bs(p)us(p)eipx + d†(p)vs(p)e−ipx

]
(4.1)

With:

u+(0) =
√

m


1
0
1
0

 , u−(0) =
√

m


0
1
0
1

 , v+(0) =
√

m


0
1
0
−1

 , v−(0) =
√

m


−1
0
1
0

 (4.2)

the spinors in the rest frame, and:

us(p) = exp(i sinh−1(
|p|
m

)p̂ · k)us(0) (4.3)

(same for the vs) which are the spinors in an arbitrary frame (boosted from the rest frame via D(Λ) =

exp(i sinh−1( |p|m )p̂ · k)). The generators are:

Ki =

(
iσi/2 0

0 −iσi/2

)
, Ji =

(
σi/2 0

0 σi/2

)
(4.4)
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4.2 Spinor relations

We note that we have the boosted spinor:

us(p) = D(Λ)us(p) (4.5)

and also the barred spinor:

ūs(p) = u†
s (p)γ

0 = u†
s (0)D(Λ)†γ0 = ūs(0)γ0D(Λ)†γ0 = ūs(0)D(Λ)−1 (4.6)

where we note that γ0 =

(
0 I

I 0

)
and so γ0Kiγ

0 = −Ki so with the θ ↔ θ flip from the dagger operation

we indeed get the inverse transformation. Note that we get simple orthogonality relations between the
u, vs from studying them in the rest frame:

ūs(p)us′(p) = ūs(0)D(Λ)−1D(Λ)us′(0) = ūs(0)us′(0) = 2mδss′ (4.7)

v̄s(p)v̄s′(p) = v̄s(0)vs′(0) = v†
s′(0)γ

0vs(0) = −2mδss′ (4.8)

Note that for the vs we have minus signs inside of the spinor, so explicitly the γ0 becomes relevant.

v̄s(p)us′(p) = 0. (4.9)

Let’s try computing a slightly more complicated object:

ūs(p)γµus′(p) = ūs(0)D(Λ)−1γµD(Λ)us′(0) = Λµ
νūs(0)γνus′(0) = Λµ

ν2mδν
0 δss′ = 2pµδss′ (4.10)

which we could have partly guessed. There is a very similar equation for the vs:

v̄s(p)γµvs′(p) = 2pµδss′ (4.11)

Finally:

ūs(p)γ0vs′(−p) = u†
s (p)vs′(−p) = u†

s (0)D(Λ)†D(Λ−p)vs′(0) = u†
s (0) exp(iηp̂ ·K) exp(−iηp̂ ·K)vs′(0) = u†

s (0)vs′(0) = 0
(4.12)

4.3 Dirac reation and Annihilation Operators

We will promote ψs to fermionic anticommuting operators. This is fine and dandy, but to extract what the
behaviour of b/d† are we will have to use the above spinor technology.

First, let’s fourier transform Eq. (4.1):∫
d3xe−ip·xψ(x) = ∑

s=±

1
2ϵp

[bs(p)us(p) + d†
s (−p)vs(−p)] (4.13)

Now, we act on the above with ūs(p)γ0 and use our spinor relations we derived in the previous section:∫
d3xe−ip·xūs(p)γ0ψ(x) = ∑

s=±

1
2ϵp

(bs(p)ūs(p)γ0us′(p) + d†
s (−p)ūs(p)γ0vs(−p))

= ∑
s=±

1
2ϵp

(bs(p)2p0δss′ + 0)

= bs(p)

(4.14)
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The analogous barred relation is: ∫
d3xeip·xψ̄(x)γ0us(p) = b†

s (p). (4.15)

Via canonical quantization, we promote the ψs to operators with the equal time commutation relations:{
ψa(x), ψ†

b (0)
}
= δabδ3(x) (4.16){

ψ(x), ψ(0)
}
= 0 (4.17)

From this we find that:
{b, b} =

{
b†, b†

}
= 0 (4.18)

as out expressions for b, b† only involve ψ, ψ†s respectively. The only nontrivial relation is the anticommu-
tator between b and b†:{

bs(p), b†
s′(p

′)
}
=
∫

d3xd3x′e−i(p·x−p′ ·x′)
{

ūs(p)γ0ψ(x), ψ̄(x′)γ0us(p)
}

=
∫

d3xd3x′e−i(p·x−p′ ·x′)(ūs(p)γ0)a
{

ψa(x), ψ†
b (0)

}
(γ0γ0us(p))b

=
∫

d3xd3x′e−i(p·x−p′ ·x′)(ūs(p)γ0)aδabδ3(x− x′)(γ0γ0us(p))b

=
∫

d3xd3x′e−i(p·x−p′ ·x′)δ3(x− x′)ūs(p)γ0us′(p
′)

=
∫

d3xe−i(p−p′)·xūs(p)γ0us′(p
′)

=
∫

d3xe−i(p−p′)·xδss′2p0

= (2π)3δ3(p− p′)δss′2ϵp

(4.19)

Now we can do the same with the ds. Act on Eq. (4.1) with v̄s(−p)γ0. We then obtain:

d†
s (−p) =

∫
d3xe−ip·xvs(−p)γ0ψ(x) (4.20)

and flipping p→ −p:

d†
s (p) =

∫
d3xeip·xvs(p)γ0ψ(x) (4.21)

Taking the dagger of this relation:

ds(p) =
∫

d3xe−ip·xψ̄(x)γ0vs(p) (4.22)

So then:
{d, d} =

{
d†, d†

}
= 0 (4.23)

and again the only nontrivial relation is between d, d†:{
d†

s (p), ds′(p
′)
}
=
∫

xx′
ei(p·x−p′ ·x′)

{
v̄s(p)γ0ψ(x), ψ†(x′)γ0vs(p′)

}
=
∫

xx′
ei(p·x−p′ ·x′)δ3(x− x′)v̄s(p)γ0vs′(p

′)

=
∫

d3xei(p−p′)·x2p0δss′

= (2π)3δ3(p− p′)2ϵpδss′

(4.24)
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We are almost done. The last thing to check is that the b, d sets of creation/annihilation operators are
independent, i.e. that they anticommute. It is clear that:{

d†, b
}
=
{

d, b†
}
= 0 (4.25)

and the only potentially nontrivial one we should work through is between b, d:{
bs(p), ds′(p

′)
}
=
∫

xx′
e−i(p·x−p′ ·x′)

{
ūs(p)γ0ψ(x), ψ̄(x)γ0vs′(p

′)
}

=
∫

xx′
e−i(p·x−p′ ·x′)δ3(x− x′)ūs(p)γ0vs′(p

′)

= (2π)3δ3(p + p′)ūs(p)γ0vs′(−p)
= 0

(4.26)

so we indeed find that the b, d are independent. The bottom line is we have 4 independent raising and
lowering operators b±, d±. Notice that b† ∼ ψ† while d† ∼ ψ, so they create particles of opposite “charge”.
What charge?

L = ψ̄(i/∂ −m)ψ (4.27)

has a U(1) symmetry ψ → eiαψ. Symmetries imply conservation laws via Noether’s theorem - we have
the conserved current ∂µ jµ = 0. We can identify the Noether charge:

Q =
∫

d3xj0 (4.28)

which is conserved with Q̇ = 0. Indeed, we find that:

[Q, ψ†] = iψ†, [Q, ψ] = −iψ (4.29)

so the two have opposite charge. When we talk about the electron, this Noether charge is just the familiar
electric charge, and this is indeed how the Noether charge got its name.

4.4 Hilbert space of the Dirac Fermion

We start with the vacuum state |0⟩ annihilated by all annihilation operators:

bs(p)|0⟩ = ds(p)|0⟩ = 0 ∀s, p (4.30)

We then have the single particle states:

b†
s (p)|0⟩ = |p, s,+1⟩ (4.31)

which in contrast to the scalar single particle states (which were only labelled by their momentum), are
labelled by momentum, spin, and charge. Analogously:

d†
s (p)|0⟩ = |p, s,−1⟩ (4.32)

So for example |p, ↑,+1⟩ = b†
↑(p)|0⟩ corresponds to an electron3 with momentum p and sz = + 1

2 and
|p′, ↓,−1⟩ = d†

↓(p)|0⟩ corresponds to a positron with momentum p and spin sz = − 1
2 . Multiparticle states

are then obtained as:

|. . . , (p1, s1, q1), . . . , (p2, s2, q1), . . .⟩ = . . . b†
s1
(p1)d†

s2
(p2) . . . |0⟩

= |. . . , np1,s1,q1 = 1, . . . , np2,s2,q2 = 1, . . .⟩
(4.33)

3Let’s take the electron to have positive charge, for now...
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so we have a bunch of QHO modes labelled by three quantum numbers, but with the distinction to the
bosonic case that each mode can only have occupation n = 0/1. This is because of the Pauli exclusion
principle:

b†
s (p)b

†
s (p) =

1
2

{
b†

s (p), b†
s (p)

}
= 0 (4.34)

What is the energy of these particles? We should be able to get this from looking at the commutator of
the bs with the Hamiltonian:

[H, bs(p)] = −[bs(p), H]

= −
∫

x,x′
e−ipx[ūs(p)γ0ψ(x), ψ̄(x′)(−iγi∂i + m)ψ(x′)]

= −
∫

x,x′
e−ipxūs(p)γ0

{
ψ(x), ψ†(x′)

}
iγ0γ0∂0ψ(x′)

= −
∫

x,x′
e−ipxūs(p)γ0δ3(x− x′)iγ0γ0∂0ψ(x′)

= −
∫

d3xe−ipxūs(p)γ0i∂0ψ(x)

IBP
= −p0

∫
d3xe−ipxūs(p)γ0ψ(x)

= −ϵpbs(p)

(4.35)

So bs(p) lowers the energy by ϵp =
√

p2 + m2, as expected. Note that the final Hamiltonian has a very
simple form in terms of the raising and lowering operators (very similar to the Hamiltonian of a scalar
QFT):

H = ∑
s

∫ d3 p
(2π)32ϵp

ϵp(b†
s (p)bs(p) + d†

s (p)ds(p)) (4.36)

So this is H! What we will then do next week is to study our first fermionic observables in the form of
propagators:

⟨0|ψa(x)ψ̄b(y)|0⟩ (4.37)

⟨0|T ψa(x)ψ̄b(y)|0⟩ (4.38)

We will do a lot of work to get a simple answer, then wonder if there was a simpler way, and in fact we
will find that the simple method is using the path integral - the twist there will be that we integrate over
a Grassman variable.

5 The Fermion Propagator

The relevant section is Srednicki 42.
We want to compute correlation functions fermions, e.g. ⟨0|ψ̄aψbψcψ̄d|0⟩. Through the LSZ formula,

they will be related to e+/e− scattering. These correlators are also observables in their own right - for
example the current (observable in CM experiments) goes as

〈
jµ jν

〉
∼
〈
ψ̄γµψψ̄γνψ

〉
.
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Today, we look at the simplest observable, the propagator/2-point function:

GW(x)αβ = ⟨0|ψα(x)ψ̄β(0)|0⟩ (5.1)

GF(x)αβ = ⟨0|T ψα(x)ψ̄β(0)|0⟩ (5.2)

Where for fermions:

T ψα(x)ψβ(0) =

{
ψα(x)ψ̄β(0) if x0 > 0
−ψ̄β(0)ψα(0) if x0 < 0

(5.3)

5.1 Computing the 2-point function

We compute the 2-point function by plugging in our expression for ψ(x) that we found last week:

ψ(x) = ∑
s=±

∫ d3 p
(2π)32ϵp

[
bs(p)us(p)eipx + d†(p)vs(p)e−ipx

]
(5.4)

Therein:
⟨0|ψα(x)ψ̄β(0)|0⟩ = ∑

ss′

∫
pp′

us(p)eipx⟨0|bs(p)b†
s′(p

′)|0⟩ūs′ ,β(p
′)e−ip′ ·0 (5.5)

where we use that the annihilation operator annihilates the vacuum, making the d-pieces of the expression
zero. We can, for free, replace bs(p)b†

s′(p
′) by an anticommutator since bs annihilates the vacuum. Then,

since
{

bs(p), b†
s′(p

′)
}
= (2π)3δ3(p− p′)2ϵpδss′ , this allows us to get rid of the p′ integral and the s′ sum,

leaving us with:

⟨0|ψα(x)ψ̄β(0)|0⟩ =
∫ d3 p

(2π)32ϵp
∑

s=±
us,α(p)ūs,β(p)eipx (5.6)

This simplifies via the completeness relation:

∑
s=±

us,α(p)ūs,β(p) = (−/p + m)αβ (5.7)

Which can be seen by computing it in the rest frame with prest
µ = (−m, 0):

u+ =
√

m


1
0
1
0

 , u− =
√

m


0
1
0
1

 , ū = γ0u =

(
0 I

I 0

)
u (5.8)

u+u†
+ = m


1
0
1
0

(1 0 1 0
)
= m


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

 (5.9)

u−u†
− = m


0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

 (5.10)

thus:

∑
s=±

usu†
s = m

(
I I

I I

)
= mI + mγ0 = mI− prest

0 γ0 (5.11)
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Then we can act with our boost generators on the left and right to get the expression in a general frame:

∑
s

us(p)ūs(p) = mI− pµγµ (5.12)

which gives a simple final expression:

⟨0|ψα(x)ψ̄β(0)|0⟩ =
∫ d3 p

(2π)32ϵp
(m− /p)αβeipx (5.13)

Since we are interested in the time-ordered correlation function, we should also look at the correlation
function with the two field operators swapped:

⟨0|ψ̄β(0)ψα(x)|0⟩ = ∑
ss′

∫
pp′

v̄s,β(p)⟨0|ds(p)ds′(p
′)|0⟩vs′α(p)e

−ip′x (5.14)

We again replace ds(p)ds′(p′) by the anticommutator, which kills the s′ and p′ sums:

⟨0|ψ̄β(0)ψα(x)|0⟩ =
∫ d3 p

(2π)32ϵp
∑

s
v̄s,β(p)vs,α(p)e−ipx =

∫ d3 p
(2π)32ϵp

(−/p −m)αβe−ipx (5.15)

where we have used the analogous completeness relation in the last equality. The bottom line is that the
time-ordered Green’s function looks like:

GF(x) =
∫ d3 p

(2π)32ϵp
Θ(x0)(m− /p)eipx + Θ(−x0)(/p + m)e−ipx (5.16)

5.2 Lorentz-Covariant 2-point function

but there is a slightly nicer way to write this in a way that makes the expression manifestly Lorentz
covariant. We will simplify it via an identity involving the integral:

∫ d4 p
(2π)4

eipx

p2 + m2 − i0+
f (pµ) (5.17)

where we note that px = −p0x0 + p · x, where p0 is a free variable that is integrated over. The expression
(as in the case of a free scalar) has two poles, at:

p0 = ±(ϵp − i0+) (5.18)
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This will allow us to carry out the integral over p0, leaving us with a integral over spatial momentum;
reversing the process we will obtain an expression for GF(x). If x0 > 0, we will want to close the contour
in the lower half plane, and vise versa if x0 < 0 (in order for the integral to converge):∫ d4 p

(2π)4
eipx

p2 + m2 − i0+
f (pµ) = −Θ(x0)

∫ d3 p
(2π)4 (−2πi)

ei(ϵpx0+p·x)

2ϵp
f (ϵp, p)−Θ(−x0)

∫ d3 p
(2π)4 (2πi)

ei(−ϵpx0+p·x)

−2ϵp
f (−ϵp, p)

= i
∫ d3 p

(2π)32ϵp

[
Θ(x0)eipx f (ϵp, p) + Θ(−x0)e−ipx f (−ϵp,−p)

]
(5.19)

Now we have something that looks exactly like what we have for GF(x), so using this identity:

GF(x) = −i
∫ d4 p

(2π)4 eipx m− /p
p2 + m2 − i0+

(5.20)

Fourier transforming, we have:

GF(p) =
∫

d4xe−ipxGF(x) = −i
m− /p

p2 + m2 − i0+
(5.21)

This looks pretty similar to the scalar field propagator, up to the extra factor m− /p. It’s not so surprising
that it looks similar, because the fermionic fields also satisfy the Klein-Gordon equation.

Note that:

(m + /p)(m− /p) = m2 − /p2

= m2 − pµ pνγµγν

= m2 − pµ pν

(
1
2
{

γµ, γν
})

= m2 − pµ pν(−ηµν)

= m2 + p2

(5.22)

Which allows us to write the inverse:
(m + /p)−1 =

m− /p
m2 + p2 (5.23)

Thus we may also write the Feynman Green’s function as:

Gψ
F (p) =

−i
m + /p

(5.24)

This is interesting! Remember for scalars that:

Gϕ
F(p) =

−i
p2 + m2 (5.25)

This was the “inverse of the equation of motion”, and indeed we find the same for Gψ
F :

−(m + /p)GF(p) = i =⇒
∫ d4 p

(2π)4 eipx(−/p −m)GF(p) = iδ4(x) (5.26)

Note that we can write the /p as a derivative:

(i/p −m)
∫ d4 p

(2π)4 eipxGF(p) = iδ4(x) (5.27)
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and thus:
(i/p −m)GF(x) = iδ4(x) (5.28)

which is the formal notion in which the Green’s function is the inverse of the EoM/Dirac equation in this
case.

5.3 Path Integral for Fermions - Desiderata

We may now ask if there would have been a simpler/more direct way to get to this result - for the scalar
field there indeed was, via the path integral formalism. The same will be true for fermions!

Recall for the scalar field that:

〈
T ϕ(x)ϕ(0)

〉
=
∫
Dϕϕ(x)ϕ(0)

ei
∫

ϕ(∂2−m2)ϕ∫
DϕeiS

=
1
Z

δ2

iδJ(x)iδJ(0)

∫
Dϕei

∫
ϕ(∂2−m2)ϕ+Jϕ

∣∣∣∣
J=0

=
1
Z

δ2

iδJ(x)iδJ(0)

∫
Dϕ exp(

i
2

∫
(ϕ + D−1 J)D(ϕ + D−1 J)− JD−1 J)

∣∣∣∣
J=0

= f racδ2iδJ(x)iδJ(0)e−
i
2
∫

JD−1 J
∣∣∣

J=0

=
−i

−∂2 + m2

(5.29)

We now want a similar formalism for fermions; we would like:

⟨0|T ψα(x)ψ̄β(0)|0⟩ =
∫
Dψψα(x)ψ̄β(0)ei

∫
d4xψ̄(i/p−m)ψ/

∫
DψeiS

=
δ2

δiη̄α(x)δiηβ(x)

∫
Dψei

∫
ψ̄Dψ+ψ̄η+η̄ψ

∣∣∣∣
η=0

/
∫
DψeiS

=
δ2

δiη̄α(x)δiηβ(x)
ei
∫

η̄D−1η
∣∣∣
η=0

/
∫
DψeiS

= − i
i/p −m

(5.30)

But for this to work, we require that the variable of integration ψ, as well as the source η, have to
anticommute; they are Grassman numbers, where ψ1ψ2 = −ψ2ψ1. The approach that Srednicki takes in
Section 44 is that one can define numbers with the desired property and the formalism carries through -
i.e. he mostly says that “it works”. But here, we will try to actually derive it.

5.4 Reviewing the Bosonic SHO Path Integral Derivation

Recall the Bosonic SHO; we had the action and Hamiltonian:

S =
∫

dt
1
2

mq̇2 − 1
2

kq2 =⇒ Ĥ =
p̂2

2m
+

1
2

kq̂2 (5.31)

Then we could consider the evolution via e−iĤt = ∏N
i=1 e−iĤδt:

⟨q f |e−iĤt|qi⟩ =
∫ N

∏
j=1

dqjdpj . . . ⟨q2|e−iĤδt|p1⟩⟨p1|q1⟩ (5.32)

25



then using that:

⟨q2|e−iĤδt|p1⟩ = e
−i

(
p2

1
2m + 1

2 kq2
2

)
δt
⟨q2|p1⟩⟨p1|q1⟩ = e

−i

(
p2

1
2m + 1

2 kq2
2

)
δt

eip1(q2−q1) (5.33)

So then carrying out the Gaussian integral over p1:

⟨q f |e−iĤt|qi⟩ =
∫ N

∏
j=1

dqjdpj . . . e
i
(

1
2 m (q2−q1)

2

δt2
− 1

2 kq2
2

)
δt
=
∫ N

∏
j=1

dqjdpj . . . ei
(

1
2 mq̇2− 1

2 kq2
2

)
δt (5.34)

then recognizing that what is left in the exponential is just the action, we could write:

⟨q f |e−iĤt|qi⟩ =
∫
DqeiS (5.35)

5.5 Deriving the Fermionic Path Integral

Now consider:
S =

∫
dtψ†(i∂t −m)ψ =⇒ Ĥ = mψ̂†ψ̂ (5.36)

where ψ̂2 = 0. There is the ground state |0⟩ annihilated by ψ̂, and the state with one particle, ψ̂†|0⟩ = |1⟩.
And then - we’re done. We can’t keep acting on this state with ψ̂†, because this would give us zero. There
are only two states in the Hilbert space, defined by:

ψ̂|0⟩ = 0 (5.37)

ψ̂|1⟩ = ψ̂ψ̂†|0⟩ =
{

ψ̂, ψ̂†
}
|0⟩ = |0⟩ (5.38)

What was crucial in the bosonic QHO derivation was the eigenstates of the annihilation/creation operators
- the coherent states. Here, we look at our defining relations, and ψ̂ annihilates |0⟩ and sends |1⟩ to |0⟩,
which makes constructing an eigenstate... impossible, if we consider regular coefficients. But if we allow
for coefficients which are Grassman numbers, then we can do this! We can define:

|η⟩ = |0⟩+ |1⟩η (5.39)

where then:
ψ̂|η⟩ = 0 + |0⟩η = |η⟩η (5.40)

if we let η2 = 0. So, with these interesting objects of Grassman numbers, we can build eigenstates of ψ̂.
Similarly, we define:

⟨η†| = ⟨0|+ η†⟨1| =⇒ ⟨η†|ψ̂† = η†⟨η†| (5.41)

What is the overlap between the fermionic coherent states? We calculate:

⟨η1|η2⟩ = (⟨0|+ η†
1 ⟨1|)(|0⟩+ |1⟩η2) = 1 + η†

1 η2 = eη†
1 η2 (5.42)

Writing this as an exponential seems strange, but it is completely correct. If we taylor expand, all second
order terms and higher vanish as Grassman numbers square to zero. But this form does make the analogy
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with the bosonic case more clear. With this, we can now define the fermionic path integral:

⟨ψ f |e−iĤt|ψi⟩ =
∫ N

∏
j=1

dψjdψ†
j . . . ⟨ψ2|e−iHδt|ψ†

1⟩⟨ψ†
1 |ψ1⟩

=
∫ N

∏
j=1

dψjdψ†
j . . . e−imψ†ψ2δt⟨ψ2|ψ†

1⟩⟨ψ†
1 |ψ2⟩

=
∫ N

∏
j=1

dψjdψ†
j . . . e−imψ†

1 ψ2δte−η†
1 (η2−η1)

=
∫ N

∏
i=1

dψj . . . ei(ψ†
1 i(ψ2−ψ1)−mψ†

1 ψ2)δt

N→∞→
∫

DψDψ†ei
∫

dtψ†(i∂t−m)ψ

(5.43)

and in fact we are done; in the scalar case we integrated out the momenta (p), here we keep it (ψ†). So, we
have our expression for a single fermion; on Thursday we will generalize this to the Dirac fermion.

6 Path Integral for Dirac QFT, Interacting Fermions

Last lecture, we found a path integral representation for fermionic quantum mechanics (wherein we had
to replace the variables being integrated over by Grassman numbers):

Z =
∫
DψDψ†ei

∫
dtψ†(i∂t−m)ψ (6.1)

6.1 Generating Functional + Two-Point Function for Dirac QFT

For the Dirac QFT, we can consider the generating functional:

Z[η, η̄] =
∫
DψDψ†ei

∫
d4xψ̄(i/∂−m)ψ+ψ̄η+η̄ψ (6.2)

From this, we can obtain the time-ordered two-point function (keeping in mind that these are Grassman
numbers, so introducing minus signs accordingly where we would need to move the derivative past a
grassman number) via:

⟨0|T ψ(x)ψ̄(0)|0⟩ = 1
Z[0, 0]

∫
DψDψ†ψ(x)ψ̄(0)eiS

=
1

Z[0, 0]

∫
DψDψ†

(
δ

iδη̄(x)

)(
− δ

iδη(0)

)
ei
∫

ψ̄(i/∂−m)ψ+ψ̄η+η̄ψ

=
1

Z[0, 0]
δ2

δη̄(x)δη(0)
Z[η, η̄]

∣∣∣∣∣
η=0

=
δ2

δη̄(x)δη(0)
log Z[η, η̄]

∣∣∣∣∣
η=0

(6.3)

We can thus compute fermionic correlation functions via a path integral (note that we compute the con-
nected correlation function above, which coincides with the disconnected correlation function here as the
one point functions vanish). We will find that we can exactly perform the integral for Z[η, η̄] and so
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this fully solves the theory; all correlation functions can then be obtained as functional derivatives of the
generating functional. Let’s carry out this integral:

Zη, η̄ =
∫
DψDψ†e

−i
∫ d4 p

(2π)4
ψ̄p(−/p+m)ψp−ψ̄pηp−η̄pψp (6.4)

We complete the square; we want this to look like the Gaussian integral with argument χ̄p(/p + m)χp,
which motivates the definition of:

χp = ψp − (/p + m)−1ηp

χ̄p = ψ̄p − η†
p(/p

† + m)−1γ0 (6.5)

where we note that:
γ0(/p)†γ0 = /p (6.6)

which follows from:
γ0(γµ)†γ0 = γµ (6.7)

Of course with this substitution we end up with a term quadratic in the ηs:

ψ̄p(−/p + m)ψp − ψ̄pηp − η̄pψp = χ̄p(/p + m)χp − η̄p(/p + m)−1ηp (6.8)

so our generating functional becomes:

Z[η, η̄] =

∫ DχDχ†e
−i
∫ d4 p

(2π)4
χ̄p(/p+m)χp

 e
i
∫ d4 p

(2π)4
η̄p(/p+m)−1ηp

= Z[0, 0]e
i
∫ d4 p

(2π)4
η̄p(/p+m)−1ηp (6.9)

Thus:

log Z[η, η̄] = log Z[0, 0] + i
∫ d4 p

(2π)4 η̄p(/p + m)−1ηp (6.10)

Writing this in position space (and leaving off the constant log Z[0, 0]):

log Z[η, η̄] =
∫

d4xd4x′
d4 p
(2π)4 η̄(x)

eip(x−x′)

/p + m
η(x′) = −

∫
d4xd4x′η̄(x)GF(x− x′)η(x′) (6.11)

Thus taking two derivatives, we find (as we did found in the canonical quantization calculation we did
last class):

⟨0|T ψ(x)ψ̄(0)|0⟩ = δ2

δη̄(x)δη(0)
log Z[η, η̄]

∣∣∣∣∣
η=0

= GF(x) (6.12)

6.2 Wick’s theorem for fermions

So we have rederived the expression for the two-point function, but we have done a lot more; we now
have a simple way to compute arbitrary correlation functions. We have shown the generating functional is
quadratic in η, implying a version of Wick’s theorem for fermions. For example, looking at the connected

28



four-point function (which vanishes):

0 =
δ4

δη1δη2δη3δη4
log Z

∣∣∣∣∣
η=0

= ∂η1 ∂η2 ∂η3

(
∂η4 Z

Z

)

= ∂η1 ∂η2

(
∂η3 ∂η4 Z

Z
−

∂η3 Z∂η4 Z
Z

)

= ∂η1

(
∂η2 ∂η3 ∂η4 Z

Z
−

∂η3 ∂η4 Z∂η2 Z
Z2 −

∂η2 ∂η3 Z∂η4 Z
Z2 +

∂η3 Z∂η2 ∂η4 Z
Z2

)

=
∂η1 ∂η2 ∂η3 ∂η4 Z

Z
−

∂η3 ∂η4 Z∂η1 ∂η2 Z
Z2 −

∂η2 ∂η3 Z∂η1 ∂η4 Z
Z2 +

∂η1 ∂η3 Z∂η2 ∂η3 Z
Z2

(6.13)

where in the fourth and fifth equality we use that the one-point function vanishes and hence we can
discard any terms of the form of ∂ηZ

∣∣∣
η=0

= 0. Note the sign of the last term in the fourth equality, which

arises from moving the ∂η2 derivative past the ∂η3 Z, which results in an extra negative sign as these are
anticommuting numbers - this is the only distinction from the analogous calculation we did for the scalar
QFT. Thus, writing the four-point function in terms of two point functions:〈

ψ1ψ2ψ3ψ4
〉
=
〈
ψ1ψ2

〉 〈
ψ3ψ4

〉
+
〈
ψ2ψ3

〉 〈
ψ1ψ4

〉
−
〈
ψ1ψ3

〉 〈
ψ2ψ4

〉
(6.14)

which we can see is a sum over all pairings, except every time we have to move fermionic variables across
each other to pair them we introduce a minus sign. The above result hinges on the fact that:

δ4

δη1δη2δη3δη4
log Z

∣∣∣∣∣
η=0

= 0 (6.15)

which is true for free Dirac theories (for which the generating functional is quadratic in the sources).
Of course, its worth noting that throughout we have suppressed the indices above, but each of the ψs

are spinors, so these are really all matrix equations.

6.3 Interacting Fermions - Yukawa Theory

There are many theories of interacting fermions in nature - the main focus of our study will be QED, but
we will look at a simpler theory first; namely coupling a scalar and a Dirac fermion.

To review, we have the Lagrangian for the free scalar:

Lϕ = −1
2
(∂ϕ)2 − 1

2
M2ϕ2 (6.16)

and the Lagrangian for the free Dirac fermion:

Lψ = ψ̄(i/p −m)ψ (6.17)

We can of course have these theories as independent/non-interacting, but let’s make them talk to each
other! How can we couple the two? The simplest way we may couple the two is:

LYukawa = λϕψ̄ψ (6.18)

which is indeed a Lorentz-invariant scalar, as we require. You will explore this theory in PS3. When
building a theory, it is good to start off with the simplest interactions possible (i.e. contain the least number
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of derivatives possible), as these are the most relevant interactions (as we can ascertain via dimensional
analysis).

This interaction will lead to a correlation, which we can compute perturbatively in the usual way using
the path integral formalism; to first order:

⟨0|ϕ(x1)ψ(x2)ψ̄(x3)|0⟩ ∼=
〈
iSintϕ(x1)ϕ(x2)ψ̄(x3)

〉
free

= iλ
∫

d4x
〈
ϕ(x)ψ̄(x)ψ(x)ϕ(x1)ψ(x2)ψ̄(x3)

〉
free

= iλ
∫

d4xGϕ
F(x− x1)

〈
ψ(x2)ψ̄(x)ψ(x)ψ̄(x3)

〉
= iλ

∫
d4xGF

ϕ(x− x1)GF
ψ(x2 − x)GF

ψ(x− x3)

(6.19)

We have contracted the two scalar fields together (the only nonvanishing contraction in the free theory),
as well as ψ(x2) with ψ̄(x) and ψ(x) with ψ̄(x3) such that the Feynman diagram is connected (and hence
nonvanishing). In position space, we can imagine this Feynman diagram as:

Or in momentum space:〈
ϕpψψ̄p′

〉
= iλGϕ(p)Gψ(p + p′)Gψ(p′) = iλ

−i
p2 + M2

−i

/p + /p′ + m
−i

/p′ + m
(6.20)

The amputated correlator
〈

ϕpψψ̄p′
〉

amp
= iλI will be related through LSZ to the 1→2 S-matrix, namely

the decay of a scalar particle into an electron/positron pair. When is the scalar particle unstable? If we
imagine this in the rest frame of the scalar particle, this process requires M > 2m (to produce the fermion
and its antiparticle pair, plus giving the two kinetic energy) - when this condition is met ϕ is unstable,
allowing for ϕ→ e−e+, with decay rate Γ ∼ λ2 (which you will compute in PS4).
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The decay rate also enters into the self-energy of the scalar, from which it is evident that Γ ∼ λ2.

6.4 Heavy Scalar Limit of Yukawa Theory - Fermi EFT

Taking the limit where M is huge (larger beyond all other energy scales), we can study its effects by
integrating it out. Our full QFT has the generating functional:

Z =
∫
Dψ†DψDϕei

∫
ψ̄(i/p−m)ψ+λϕψ̄ψ− 1

2 ϕ(∂2+M2)ϕ (6.21)

Note that if we just look at the ϕs (i.e. the ϕ-sector), this is actually just a Gaussian theory! In our ultra-
heavy limit, the mass energy is much greater than the kinetic term, so we neglect 1

2 ϕ(∂2)ϕ. Thus, writing
the ϕ-part as:

−1
2
(ϕ− λ

M2 ψ̄ψ)M2
(

ϕ− λ

M2 ψ̄ψ

)
+

1
2

λ

M2 ψ̄ψψ̄ψ (6.22)

Thus writing ϕ̃ = (ϕ− λ2

M2 ψ̄ψ), the above becomes:

Z =

(∫
Dϕ̃e−

1
2 ϕ̃Mϕ̃

) ∫
Dψ†Dψei

∫
ψ̄(i/p−m)ψ+ 1

2
λ2

M2 ψ̄ψψ̄ψ (6.23)

So we can see that the ϕ generated an effective 4-fermion interaction! Free fermions do not scatter, but
we have the emergence of an interaction vertex, mediated by the ϕ particle (which creates an effective
interaction igeff = i λ2

M2 ); we can picture this as:
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This was the first effective theory considered - this is Fermi’s effective field theory (EFT) of weak inter-
actions, to explain β-decay. Radioactive materials emit electrons from time to time, with more specifically a
neutron decaying into an electron, proton, and neutrino. This requires a 4-fermion interaction gψ̄1ψ2ψ̄3ψ4.
The microscopics of the theory came later, but the first try at explaining this phenomena was this EFT.

This ψψ̄ψψ̄ interaction is irrelevant, or non-renormalizable. This is an energy that shrinks at small
energies/IR and grows at high energies/UV. It is thus not UV complete, and cannot be the microscopic
description of the theory. For us, the “UV completion” is the Yukawa theory (in Fermi’s case it was a little
more complicated, e.g. with Gauge fields). This effective interaction can be thought of as a force between
particles (here the fermions e−, e+) that is mediated by the mysterious heavy particle. We can literally
write this interaction as a potential:

Hint = −
λ2

2M2

∫
d4x ¯ψ(x)ψ(x)ψ̄(x)ψ(x)

=
∫

d4xd4y ¯ψ(x)ψ(x)V(x− y)ψ̄(y)ψ(y)
(6.24)

where:

V(x− y) = − λ2

2M2 δ4(x− y) (6.25)

is a local interaction. In the problem set, you will find that this interaction is not a delta function (it is just
sharply peaked), but in this extreme limit we currently consider, it is completely local. Given a particle
at x′, because V < 0, it is energetically favourable to place another particle nearby. The Yukawa potential
allows scalar particles to generate attractive interactions between fermions.

A final comment; if we spell out ψ̄ψ, we find:

ψ̄ψ ∼ b†b + d†d. (6.26)

Thus, all the particles - both fermions and anti-fermions attract each other. Phrased another way:

Hint ∼
∫

xx′
(nb + nd)xV(x− x′)(nb + nd)x′ (6.27)

This is not how we see electrons behave (which of course repulse), which indicates to us that the scalar
particle is not what mediates the force between electrons. Instead, in QED we have that the force between
electrons is mediated by the photon/gauge field4 Aµ. This does not couple ψ̄, ψ, but rather couples the
current jµ = ψ̄γµψ, and in particular:

ψ̄γ0ψ = b†b− d†d (6.28)

So in QED:
Hint ∼ −

∫
xx′

(nb − nd)xV(x− x′)(nb − nd)x′ (6.29)

which means particles of the same charge repel, and particles of opposite charge attract. We will return to
this soon!

4This wins out over the scalar mediation, as the photon is massles (and hence can mediate a long-range interaction), compared
to the scalar mediated interaction which is short-ranged
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Q (from me): Is it possible to look at the opposite limit where 2m ≫ M (i.e. where the fermions are
much heavier than the scalar), and integrate out the fermions, since the fermion subsector of the Yukawa
Lagrangian is also Gaussian?

A (Luca): Yes; but note that this generates diagrams to all powers/orders of ϕ, so is quite complicated.
But, this is what people do, e.g., when they do quantum monte carlo simulations, because fermions are in
general difficult to simulate (presumably due to sign problems).

7 Vector Fields and QED I - Classical E&M, Maxwell Equations, Gauge
Invariance, Coupling to Matter

We move to the next nontrivial representation of the Lorentz group! Namely the ( 1
2 , 1

2 ) representation with
spin-1, which transforms like a 4-vector. You have already encountered this previously in the form of the
photon in E&M. Today we will start from classical electromagnetism, and derive the Maxwell equations
from an action principle.

7.1 The Maxwell Equations

We can write Maxwell’s equations compactly in a Lorentz covariant way:

∂µFµν = jν (7.1)

ϵµνλρ∂νFλρ = 0 (7.2)

with Fµν = −Fνµ the antisymmetric Maxwell stress tensor, with 4·3
2 = 6 components; 3 for the electric and

3 for the magnetic field. In particular:

F0i = Ei

Fij = −ϵijkBk (7.3)

Indeed, let’s see that this compact form of the Maxwell equations indeed reproduces the more familiar
form. Looking at Eq. (7.1) for ν = 0:

ρ = j0 = ∂iFi0 = −∂iF0i = (−1)2∂iF01 = ∇ · E (7.4)

which is Gauss’ Law. For ν = i:

ji = ∂0F0i + pjFji = −∂0Ei − ϵijk∂jBk = −Ėi + ϵijk∂jBk (7.5)

or if we look at all components:
j = −Ė +∇× E (7.6)

which is Ampere’s Law.
Now looking at Eq. (7.2) for µ = 0:

0 = ϵijk∂iFjk = −ϵijkϵjkl∂iBl = −δi
l∂iBl ∝ ∇ · B =⇒ 0 = ∇ · B (7.7)

which gives the Magnetic Gauss’ law. Finally, for µ = i:

0 = ϵiνλρ∂νFλρ = ϵi0jk∂0Fjk + ϵij0k∂jF0k = ϵijkϵjkl∂0Bl + 2ϵijk∂jEk = 2δi
l∂0Bl + 2ϵijk∂jEk =⇒ Ḃ +∇× E = 0

(7.8)
note in the second equality we have used the requirement that one of the indices be time (as the Levi-
Civita tensor is only nonzero when all four indices are different.) The last equation is Faraday’s Law, and
so we have reproduced the four familiar versions of Maxwell’s Law.
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One can check that Fµν transforms like a tensor under Lorentz transformations:

Fµν(x)→ Λ α
µ Λ µ

ν Fαβ(Λ−1x) (7.9)

Intuitively, under a boost charges become currents and so we transform between the tensor components.
Writing things in terms of the electromagnetic tensor makes lorentz invariance manifest, provided jµ is a
Lorentz 4-vector. Another feature - observe that the current jµ also has to be conserved:

∂µ jµ = ∂µ∂νFµν = 0 (7.10)

where we conclude things are zero because the derivatives are symmetric while Fµν is antisymmetric. This
property is very reminiscent of Noether’s theorem - it gives us the intuition that the electric/magnetic
fields will want to couple to field theories with a U(1) conservation law.

7.2 Action Principle for Free Maxwell Theory

Writing things in terms of E, B is not great because they transform into each other under Lorentz boosts
(the equations thus do not look Lorentz invariance). There is a further issue. The Magnetic Gauss’ Law
∇ · B = 0 implies that, locally, B is a curl:

B = ∇×A (7.11)

or equivalently:
Fij = ∂i Aj − ∂j Ai. (7.12)

Similarly, Faraday’s Law says:
0 = ∇× (E + Ȧ) (7.13)

which tells us that locally, E + Ȧ is a gradient:

E + Ȧ = ∇A0 (7.14)

or:
Fi0 = ∂i A0 − ∂0 Ai (7.15)

In summary:
Fµν = ∂µ Aν − ∂ν Aµ (7.16)

Writing the field strength in this way, Eq. (7.2) is now automatic:

ϵµνλρ∂νFλρ = 2ϵµνλρ∂ν∂λ Aρ = 0 (7.17)

where we conclude that this vanishes as ϵµνλρ is antisymmetric while ∂ν∂λ is symmetric. Where does Eq.
(7.1) come from in this perspective? We view it as arising as the equation of motion of an action. So, let’s
try to find an action principle for Maxwell’s equations. Let’s start without charged matter; ∂µFµν = 0.
Schematically, it looks like:

0 = ∂µFµν ∼ ∂∂A ∼ Klein-Gordon =⇒ L =
1
2

A∂∂A (7.18)

Let’s be a little more precise. There are only two possible index contractions:

(a) ∂µ Aν∂µ Aν

(b) ∂µ Aµ∂ν Aν

(c) There is an apparent final contender ∂µ Aν∂ν Aµ, but we can integrate by parts to swap derivatives,
which makes this term equivalent to (b).

34



Thus, we have:

S =
1
2

a(∂µ Aν)
2 + b(∂µ Aµ)2 (7.19)

so then the variation becomes:

δS = −
∫

a∂µ Aν∂µδAν + b∂µ Aµ∂νδAν (7.20)

now integrating by parts to isolate the variation:

δS =
∫

δAν[a∂µ∂µ Aν + b∂µ∂ν Aµ] (7.21)

Hence δS = 0 for any variation δAν forces the term in brackets to be zero, i.e.:

a∂µ(∂
µ Aν) + b∂µ(∂

ν Aµ) = 0 (7.22)

This indeed yields the equation of motion:

0 = ∂µFµν = ∂µ(∂
µ Aν − ∂ν Aµ) (7.23)

in the case that b = −a. Thus, the action that produces Eq. (7.1) is:

S = −1
2

∫
(∂µ Aν)

2 − (∂µ Aµ)2 (7.24)

Integrating by parts the second term to swap the derivatives ∂µ Aµ∂ν Aν = ∂ν Aµ∂µ Aν, we obtain:

S = −1
2

∫
∂µ Aν(∂µ Aν − ∂ν Aµ) = −

1
2

∫
∂µ AνFµν (7.25)

Since ∂µ Aν is contracted with an antisymmetric tensor, we can replace it with its antisymmetric part,
which is just the maxwell tensor again:

∂µ Aν antisymmetric
=

1
2
(∂µ Aν − ∂ν Aµ) =

1
2

Fµν (7.26)

and thus:
S = −1

4

∫
d4xFµνFµν (7.27)

we have thus obtained an action principle for the Maxwell equations with no matter.

7.3 Adding Charged Matter

What we really want is not ∂µFµν = 0, but rather ∂µFµν = jν, or equivalently:

∂µFµν − jν = 0 (7.28)

We already have the first term from δS that we constructed above, we just need another term in the action
for which δS′/δAν gives the current. We need:

δS′ = −
∫

δAν jν =⇒ S′ = −
∫

Aν jν (7.29)

and thus the total action is:

S[A] = −
∫

d4x
1
4
(Fµν)

2 + Aµ jµ (7.30)

with the additional equation:
Fµν = ∂µ Aν − ∂ν Aµ (7.31)

from these we can reproduce everything from classical electromagnetism.
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7.4 Gauge Invariance

In addition to Lorentz and translation symmetry, the above theory has a strange “symmetry” known as
Gauge invariance (not a true symmetry, just an invariance of the action). This symmetry acts on the vector
field as follows:

Aµ(x)→ Aµ(x) + ∂µλ(x) (7.32)

where λ(x) is an arbitrary scalar function of spacetime. How do we see that this indeed leaves the action
invariant? Indeed:

Fµν = ∂µ Aν − ∂ν Aµ → ∂µ Aν − ∂µ Aµ − (∂µ∂νλ− ∂ν∂µλ) = ∂µ Aν − ∂µ Aµ = Fµν (7.33)

where the term in brackets vanishes due to the symmetry of the derivatives. Writing the field strength as
a curl hence picks up a kind of redundancy. Moreover, we can see that the second part of the action is also
invariant:

−
∫

Aµ jµ → −
∫

Aµ jµ + ∂µλjµ IBP
= −

∫
Aµ jµ − λ∂µ jµ = −

∫
Aµ jµ (7.34)

where in the last equality we use that ∂µ jµ = 0, as we couple to conserved currents.
This is a bit different from a symmetry - it should be thought of as a redundancy of our description.

Several different choices of Aµ can give rise to the same physics. Loosely, we can think of it as one
“component” of Aµ does not appear in the action. One can fix this redundancy by choosing/fixing a
gauge.

(a) A0 = 0 (Temporal gauge)

(b) ∇ ·A = 0 (Coloumb gauge)

(c) ∂µ Aµ = 0 (Lorenz gauge)

To understand what is left of the dynamics of our system, let us pick one gauge and then study what is
left. For now, we will choose the Coloumb gauge, which is one that you may have already played with in
your E&M class (it is a useful choice for working with electrostatics). Let’s see the impact of this choice
on the action.

S = −1
4

∫
F2 = −1

4

∫
−2F0iF0i − FijFij

=
∫ 1

2
(∂0 Ai − ∂i A0)(∂0 Ai − ∂i A0) +

1
2

∂i Aj(∂i Aj − ∂j Ai)

=
∫ 1

2
(∂0 Ai)

2 +
1
2
(∂i A0)

2 − 1
2
(∂i Aj)

2

=
∫ 1

2
Ai(−∂2

0 + ∂2
j )Ai −

1
2

A0∇2 A0

(7.35)

where in the third line we note that the use of IBP gives ∂i Ai = ∇ ·A = 0 by our choice of gauge for some
of the terms. We see here that the equation of motion for A0 is:

∇2 A0 = j0 (7.36)

i.e. A0 in this gauge is not a propagating degree of freedom. It’s fixed by the charge density profile.
To review; we started with Aµ which has 4 degrees of freedom. This was a bit redundant, because the

action was invariant under a transformation Aµ → Aµ + ∂µλ. We fixed a gauge (Coloumb) so that we
had Aµ,∇ ·A = 0, i.e. we now have 3 degrees of freedom. This gave an additional constraint, namely A0

being fixed by j0. Hence by the end we were left with 2 degrees of freedom. This is what we expected; 2
is the DoFs for a massless field (the 2 helicities), as you saw on a former homework.
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7.5 Coupling Maxwell to Dirac

So, we have our Maxwell theory:

S = −
∫

d4x
1

4e2 (Fµν)
2 + Aµ jµ (7.37)

where we have renormalized A→ eA implying ∂µFµν = ejν. It needs to be coupled to a conserved current
∂µ jµ = 0. Dirac fermions have precisely such a current. Namely, with the action:

S =
∫

ψ̄(i/∂ −m)ψ (7.38)

we have the symmetry ψ→ eiλψ which the Noether procedure gives the current:

jµ = ψ̄γµψ (7.39)

The full Maxwell + matter (Dirac) action is thus:

S =
∫

ψ̄(i/∂ −m)ψ− Aµψ̄γµψ− 1
4e2 (Fµν)

2 (7.40)

Something we can do in this theory (and something that one often does) is to package the interaction
Aµψ̄γµψ into the derivative:

S =
∫

ψ̄(i /D−m)ψ− 1
4e2 (Fµν)

2 (7.41)

where we have defined a covariant derivative:

Dµ = ∂µ + iAµ (7.42)

so then:
/Dψ = γµ(∂µ + iAµ)ψ = /∂ψ + iAµγµψ (7.43)

So, we have our action for QED! We have our Dirac theory, our Maxwell theory, and then our interac-
tion, which leads to many interesting effects. The presence of this interaction makes the theory unsolvable,
but quite interesting and subtle.

We can ask why did we package the derivative in this strange way. We do this because this coupled
theory still retains the gauge invariance of Maxwell theory. Namely, the action is invariant under the
transformations:

Aµ → Aµ + ∂µλ(x)

ψ→ eiλ(x)ψ
(7.44)

Interestingly, this is still an invariance of the action when λ(x) is a fully arbitrary (real) scalar function
of spacetime. Let’s check that this is true. The F2 invariance carries over from the maxwell theory, and
mψ̄ψ is also easy to see (the e±iλs cancel). What about the kinetic term ψ̄i /Dψ? Well, looking at how the
covariant derivative transforms:

Dµψ = ∂µψ + iAµψ→ ∂µ(eiλ(x)ψ) + iAµeiλ(x)ψ− i∂µλeiλ(x)ψ

= i∂µλeiλψ− i∂µλeiλψ + eiλ∂µψ + eiλiAµψ = eiλ(x)Dµψ
(7.45)

Thus we see that Dµψ → eiλ(x)Dµψ, which is why we wanted to package things this way to get this easy
transformation rule. Thus the kinetic term is easily seen to be invariant:

ψ̄γµDµψ→ ψ̄e−iλeiλγµDµψ = ψ̄γµDµψ (7.46)
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Thus - as in the case with pure Maxwell theory, it is still true that the photon carries less degrees of
freedom than as it first appears. The degrees of freedom available here will be the 2 helicities of the
photon and the Dirac field.

Note; here we have chosen to couple Dirac with Maxwell, but we can choose any theory with a
conserved current; for example the scalar theory:

S =
∫
(∂ϕ)2 + (∂ϕ)4 (7.47)

has the shift symmetry ϕ → ϕ + c. In this model the covariant derivative will look different. We have the
gauge transformations:

ϕ→ ϕ + λ(x)
Aµ → Aµ − ∂µλ(x)

(7.48)

So then the correct way to make a covariant derivative is:

Dµϕ = ∂µϕ− Aµ → ∂µϕ− Aµ (7.49)

So we have the action:
S = −

∫
(Dϕ)2 + (Dϕ)4 +

1
4e2 F2 (7.50)

which actually turns out to describe a superconductor! We won’t discuss this in lecture in too much detail,
but you may see it show up on a future homework.

8 Electron Dipole Moment, Path Integral for Gauge Fields

Last lecture, we found the QED action:

S =
∫

d4xψ̄(i/∂ −m)ψ + Aµψ̄γµψ +
1

4e2 (Fµν)
2 =

∫
d4xψ̄(i /D−m)ψ− 1

4e2 F2 (8.1)

where in the second equality we introduce the covariant derivative:

Dµψ = ∂µψ + iAµψ (8.2)

which is useful because it makes the action manifestly gauge invariant (you can observe that under a U(1)
transformation, the covariant derivative only picks up a phase).

8.1 Magnetic dipole of the electron

We do not yet know how to treat the gauge fields at a quantum-mechanical level. But even before going
there, we can already make some predictions, just via treating the gauge fields classically. Namely, the
electron is not just a point charge, but it also couples to the magnetic field, and we will see the prediction
for its magnetic moment come out of the QED action.
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For a non-relativistic particle, we could consider a Zeeman coupling:

H =
(p + A)2

2m
+ µB · σ (8.3)

wherein the particle eigenstates |p, s = ±⟩ are based on the particle momenta p and spin s. µ is the free
parameter, which tells us the energy splitting between the two spin states (as a function of B):

Let’s study the modified/gauged Dirac equation (the equation of motion in QED):

0 = (i /D + m)ψ (8.4)

and square it, in the way we derived Klein-Gordon equation from the regular dirac equation (This is how
we derived the spectrum of free dirac fermions to be E =

√
p2 + m2):

0 = (i /D + m)(−i /D + m)ψ

= ( /D /D + m2)ψ

= (γµγνDµDν + m2)ψ

(8.5)

Now we write:
γµγν =

1
2
{

γµ, γν
}
+

1
2
[γµ, γν] = −ηµν − 2iSµν (8.6)

with:
Sµν =

i
4
[γµ, γν] (8.7)

Thus:
0 = (−D2 − iSµν2DµDν + m2)ψ (8.8)

If we had no background (A → 0), then the derivatives of DµDν commute (hence symmetric), and its
multiplied by an antisymmetric Sµν and so the entire term vanishes. We are just left with the Klein-
Gordon equation, as we expect. Since 2DµDν is contracted with Sµν, let us write it as:

2DµDνψ = (DµDν − DνDµ)ψ (8.9)

where:

DµDνψ = (∂µ + iAµ)(∂νψ + iAνψ) = ∂µ∂νψ + iAν∂µψ + i∂µ Aνψ + iAµ∂νψ− Aµ Aνψ (8.10)

So the difference becomes (notice that most of the terms here are symmetric and cancel, with the exception
of the i∂µ Aνψ):

[Dµ, Dν]ψ = i(∂µ Aν − ∂ν Aµ)ψ = iFµνψ (8.11)

This is nice! Covariant derivatives are gauge invariant, and the thing we get out here is indeed a gauge
invariant quantity.
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Thus, returning to our equation of motion:

0 = (−D2 + SµνFµν + m2)ψ (8.12)

Now, we want to study the energies of solutions to this equation when there is a magnetic field. We
set A0 = 0 and B = ∇×A. Only Fij are activated. What are the Sij?:

Sij =
i
4
[γi, γj] =

i
4

(
0 σi

σ̄i 0

)(
0 σj

σ̄j 0

)
− (i↔ j) =

i
4

(
[σi, σ̄j] 0

0 [σ̄i, σj]

)
(8.13)

Then looking at the relations that the Paulis satisfy:

[σi, σj] = 2iϵijkσk (8.14)

we conclude:

Sij =
1
2

ϵijk

(
σk 0
0 σk

)
(8.15)

Thus:

SijFij =
1
2

ϵijk

(
σk 0
0 σk

)
(∂i Aj − ∂j Ai) =

(
σkBk 0

0 σkBk

)
(8.16)

So we have the full differential equation - to get the energies now all we need to do is fourier transform:

E2 = (p + A)2 + m2 +

(
σ · B 0

0 σ · B

)
(8.17)

So the energy in the non-relativistic limit (wherein m2 ≫ (p + A)2) becomes:

E = m

√√√√1 +
(p + A)2

m2 +
1

m2

(
σ · B 0

0 σ · B

)
≈ m +

(p + A)2

2m
+

1
2m

(
σ · B 0

0 σ · B

)
(8.18)

With the normalization of A→ eA (the more familiar normalization from E&M):

E−m =
(p + eA)2

2m
+

e
2m

σ · B (8.19)

and thus:

µ =
e

2m
(8.20)

This is a nice and simple prediction, and one can compare it to experiments; we find:

µ =
e

2m
· 1.0011597 . . . (8.21)

which is very close, but off! Why is it off? We treat the photon classically here, and there are quantum
corrections. Pictorially, we can imagine that these corrections may look like (with the leftmost diagram
the classical prediction):
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The 1-loop corrections give the 0.00115, and if you are braver and have a lot more time you can keep
going, and the current agreement of theory and experiment is 10−13 (wow!) The dimensionless coupling
in QED turns out to be small, which is why the perturbative expansion is useful here.

8.2 Path Integral for Gauge Fields - First attempt

Quantizing gauge fields is important not just for a more accurate prediction of the electron dipole, but in
various aspects of particle and condensed matter physics. To do this, we jump straight to the path integral
formulation. A good reference for this is Peskin 9.4, as well as Fradkin 9.5. We follow the approach by
Fadeev and Popov approach. There are several advantages:

• Path integrals! Much easier to calculate things

• Lorentz invariance is manifest

• Generalizes easily to quantization of non-abelian gauge fields

There are however alternatives you can read about, e.g. Gupta-Bleuler.
The naive guess for the path integral would be:

Z =
∫
DA0DA1DA2DA3eiSM [A] (8.22)

with:
SM[A] = −1

4

∫
d4xF2 (8.23)

and indeed this is not too far off. But it has some issues - namely due to gauge invariance. Loosely, gauge
invariance tells us that there is a component of the gauge fields that does not enter into the action. So, one
of the four integrals is over nothing. If this was it, it wouldn’t be a huge problem, but there is a related
larger problem; namely the kinetic term ∼ A∂∂A ∼ ADA is not invertible (which is what we usually do
to get the propagator). How do we see this? Well, looking at the Maxwell action:

SM[A] = −1
4

∫
x

F2 = −1
2

∫
x

∂µ Aν(∂
µ Aν − ∂ν Aµ) =

∫
x

Aν(∂
2ηµν − ∂ν∂µ)Aµ (8.24)

and in momentum space this becomes:

SM[A] = −
∫ d4 p

(2π)4 Aµ(−p)(p2ηµν − pµ pν)Aν(p) (8.25)

with “D′′ = (p2ηµν − pµ pν). Usually, we solve theories in the path integral formalism by coupling the
theory to sources (say, Aµ Jµ) and complete the square to get something of the form JD−1 J. But here, D is
not invertible; indeed, we see this by acting D on pµ:

(p2ηµν − pµ pν)pµ = p2 pµ − p2 pµ = 0 (8.26)
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i.e. pµ is in the kernel of this matrix, and hence the matrix is not invertible. The underlying reason for
this is due to the gauge invariance - “Pure gauge configurations” Aµ(x) = ∂µλ(x) have zero action and
we should remove them/not be integrating over them.

A visual intuition; the space of gauge fields Aµ is large, but many of these fields are related via gauge
transformations, and we integrate over these as well. The resolution is to choose a slice satisfying gauge
fixing.

8.3 Gauge Fixing in the Path Integral

Consider a gauge-fixing condition:

g(Aµ) = ∇ ·A (Coloumb), g(Aµ) = ∂µ Aµ (Lorenz), . . . (8.27)

After we fix a gauge, we can no longer relate different fields via gauge transformations, and we only
integrate over “true” degrees of freedom. To this end would like to introduce something like δ(g(A)) in
the path integral. This will enforce that only configurations along a slice would enter the path integral.

To not mess things up, we will insert:

1 =
∫
Dλδ(g(Aλ))det

δg(Aλ)

δλ
(8.28)

where given Aµ, Aλ
µ = Aµ + ∂µλ. The above expression is in analog to the single-variable function case,

where 1 =
∫

dxδ( f (x))| f ′(x)|. So, our path integral then becomes:

Z =
∫
DλDAδ(g(Aλ))det

δg(Aλ)

δλ
eiSM [A] (8.29)

A comments; the path integral we started with is independent of any g, but since we insert 1, we don’t
introduce g dependence (as should be the case, since we shouldn’t expect fixing a gauge to change any
of the physics). The introduction of this gauge fixing path integral will allow us to isolate the infin-
ity/redundancy from the original path integral. Carrying on, note that the Maxwell equation is gauge
invariant, so we can replace A → Aλ. Therein only Aλ appears in the integrand, so we can instead re-
place all variables with A, leaving the integrand λ-independent (note that the derivative term is also λ
independent, as we evaluate it at A after taking the functional derivative):

Z =

(∫
Dλ

) ∫
DAδ(g(A))

δg(Aλ)

δλ

∣∣∣∣∣
A

eiSM [A] (8.30)

Thus we have isolated the integral
∫
Dλ over gauge orbits (that gives a factor of infinity) in a way that we

can manifestly see it does nothing. Now we have an integral over A with a delta function, which picks
out a “slice” in gauge field space.
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Now, this doesn’t quite look like our regular Gaussian path integral, so we may have cause for worry.
We will deal with this δ(g(A)) by averaging over carefully chosen gauges. We consider:

gω(A) = ∂µ Aµ −ω(x) (8.31)

the Lorenz gauge plus a function of spacetime. We average over these gauges with Gaussian weight:

ei
∫

d4x ω2(x)
2ξ (8.32)

This trick will produce a Gaussian path integral!

Z =
∫
DADωe−i

∫ ω2(x)
2ξ δ(∂µ Aµ −ω)det(∂2)e−

i
4
∫

x F2
(8.33)

An aside; the det(∂2) term becomes much more interesting in the context of Non-Abelian gauge theories,
as it then retains some dependence on A. Now, the ω integral is easy to evaluate, because we have a δ
function fixing it:

Z =
∫
DAe−i

∫
x

1
4 F2+ 1

2ξ (∂µ Aµ)2
(8.34)

So what was the effect of all of this? We get an updated action:

S = −
∫

d4x
1
4

F2 +
1

2ξ
(∂µ Aµ)2 (8.35)

What’s the point of doing this? Now, the kinetic term turns out to be invertible! Fourier transforming:

S = −
∫ d4 p

(2π)4 Aµ(−p)(ηµν p2 − pµ pν(1− 1
ξ
))Aν(p) (8.36)

Let’s find an inverse of:
Dµν = ηµν p2 − pµ pν(1− 1

ξ
) (8.37)

via guessing; we want units of inverse p2 and we want it to be Lorentz covariant with two indices, so our
general guess is:

(D−1)µν =
1
p2 (ηµν + α

pµ pν

p2 ) (8.38)

Multiplying this out:

(D−1)µνDνλ = (ηµν + α
pµ pν

p2 )(ηνλ −
pν pλ

p2 (1− 1
xi
)) = δ

µ
λ

(
α−

(
1− 1

ξ

))
pµ pλ

p2 − α(1− 1
ξ
)

pµ pλ

p2 (8.39)

and we want the last terms to cancel which yields α = ξ − 1. This gives a propagator we can invert, we
can get the two-point function of the photon from this, and so on. We shall continue the discussion next
week.

9 Path Integral for Gauge Fields II, Radiative Corrections I

9.1 Review: The Photon propagator

We revisit our path integral for the photon. We have action:

S = −1
4

∫
d4xF2 (9.1)
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Then:

Z =
∫
DAeiS[A]

=
∫
DADλδ(g(Aλ))det

δg(Aλ)

δλ
eiS[A] g(A) ≡ ∂µ Aµ −ω(x)

=

(∫
Dλ

) ∫
DAδ(∂µ Aµ −ω)det(−∂2)eiS[A]

=
∫

dω
∫
DAe−

∫
ω2
2ξ δ(∂µ Aµ −ω)eiS[A]

=
∫
DAeiS′

(9.2)

with the new (Gaussian) action:

S′ = −
∫

d4x
1
4

F2 +
1

2ξ
(∂µ Aµ)2

= −
∫ d4 p

(2π)4
1
2

Aµ(−p)

[
ηµν p2 − pµ pν

(
1− 1

ξ

)]
Aµ(p)

= −
∫ d4 p

(2π)4
1
2

Aµ(−p)Mµν(p)Aµ(p)

(9.3)

with ξ ∈ R. The gauges we have chosen here are called the Rξ gauges. The matrix Mµν appearing above
has an inverse (this was not true when we had p2ηµν − pµ pν !)

M−1
µν (p) =

1
p2

(
ηµν − (1− ξ)

pµ pν

p2

)
(9.4)

The Feynman’s Green’s function for the photon is then:

GF
Aµ Aν

(p) =
∫

d4xe−ipx⟨0|T
{

Aµ(x)Aν(0)
}
|0⟩ = − i

p2 (ηµν + (ξ − 1)
pµ pν

p2 ) (9.5)

Note that this is not gauge invariant, as we can see the gauge-dependent ξ term appearing in the expression
for the Feynman propagator. But whenever we calculate true (gauge-invariant) observables, this should
drop out (as a quick exercise, you can verify that the 2-point function of F is gauge invaeraint, where
the antisymmetrization of F makes the gauge-dependent term drop out). The presence of ξ is useful not
just as a consistency check, but also because we have the freedom to fix it when doing a calculation, e.g.
ξ = 0, 1 depending on the calculation we do may simplify things appreciably.

9.2 Photon-Mediated Interactions between Fermions

We have the following path integral for QED:

Z =
∫
DADψDψ̄ei

∫
ψ̄(i /D−m)ψ− 1

4 F2− 1
2ξ (∂µ Aµ)2

(9.6)

Note that there is an interaction/non-Gaussian term in the above ψ̄i /Dψ, so this is not solvable exactly. But
we can take a similar approach as in Yukawa theory; the boson (now Aµ) mediates a force between the
fermions. The gauge field part of the action is:

S ⊂ −
∫

p

1
2

Aµ(−p)Mµν(p)Aν(p) + eAµ(−p)jµ(p) = square +
1
2

e2 jµ(−p)M−1
µν (p)jµ(p) (9.7)
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so then writing out the action after integrating out the gauge field terms as:

Z =
∫
DψDψ̄ei

∫
ψ̄(i/∂−m)ψ−i

∫
x

e2
2 jµ

ηµν+(ξ−1)
∂µ∂ν

∂2
∂2 jν (9.8)

note the ξ term drops out as we have coupled to a current (by Noether’s theorem), thus:

Z =
∫
DψDψ̄ei

∫
ψ̄(i/∂−m)ψ− e2

2 jµ
ηµν

2 jν (9.9)

This is in principle difficult to work with because it is nonlocal and counterterms are nonlocal... but it
can still tell us something about how the electron-electron interaction is mediated. We look at the non-
relativistic limit of this action, like we did for Yukawa theory. In this limit p0

c ≪ pi, and we get the
interaction Hamiltonian:

Hint =
e2

2

∫
d3xjµ 1

∂2 jµ ∼= −
e2

2

∫
d3xj0

1
∇2 j0 (9.10)

We can recycle our result from Yukawa:

λ2

2

∫
d3x f (x)

1
∇2 −M2

f (x) = λ2
∫

d3xd3y f (x)V(x− y) f (y) (9.11)

with:
VYukawa(r) = −

1
4π|r| e

−M|r| (9.12)

we basically have the same expression with M = 0 in this case, wherein we get the Coloumb potential:

VColoumb(r) = − lim
M→0

VYukawa(x− y) = − 1
4π|r| (9.13)

Note that we have an overall negative sign on teh Coloumb potential as well, and this (in comparison to
the attractive Yukawa) results in a repulsive interaction between electrons, and an attractive interaction
between electrons and positrons.

9.3 Radiative corrections in QED - the electron dipole moment

A nice reference for this section is Schwartz 17.
Consider the following correlator: 〈

jµ(x)ψ(y)ψ̄(0)
〉

(9.14)
with:

jµ = ψ̄γµψ (9.15)
Note that this has a lot of information - it has a spacetime index µ and we have two sets of spinor indices
(which we supress). We call this the vertex function, because it probes the vertex coupling the photon Aµ

to the electron. Pictorially, we have:
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Let us first compute it in the free theory, using Wick contractions:〈
jµ(x)ψ(y)ψ̄(0)

〉
=
〈
ψ̄(x)γµψ(x)ψ(y)ψ̄(0)

〉
(9.16)

The only connected correlators come from pairing ψ(y) with ψ̄(x) (moving this fermion observable to pair
them requires two moves, so no overall negative sign) and ψ(x) with ψ̄(0) and thus we obtain:〈

jµ(x)ψ(y)ψ̄(0)
〉
= G(y− x)γµG(x) (9.17)

Let us Fourier transform this (as this is where the Green’s functions look simple):〈
jµ
p ψp′ ψ̄

〉
=
∫

d4xd4ye−ipxe−ip′yG(y− x)γµG(x)
y→z=y−x→

∫
zx

e−ipxe−ip′(z+x)G(z)γµG(x) = G(p′)γµG(p+ p′)

(9.18)
So in the free theory our vertex function looks like:

We can look at the “amputated” vertex, which will simply be obtained by multiplying the above by
G(p′)−1G(p + p′)−1, which yields: 〈

jµ
p ψp′ ψ̄

〉
amp

= γµ (9.19)

So, we have the tree-level result. We are now interested in corrections to this answer. What kind of
diagrams will give corrections to this vertex? At one loop we have three diagrams:
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In the interacting theory, the vertex function will take on a different form than the free theory. One can
show that the most general form that it can take is:〈

jµ
p ψp′ ψ̄

〉
amp

= γµF1(
p2

m2 ) + iSµν pν

m
F2(

p2

m2 ) (9.20)

with:
Sµν =

i
4
[γµ, γν] (9.21)

In the free theory we had F1(
p2

m2 ) = 1 and F2(
p2

m2 ) = 0, but as we add corrections these functions will come
alive. The Fi are called “form factors”. You can think about the above correlation function as probing the
structure of the electron through: 〈

jµ
p ψp′ ψ̄

〉
∼ ⟨p + p′|jµ|p′⟩. (9.22)

Intuitively, the first term measures the renormalization of the charge e. The second term produces an
“anomalous” electron dipole moment (which corrects for the classical prediction). How do we see this?
One would get an F2 contribution at tree level from a vertex:

Seff =
∫ a

2m
Fµνψ̄Sµνψ = −

∫ a
m

∂ν Aµψ̄Sµνψ (9.23)

with ∂ν Aµ giving ipν and a ∼ F2(0). Compare this with Aµψ̄γµψ which was our original vertex. Let’s see
how this term produces a dipole moment via studying the equation of motion:

0 =
δS
δψ̄

= (i /D−m +
a

2m
FµνSµν)ψ (9.24)

If we multiply this by the EOM with flipped sign:

0 = (i /D + m− a
2m

FµνSµν)(i /D−m +
a

2m
FµνSµν)ψ

= (− /D2 − (m− a
2m

FµνSµν)2)ψ

≈ (− /D2 −m2 + aFµνSµν)ψ

= (−D2 −m2 + (1 + a)FµνSµν)ψ

(9.25)

Recall that /D2 = D2− FµνSµν, and this second term gave rise to the leading order electron dipole moment.
So, the a simply adds to this dipole moment, yielding:

µ =
e

2m
(1 + F2(0)) (9.26)

All of this to show that the new feature gives rise to the anomalous dipole moment.
Note that some qualities of the electron do not change via corrections (e.g. the number is protected)

but others do (e.g. the dipole moment, for which we obtain small corrections in perturbation theory).

9.4 Ward Identities for QED

The vertex function is constrained by the Ward identity:

∂µ

〈
jµ(x)ψ(y)ψ̄(0)

〉
= (δ4(x)− δ4(x− y))

〈
ψ(y)ψ̄(0)

〉
(9.27)

this is very useful as it relates the 4-point function to a 2-point function, and moreover, it holds non-
perturbatively. Writing it in momentum space:

−pµ

〈
jµ
p ψp′ ψ̄

〉
= i[G(p′)− G(p + p′)] (9.28)
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Thus, pµ dotted with the four-point function just gives us the difference of two propagators (in the inter-
acting theory, of course both sides of this equation become more complicated, but the identity still holds).
Let’s check this in the free theory as a consistency check. We consider the amputated versions here. On
the LHS, we get −/p, and on the RHS we have:

1
G(p′)

i[G(p′)− G(p + p′)]
1

G(p + p′)
= i

(
1

G(p + p′)
− 1

G(p′)

)
= i

(
/p + /p′

−i
− /p′

−i

)
= −/p (9.29)

so the ward identity checks out.

9.5 Proof of the form of the vertex function

Let us call the fermion momenta q1 and q2. Using lorentz invariance we set q2 = −p− q1, and then we
write down a general form: 〈

jµp ψq1 ψ̄q2

〉
amp

= qµ
1 f1 + qµ

2 f2 + f3γµ f4 (9.30)

where the fi are matrices that depend only on lorentz covariant quantities:

fi(q2
1, q2

2, q1 · q2, /q1, /q2) (9.31)

This is a bit of a mess, it depends on too many parameters. To start, we put the fermions on shell q2
1 =

q2
2 = −m2. We will further sandwich it with spinors for which (/p + m)u(p) = 0, these are precisely the

spinors that we obtained when solving the Dirac equation, so sandwiching the above with ū(q1) . . . u(q2):

ū(q1)
〈

jµ
p ψq1 ψ̄q2

〉
u(q2) (9.32)

this has a simple general form. Namely, we can move the /q2s to act them on the u(q2), giving /q2u(q2) =
−mu(q2) (and vise versa for q1), which gives:

ū(q1)
〈

jµ
p ψq1 ψ̄q2

〉
u(q2) = ū(q1)(q

µ
1 f1 + qµ

2 f2 + f3γµ)u(q2) (9.33)

so we are down to three functions, and the fi are now just truly scalar functions rather than matrices, with
fi = fi(q1 · q2). We are almost there, but we have three functions rather than the desired 2. Finally, we will
use the fact that the vertex function must satisfy Ward identities, namely if we act on the above with −pµ

we get:

ū(q1)

(
1

G(q2)
− 1

G(q1)

)
u(q2) = 0 (9.34)

Which tells us that if we act on the vertex function with pµ it must vanish, hence:

0 = (p · q1 f1 + p · q2 f2)ū(q1)u(q2) + f3ū(q1)/pu(q2) (9.35)

The last term satisfies the Ward identity on its own; /p = −/q1 − /q2, acting the two parts on the opposite
sides, we find it vanishes:

ū(q1)(−/q1 − /q2)u(q2) = ū(q1)(−m + m)u(q2) = 0 (9.36)

Thus:
0 = (q1 + q2) · q1 f1 + (q1 + q2) · q2 f2 = (−2m2 + 2q1 · q2)( f1 + f2) =⇒ f2 = − f1 (9.37)

where we have used p2 = (q1 + q2)
2 = −2m2 + 2q1 · q2. And thus we only have two independent functions:

ū(q1)
〈

jµp ψq1 ψ̄q2

〉
u(q2) = ū(q1)

(
γµF1(

p2

m2 ) + (qµ
1 − qµ

2 )F2(
p2

m2 )

)
u(q2) (9.38)

This is a very powerful statement because it is true non-perturbatively; it is always true!
On Thursday we continue the calculations by computing the corrections to the electron dipole moment

at one loop.
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10 Radiative Corrections II

10.1 The Goal: One-Loop Correction to the Electron Dipole Moment

Today we do the calculation to determine the correction to the electron dipole moment:

µ =
e

2m
(1 +

α

2π
+ O(α2)) (10.1)

with:
α

2π
=

1
2π

e2

2π
=

1
2π

e2

4πϵ0h̄c
= 0.00116 . . . (10.2)

These are the promised 5 extra digits of precision that we obtain by going to one loop.
To find this, we will evaluate the correction to the vertex function:

δ
〈

jµp ψψ̄p′
〉

amp
=

1
G(p + p′)

δ
〈

jµ
p ψψ̄p′

〉 1
G(p′)

(10.3)

When the electron is on-shell, i.e. p′2 = −m2 = (−p − p′)2 and we sandwich the expression with
ū(p + p′) . . . u(p′), this has the general form:

δ
〈

jµ
p ψψ̄p′

〉
amp

= γµF1(
p2

m2 ) + iSµν pν

m
F2(

p2

m2 )
free→ γµ (10.4)

We will be particularly interested in:

µ =
e

2m
(
1 + F2(0)

)
(10.5)

10.2 Which diagrams contribute?

The diagram that produces F2 is the one that is not a self-energy correction:

The self-energy correction to the dirac propagator only gives γµ, as it renormalizes G(p′) = /p′(. . .) +
I(. . .). The identity term gives the γµ and the first term (when sandwiching with the us, which are
solutions to the dirac equation and thus (/q + m)u(q) = 0 = ū(q)(/q + m)) gives −m.
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The self-energy correction to the photon also only gives γµ. It renormalizes Gµν(p) = ηµν(. . .) + pµ pν(. . .),
the ηµν piece giving us γµ, the pµ pν piece giving zero (why? ū(p + p′)/p)u(p′) = 0, because we can write
/p = /p + /p′ − /p′ and then acting on the left/right we get ±m which cancel.

These diagrams will matter for other things - when we look at the renormalization and β function of
QED they are important (and you will look at the second diagram in the homework). But, for the e−

dipole moment we only need consider the one diagram. Unfortunately, it is the most complicated, namely
because we have a loop with three propagators.

10.3 Evaluating the 1-loop correction

Graphically, the diagram (in momentum space) looks like:
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So our correction is of the form:

δ
〈

jµp ψψ̄p′
〉
=

i2

2

〈
jµ
p ψψ̄p′(Sint)

2
〉
= − e2

2

〈
(ψ̄γµψ)p

(∫
x1

Aαψ̄γαψ

)(∫
x2

Aβψ̄γβψ

)
ψψ̄p′

〉
(10.6)

We contract the ψ in the current with ψ̄ in the x1 integral (2 possible choices, so factor of 2), and then ψ̄
in the current with ψ in the x2 integral (we get a − sign), then remaining ψ̄ in x2 with the ψ on the right
(another −1 sign) and ψ in the x1 with ψ̄ on the right. When the smoke clears, we have:

δ
〈

jµ
p ψψ̄p′

〉
= −e2

∫ d4l
(2π)4 G(p + p′)γβG(p + p′ + l)γµG(p′ + l)γαG(p′)Gαβ(l) (10.7)

with the last term being the photon propagator (we have 4 dirac propagators and 1 photon propagator).
We amputate this to make our lives simpler, which removes the G(p + p′) and G(p′):

δ
〈

jµ
p ψψ̄p′

〉
amp

= −e2
∫ d4l

(2π)4 γβG(p + p′ + l)γµG(p′ + l)γαGαβ(l) (10.8)

Inserting our known expressions for the propagators (allowing ourselves to gauge fix with ξ = 1 such that
we just have Gαβ(l) = −i

l2 ηαβ)

δ
〈

jµ
p ψψ̄p′

〉
amp

= −e2
∫

l
γβ−i(/p + /p′ + /l −m)

(p + p′ + l)2 + m2 γµ−i(/p′ + /l −m)

(p′ + l)2 + m2 γα−i
l2 ηαβ (10.9)

we will treat this in the usual way using Feynman parameters - with two propagators we used 1 Feynman
parameter, with three propagators we shall use 2. We will use the identity (see Srednicki for the n-
propagator version):

1
ABC

= 2
∫ 1

0
dx
∫ 1−x

0
dy

1
[xA + yB + (1− x− y)C]3

(10.10)

where we integrate over a triangle in the xy plane.
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Applying this identity:

δ
〈

jµ
p ψψ̄p′

〉
amp

= −2e2
∫

xy

∫
l

−i(/p + /p′ + /l −m)γµ · −i(/p′ + /l −m)γα · −iηαβ

l2 + m2(x + y) + p′2x + (p + p′)2y + 2lp′x + 2l(p + p′)y
(10.11)

Now writing the denominator as:(
[l + p′y + (p + p′)x]2 + m2(x + y) + p′2y + (p + p′)2x− [p′y + (p + p′)x]2

)3
(10.12)

Renaming [l + p′y + (p + p′)x] = q and ∆(x, y) = m2(x + y) + p′2y + (p + p′)2x − [p′y + (p + p′)x]2, we
have:

δ
〈

jµ
p ψψ̄p′

〉
amp

= −2ie2
∫

q

∫
xy

γα((1− x)(/p + /p′)− y/p′ + /q −m)γµ((1− y)/p′ − x(/p + /p′) + /q −m)γα

[q2 + ∆]3
(10.13)

we have made the numerator terrible at expense of making the denominator simple, but the odd-in-q parts
will integrate to zero via parity symmetry.

10.4 UV divergent part

Does this integral have a UV divergence? Indeed, it goes as ∼
∫

d4q q2

q6 which is a logarithmic divergence.
In more detail, the UV divergent part looks like:

δ
〈

jµ
p ψψ̄p′

〉
amp

= −2ie2
∫

xy

∫
q

γα/qγµ/qγα

[q2 + ∆]3
(10.14)

and now using the identity:
γα

/p/k/qγα = 2/q/k/p (10.15)

we have (taking the derivative w.r.t. kµ) and the case where p = q:

γα
/qγµ

/qγα = 2/qγµ
/q = 2/q(−/qγµ − 2qµ) = 2q2γµ − 4/qqµ (10.16)

Thus:

δ
〈

jµ
p ψψ̄p′

〉
amp

= −4ie2
∫

xy

∫
q

q2γµ − 2qµqνγν

[q2 + ∆]3
= −4ie2γν

∫
xy

∫
q

q2ηµν − 2qµqν

[q2 + ∆]3
(10.17)

Since the integral is isotropic, we can replace the second term:

qµqν = ηµνq2 1
4

(10.18)

and so:

δ
〈

jµ
p ψψ̄p′

〉
amp

= −2ie2γµ

∫
xy
∈q

q2

[q2 + ∆]3
(10.19)
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so, we notice that the entire UV divergent term is ∝ γµ and as such does not enter the correction to
the electron dipole moment. It will be relevant for renormalizing the electron charge. But, let’s still
compute this because we will still care about this when we study RG for QED. We recover the −iϵ in the
denominator:

δ
〈

jµ
p ψψ̄p′

〉
amp

= −2ie2γµ

∫
xy
∈q

q2

[q2 + ∆− iϵ]3
(10.20)

which shifts the poles of q0 off the real axis, and we can choose an appropriate contour (see below)

which gives us the Wick rotation q0 → iqE
0 , allowing us to compute the (real) integral:

δ
〈

jµ
p ψψ̄p′

〉
amp

= 2e2γµ
∫

xy

∫
qE

q2

[q2 + ∆]3
= 2e2γµ

∫
xy

2π2

(2π)4

∫ ∞

0
dq

q5

[q2 + ∆]3
=

e2γµ

4π2 (10.21)

In Wilsonian RG, we integrate bΛ < q < Λ with Λ≫ m, p, p′, ∆1/2, so we obtain:

δ
〈

jµ
p ψψ̄p′

〉
amp

= − e2γµ

4π2

∫
xy

∫ Λ

bΛ

dq
q

=
e2

8π2 log(
1
b
)γµ (10.22)

where he xy integral is now trivial and gives 1/2. This thus gives the renormalization of charge:

γµ(1 +
e2

8π
log(

1
b
)) (10.23)

note there are other diagrams that contribute here, which we will need when we do RG. We did this with
a cutoff here, but it is not a good idea to do here as it breaks gauge invariance. In the HW you will look
at dimensional regularization. The log( 1

b ) gets replaced with − 1
ϵ where ϵ is the regulated dimension.

10.5 Back to the electron dipole moment

So, we found that the O(q2) term only matters when we do RG and not for the dipole moment. Further,
the O(q) terms go to 0 by q ↔ −q symmetry. So, we can just set q = 0 and see what remains; after Wick
rotation:

δ
〈

jµp ψψ̄p′
〉

amp
= 2e2

∫
xy

∫
q

γα((1− x)(/p + /p′)− y/p′ −m)γµ(/p′(1− y)− x(/p + /p′)−m)γα

[q2 + ∆]3
(10.24)

Now the q-integral is easy because only the denominator has q dependence:∫
q

1
[q2 + ∆]3

=
2π2

(2π)4

∫ ∞

0

dqq3

[q2 + ∆]3
=

1
8π2

1
∆

∫ ∞

0

dss3

(s2 + 1)3 =
1

32π2
1
∆

(10.25)

So then:

δ
〈

jµ
p ψψ̄p′

〉
amp

=
e2

16π2

∫
xy

1
∆
(γα((1− x)(/p + /p′)− y/p′ −m)γµ(/p′(1− y)− x(/p + /p′)−m)γα) (10.26)
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Let’s look at the numerator. We showed that it has to take the form:

ū(p + p′) . . . u(p′) = ū(p + p′)γµF1(
p2

m2 ) + iSµν pν

m
F2(

p2

m2 )u(p
′) (10.27)

So, lets take this numerator and simplify this when we sandwich it via us. Let’s invoke the γ matrix
technology:

γα
/p/qγα = 4p · q (10.28)

γα
/pγα = 2/p (10.29)

so then with a = (1− x)(p + p′)− yp′, b = (1− y)p′ − y(p + p′).

γα(/a −m)γµ(/b −m)γα = 2/bγµ/a − 4(aµ + bµ)m + 2m2γµ (10.30)

we can drop the γµ terms (again these do not contribute to the F2 term). Now using the EOM of the
spinors:

(/p′ + m)u(p′) = 0 = ū(p + p′)(/p + /p′ + m) (10.31)

The first term of Eq. (10.30) becomes:

2/bγµ/a = 2((1− y)/p′ + xm)γµ((1− x)(/p + /p′) + ym)

= 2xym2γµ + 2y(1− y)/pγµ + 2γµ(/p + /p′)x(1− x)m + 2(1− y)(1− x)/p′γµ(/p + /p′)
(10.32)

We can drop the ∝ γµ term. Using more Dirac algebra, we can write this as:

2/bγµ/a = (number)γµ − 4im(1− x− y)(x + y)Sµν pν (10.33)

So our final integral is:

δ
〈

jµp ψψ̄p′
〉

amp
=

ie2m
4π2 Sµν pν

∫
xy

(1− x− y)(x + y)
∆(x, y, p, p′)

(10.34)

We are interested in the low energy limit where p → 0 so p′2 → −m2, (p + p′)2 = −m2 (finite p would
tell you about the shape beyond the dipole) then ∆ = m2(x2 + y2) and so:

δ
〈

jµ
p ψψ̄p′

〉
amp
≈ ie2

4π2
Sµν pν

m

∫
xy

(1− x− y)
x + y

=
ie2

8π2
Sµν pν

m
=

e2

8π2
iSµν pν

m
(10.35)

So we find:

F2(0) =
e2

8π2 =
1

2π
α (10.36)

and so:

µ =
e

2m

(
1 +

α

2π
+ . . .

)
(10.37)

which is what we set out to show!

11 QED β-function

QED is an interacting quantum field theory, which has a dimensionless coupling between the photons and
fermions. This means that interesting things can happen. Classically, the effect seems marginal, but we
know that these statements do not survive quantum corrections. So, we study how these couplings flow
under the renormalization group, which tells us the regime in which perturbation theory is valid.
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Recall the QED path integral in the Rξ gauge:

Z =
∫
DADψ exp(i

∫
ψ̄(i /D−m)ψ− 1

4
F2 − 1

2ξ
(∂µ Aµ)) =

∫
DADψeiS0+iSint (11.1)

with:
Dµ = ∂µ + iAµ. (11.2)

The only non-Gaussian (and hence interaction) term in the action is:

Sint = −e
∫

Aµψ̄γµψ (11.3)

11.1 Review of the Renormalization Group

Last quarter, we saw how to do renormalization in the Wilsonian style, where we assume that some modes
above some momentum Λ have been already integrated out (removing any UV divergences), and then we
perform an additional step of integrating out modes bΛ < p < Λ (with 0 < 1− b ≪ 1) and see how
the couplings evolve under the process. This will tell us whether terms in the action will become more
important or not.

Recall that in the scalar field case, we had:

ϕ(x) =
∫

p<Λ
e−ipxϕp =

∫
p<bΛ

e−ipxϕp +
∫

bΛ<p<Λ
eipxϕp = ϕbΛ + ϕ̃ (11.4)

We then consider splitting the functional integral:

Z =
∫
DϕΛeiS[ϕ]

=
∫
DϕbΛeiS0[ϕ]

∫
Dϕ̃eiS0[ϕ̃]eiSint[ϕ,ϕ̃]

=
∫
DϕbΛeiS0[ϕ]

(
eiδSeff[ϕ]

)
=
∫
DϕbΛeiSeff[ϕ]

(11.5)

In the final step, we rescale coordinates such that:

Seff =
∫

d4x . . . =
∫

d4 x̃ . . . (11.6)

where:
x̃ = xb =⇒ p̃ =

p
b
< Λ (11.7)

and canonically normalize.
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11.2 Applying RG to QED

Before this final step, we expect the effective QED action will look like:

Seff =
∫

x
(1 + δ2)ψ̄i/∂ψ− (m + δm)ψ̄ψ− (1 + δ1)eAµψ̄γµψ− 1 + δ3

F

2
+ . . . (11.8)

where the . . . denotes irrelevant terms. We now rescale x = x̃/b (and drop the s̃):

Seff =
∫

x

Z2

b3 ψ̄i/∂ψ− m + δm
b4 ψψ̄− Z1e

b4 Aµψ̄γµψ− Z3

4b2 F2 + . . . (11.9)

We then canonically normalize:

ψ→ b3/2
√

Z2
ψ, A→ b√

Z3
A (11.10)

in order to normalize the kinetic terms. We then obtain:

Seff =
∫

x
ψ̄i/∂ψ− m + δm

bZ2
ψ̄ψ− Z1e

Z2
√

Z3
Aµψ̄γµψ− 1

4
F2 + . . . (11.11)

so we then have the new mass and coupling:

m(b) =
m + δm

bZ2

e(b) =
Z1e

Z2
√

Z3

(11.12)

We can thus obtain the scale dependence of the couplings. Starting with m, which already has scale
dependence at tree level (Z → 1, δm→ 0):

βm ≡
dm(b)
dlog b

= b
dm(b)

db
= −m(b) < 0 (11.13)

so m is relevant (this was already clear from dimensional analysis). At lower and lower energies, mass
matters more and more. The much more interesting thing to figure out is the scale dependence of e - we
already knew it was dimensionless from dimensional analysis, and this manifests in the e(b) expression
where there are no explicit factors of b present. At tree level, βe = 0 (marginal). Beyond tree level:

βe =
d

dlog b

(
Z1

Z2
√

Z3

)
e = e

d
dlog b

1 + δ1

(1 + δ2)(1 + δ3)1/2 ≈ e
d

dlog b

(
1 + δ1 − δ2 −

1
2

δ3

)
(11.14)

11.3 Dimensional Regularization

It is possible to study this with sharp cutoffs, but this breaks gauge invariance. So, it’s not the best
choice. A more convenient regulator in QED is is dimensional regularization - because dimension enters
analytically in all of our formulas and loop integrals, we can analytically continue into d = 4− ϵ. As you
saw in your homework, log Λ divergences that come from dimensionless couplings with sharp cutoffs get
replaced by 1

ϵ divergences (ϵ → 0 to get back to 4 dimensions, so ϵ−1 holds the UV divergences). More

precisely, in RG, something like
∫ d4 p

p4 becomes (with a sharp cutoff):

∫ Λ

bΛ

dp
p

= log
Λ
bΛ

= log
1
b

(11.15)
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vs. with dimensional regularization:∫ ∞

0

dp
p

p−ϵ = −1
ϵ

p−ϵ

∣∣∣∣∞
µ

=
1
ϵ

µ−ϵ =
1
ϵ

e−ϵ log µ ≈ 1
ϵ
(1− ϵ log µ + . . .) =

1
ϵ
− log µ (11.16)

so in the RG setting log 1
b s get replaced with 1

ϵ s. As an example, we perform the following Feynman
integral via the sharp cutoff method:∫ Λ

bΛ

pdp
p2 + ∆

=
1
2

log(p2 + ∆)
∣∣∣∣Λ
bΛ

=
1
2

log
Λ2 + ∆

(bΛ)2 + ∆
≈ log(

1
b
) + C log ∆ + . . . (11.17)

and via the dim reg method:∫ ∞

0

p1−ϵdp
p2 + ∆

=
π

2
1

sin( ϵπ
2 )

∆−
ϵ
2 ≈ 1

ϵ + O(ϵ3)

(
1− ϵ

2
log ∆ + . . .

)
=

1
ϵ
− 1

2
log ∆ + . . . (11.18)

The dim reg method provides the same results, but does allow us to compute things without breaking
gauge invariance.

11.4 Renormalizing the QED Coupling

We start by computing Z3, which corresponds to the renormalization of the photon propagator. You
already did this in your homework, and we will see that Z1 = Z2 via a Ward identity, so this actually is
the most important part. The diagram of interest is the one loop (

〈
jµ jν

〉
) diagram:

We have:
Sint[ϕ̃, ϕ] ⊃ −eAµ

˜̄ψγµψ̃ (11.19)

as the fermions get integrated out, so:

Z =
∫
DϕeiS0[ϕ]

∫
Dϕ̃eiSint[ϕ,ϕ̃]eiS0[ϕ̃] (11.20)

expanding out the interacting action as a power series, the first contributing term is:

i2

2
S2

int = −
e2

2

∫
x1

Aµ
˜̄ψγµψ̃

∫
x2

Aν
˜̄ψγνψ̃ (11.21)

So: ∫
Dϕ̃

i2

2
S2

inte
iS0[ϕ̃] = −1

2
e2
∫

1

∫
2

Aµ(x1)Aν(x2)
〈

jµ(x1)jν(x2)
〉

= − e2

2

∫ d4 p
(2π)4 Aµ(p)Aν(−p)

〈
jµ jν

〉
(p)

= iδSeff[ψ, A]

(11.22)

In your homework, you found that the current two point function was:〈
jµ jν

〉
(p) = (p2ηµν − pµ pν)

i
6π2

1
ϵ

(11.23)
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Therefore:

Seff = −
e2

6π2
1
ϵ

1
2

∫ d4 p
(2π)4 Aµ(−p)Aν(p)(p2ηµν − pµ pν) (11.24)

This looks identical to the Maxwell term:

S0 ⊃ −
1
2

∫
p

Aµ
p Aν

p(p2ηµν − pµ pν) (11.25)

which is perhaps not surprising; we have a gauge invariant regulator, so we should get a gauge invariant
result. We could have generated other gauge invariant terms, but these would contain higher derivatives;
we focus on the terms that have a chance of being relevant. From this, we can identify the renormalization
term Z3:

Seff −
1
4

(
1 +

e2

6π2
1
ϵ

) ∫
x

F2 (11.26)

Z3 = 1 +
e2

6π2
1
ϵ
→ 1− e2

6π2 log(b) (11.27)

So we have the key ingredient in:

βe =
d

dlog b
Z1

Z2
√

Z3
e. (11.28)

We still need to calculate Z1, Z2.

But the ward identity implies they are equal (this will be the last thing we do this lecture). Thus the
ratio drops out, and we end up with:

βe =
d

dlog b
e√
Z3

= e
d

dlog b
(1− 1

2
δ3) = −

e
2

dδ3

dlog b
=

e3

12π2 > 0 (11.29)

Thus! βe > 0 and so the coupling is irrelevant under RG. Therefore, the interactions shrink at lower and
lower energies. This also makes sense that it was one of the first QFTs to be discovered; we have access to
low energies, and this is a regime where perturbation theory is controlled.

Conversely, interactions grow at higher energies, which tells us that QED is not UV complete. In nature,
this is UV-completed by the theory of non-abelian gauge fields.

11.5 Last Step - Ward Identity

We go through the argument of the Ward identity implying Z1 = Z2. We had shown that a consequence
of the Ward identity was:

i∂µ

〈
jµ
p ψψ̄p′

〉
= G(p′)− G(p + p′) (11.30)
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and in the amputated case:

i∂µ

〈
jµ
p ψψ̄p′

〉
amp

=
1

G(p + p′)
− 1

G(p′)
(11.31)

Where in the free theory:

ipµγµ = i/p
?
= /p + /p′ + m

−i
− /p′ + m
−i

= i/p (11.32)

In the interacting theory, the vertex gets renormalized,so the LHS becomes:

γµZ1 =
〈

jµψψ̄
〉

amp (11.33)

and the fermion propagator gets normalized:

Seff ⊃
∫

Z2ψ̄i/∂ψ =⇒ G(p) =
−i

Z2/p + (m + δm)
(11.34)

so the RHS becomes:
Z2i/p (11.35)

This implies:
i/pZ2 = i/pZ2 =⇒ Z1 = Z2. (11.36)

This is not at all obvious from looking at the Feynman diagrams leading to these two terms; they look
different and the 1-loop calculations are tedious. Such is the power of symmetry!

Thus, we’ve deduced the fate of QED. Next, we will slightly switch gears, and study scattering in QED
(where the setting is richer, e.g. due to particles having spin). Further, there is a subtlety when looking
at scattering of massless particles - the existence of a mass gap was crucial for well-separating the single-
particle excitations from the two-particle continuum. We don’t have this in QED due to the photons being
gapless. So the S-matrix of QED does not formally exist. So what have people been doing for the last
century? It is possible to work out these subtleties, which we will go through. The fundamental problem
is we can’t distinguish whether we have a particle or n super low energy photons. Naively we get IR
divergences (large wavelength phenomena) which gets out of control. We’ll see how to control it, next.

12 Scattering in QED

12.1 LSZ for Fermions

Today we move to the last big topic in QFT II! We’ll derive the LSZ formula for Dirac fermion and photons.
We will go back to our Hamiltonian expressions to derive it, and then after deriving, compute the S-matrix
amplitudes via path integrals.

We recall the solutions to the Dirac equation found via mode expansion:

ψ(x) = ∑
s=±

∫ d3 p
(2π)32ϵp

[bs,pus(p)eipx + d†
s,pvs(p)e−ipx] (12.1)

with:

us(0) =
√

m


1
0
1
0

 , (12.2)

and: {
bsp, bs′p′

}
= 2ϵp(2π)3δ3(p− p′)δss′ (12.3)
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We also inverted these equations to get b/d in terms of the quantum field ψ:

b†
s,p =

∫
d3xeipxψ̄(x)γ0us(p)

d†
s,p =

∫
d3xeipx v̄s(p)γ0ψ(x)

(12.4)

Note the time dependence present in the exponential (with p0 = ϵp =
√

p2 + m2) gets cancelled with the
time dependent part of ψ to make the overall expressions time-independent.

In the free theory, these operators are time-independent, and these operators create single-particle
states:

b†
s,p = |p, s, e⟩

d†
s,p = |p, s,−e⟩

(12.5)

In the free theory, these states are boring - the states are time-independent and nothing happens to them.
In the interacting theory, we would like to build scattering states. The b†

s,p(t) and d†
s,p(t) defined via Eq.

(12.4) will have time-dependence in the interacting theory (because we don’t know how eiHt acts in the
interacting theory). Put another way:

b†
s,p(t)|0⟩ ̸= b†

s,p(t
′)|0⟩ (12.6)

for t ̸= t′. We want to construct single-particle states for early and late times. The intuition is that at a
specific time, b†

s,p(t)|0⟩ “looks” like a single-particle state, even though it may time evolve nontrivially.
So - our states that are simple at asymptotically early times (the “in’-states here for two fermions) are:

|i⟩ = b†
s1,p1

(−∞)b†
s2,p2

(−∞)|0⟩ (12.7)

And the states that are simple at late times (the “out”-states) are:

| f ⟩ = b†
s3,p3

(∞)b†
s4,p4

(∞)|0⟩ (12.8)

The reason this works is that even though we have not identified the true multi-particle states, our guess
has some overlap with the true multi-particle states.

⟨p, s, e|b†
s,p|0⟩ ̸= 0 (12.9)

so we may appropriately normalize and use our ansatz as the in/out states. The intuition is that well-
separated wavepackets are non-interacting.

We also require that overlap with multiparticle states vanishes:

⟨p, s, p′, s′|b†
s,p(−∞)|0⟩ = 0 (12.10)

this crucially hinges on the existence of a finite mass gap between the single particle states and the multi-
particle continuum. Indeed this will cause trouble in QED, as though the electrons have mass, the photons
are massless.
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So, let’s find a formula for the probability that a given in state goes to a given out state, p(i → f ),
given by the (square of) the matrix elements S f i = ⟨ f |i. As for the scalar field, we work out the difference
between two creation operators:

b†
s,p(∞)− b†

s,p(−∞) =
∫ ∞

−∞
dt∂tbs,p

=
∫

d4x∂t(eipxψ̄(x)γ0us(p))

=
∫

d4xeipx(ip0 + ∂0)ψ̄(x)γ0us(p)

(12.11)

the above equation reminds us of (/p + m)us(p) = 0, so then:

b†
s,p(∞)− b†

s,p(−∞) =
∫

d4xψ̄(
←−
∂0 γ0 − ipiγ

i − im)us(p)eipx (12.12)

If we now integrate by parts (in space); we can replace ipi =
−→
∂i with −

←−
∂i and so:

b†
s,p(∞)− b†

s,p(−∞) =
∫

d4xψ̄(
←−
/p − im)us(p)eipx

= −i
∫

d4xψ̄(i←−/p + m)us(p)eipx
(12.13)

Taking the conjugate of this expression, we similarly find:

bs,p(∞)− bs,p(−∞) = i
∫

d4xe−ipxūs(p)(−i/∂ + m)ψ (12.14)

So now we did the same thing we did for our scalar field theory. We plug these expressions into the
expression for the S-matrix elements:

⟨ f |i⟩ = ⟨0|T bs3,p3(∞)bs4,p4(∞)b†
s1,p1

(−∞)b†
s2,p2

(−∞)|0⟩ (12.15)

where we have introduced a time-ordering operator for free - we can now replace the b†, bs with the
differences that we computed above, which are equivalent due to the time ordering (time ordering kills
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the other terms by virtue of b|0⟩ = ⟨0|b† = 0 - the mass gap assumption guarantees that the annihilation
operators still annihilate the vacuum of the theory). We are left with:

⟨ f |i⟩ = i4
∫

x1x2x3x4

e−ip3x3−ip4x4 [ūs3 p3(−i/∂x3 + m)]α[ūs4 p4(−i/px4
+ m)]β⟨0|T ψα(x3)ψβ(x4)ψ̄γ(x1)ψ̄δ(x2)|0⟩

· [(i
←−
/∂ x1 + m)us1(p1)]γ[(i

←−
/∂ x2 + m)us2(p2)]δeip1x1+ip2x2

(12.16)

This looks complicated, but the extra factors actually end up being useful - they amputate the external
propagators and put the particle on-shell. This condition drastically reduces the dependencies on the
variables - for the scalar case we reduced things to Mandelstam variables s, t, u (only of which 2 were
independent), and although things are more complicated here due to the presence of spin indices, again
things will simplify.

The expression actually looks much simpler in momentum space. Like for scalars ⟨ f |i⟩ = δi f + Ti f , we
can use momentum conservation to write:

iTi f = (2π)4δ4(p1 + p2 − p3 − p4)iM(p1 p2 → p3 p4) (12.17)

which leaves us with:

iM(p1 p2 → p3 p4) =

[ūs3(p3)(/p3 + m)]α[ūs4(p4)(/p4 + m)]β

〈
T ψα(p3)ψβ(p4)ψ̄γ(p1)ψ̄γ

〉
c
[(/p1 + m)us1(p1)]γ[(/p2 + m)us2(p2)]δ

(12.18)

where we see that the expressions in brackets [·] are just the inverse propagators, which amputate the
external legs.

12.2 LSZ for photons

We saw that photons have two propagating degrees of freedom, which we labelled with helicity ±1. We
expect naively:

⟨. . . |p, h⟩ = ϵh
µ(p2ηµν + (ξ − 1)pµ pν) ⟨T Aν . . .⟩ (12.19)

Naively, it looks like we could choose 4 polarizations, ϵµ = δ0
µ, δx

µ, δ
y
µ, δz

µ. We will see that due to Gauge
invariance, only two polarizations are physical.

Let’s set pµ = (p, 0, 0, p), with pz = p0, and (pµ)2 = 0 as required. Helicity is an eigenvalue under J3

with this choice. Now consider ϵ
(x)
µ = δx

µ and ϵ
(y)
µ = δ

y
µ. These vectors get exchanged under J2 rotation:(

ϵ(x)

ϵ(y)

)
→
(

cos θ sin θ
− sin θ cos θ

)(
ϵ(x)

ϵ(y)

)
(12.20)

So we have the eigenvectors ϵ∓µ = ϵ
(x)
µ ∓ iϵ(y)µ ; to see this:

ϵ
(x)
µ ∓ iϵ(y)µ 7→ cos θϵ(x)+ sin θϵ(y)∓ i(cos θϵ(y)− sin θϵ(x)) = (cos θ± i sin θ)(ϵ(x)∓ iϵ(y)) = e±iθϵ∓ (12.21)
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These are the states we expect to be physical. They have an important property that they are orthogonal
to the wavevector:

ϵ±µ pµ = 0 (12.22)

which tells us that this is gauge invariant. One way to be orthogonal to pµ is to take pµ, but ϵ±µ are not
the null vector; they are vectors orthogonal in the Minkowski metric that are orthogonal to momentum
without being the momentum itself.

Our guess for the LSZ formula thus simplifies (as the gauge dependent part gets killed):

⟨. . . |p, h⟩ = ϵh
µ p2 〈T Aµ . . .

〉
(12.23)

What happens to the other polarizations? They do produce physical states, but correspond to the pure
gauge component Aµ ∼ ∂µλ and the constrained variable.

ϵ
µ
1 = (1, 0, 0, 1) ∝ pµ (12.24)

ϵ
µ
2 = (1, 0, 0,−1) (12.25)

ϵ
µ
1 vanishes, since it gives pµ p2

〈
Aµ . . .

〉
which vanishes via the Ward identity. ϵ

µ
2 probes the pure gauge

piece, since ϵ
µ
2 (ξ − 1)pµ pν ̸= 0, and hence is not gauge invariant (and hence unphysical).

So, the LSZ formula for γγ→ γγ scattering is:

⟨ f |i⟩ = i4
∫

x1x2x3x4

ei(p1x2+p2x2−p3x3−p4x4)(∂2
x1

∂2
x2

∂2
x3

∂2
x4
)ϵ

µ1
h1

ϵ
µ2
h2

ϵ
µ3
h3

ϵ
µ4
h4

〈
T Aµ1(x1)Aµ2(x2)Aµ3(x3)Aµ4(x4)

〉
(12.26)

Again this has a cleaner form when we Fourier transform:

iM = p2
1 p2

2 p2
3 p2

4ϵ
µ1
h1

ϵ
µ2
h2

ϵ
µ3
h3

ϵ
µ4
h4
⟨0⟩ T Aµ1(p1)Aµ2(p2)Aµ3(p3)Aµ4(p4)|0⟩c (12.27)

Much like in the scalar and fermion case, we have that the external legs are amputated.

12.3 Do Photons Scatter?

The simplest diagram that contributes toM looks like:
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QED tells us that the superposition principle is incorrect; we have nonlinear effects that cause photons
to scatter. But, this diagram is very small, so the superposition principle is approximately correct. Let’s
estimate how small this is. We have:

mec2

h̄
∼ 1021Hz (12.28)

while visible light has:
ω ∼ 1014Hz (12.29)

the diagram goes as ∼ ω4

m4
e
α2 ∼ 10−32.

In deriving the photon LSZ formula, we made a leap of faith, postulating the form of it assuming that
there was a mass gap. But of course there is not. The approach we will take is to ignore it until we cannot
ignore it - things will eventually go wrong. At tree level, scattering in QED looks fine. But once we start
studying loops, things will not make sense. When we have loops, we have higher powers of the coupling,
so we start including terms with more external photons, wherein we will have to return to this problem.

13 Scattering in QED II

Recall the LSZ formula we found for e−e− → e−e−

iM(p1 p2 → p3 p4) = i4[ū4(/p4 +m)]δ[ū3(/p3 +m)]γ
〈
T ψδ(p4)ψγ(p3)ψ̄β(p2)ψ̄α(p1)

〉
C
[(/p2 +m)u2]β[(/p1 +m)u1]α

(13.1)
One can similarly show that for e+e+ → e+e+ (you will show this on the pset - though we can guess the
solution. ψ ∼ b + d†, so):

iM(p1 p2 → p3 p4) = i4[(−/p4 +m)v4]δ[(−/p3 +m)v3]γ
〈
T ψ̄δ(p4)ψ̄γ(p3)ψβ(p2)ψα(p1)

〉
C
[(/p2 +m)u2]β[(/p1 +m)u1]α

(13.2)

13.1 e+e− → µ−µ+ scattering

The first scattering observable we will study is e+e− → µ−µ+. The muon µ− is also a Dirac fermion
with charge 1, so it couples to photons in a very similar way to electrons. However it is heavier, with
me ∼ 0.5MeV and mµ ∼ 100MeV. We will also look at electron-positron to electron-positron scattering,
but this turns out to be easier since electrons and muons are distinguishable.
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The action of our system is:

S =
∫

ψ̄e(i /D−me)ψe + ψ̄µ(i /D−mµ)ψµ −
1
4

F2 (13.3)

with:
Dµψ∂µψ + ieAµψ (13.4)

The LSZ formula tells us how to relateM to a connected 4-point function:

iM = i4[(−/p4 + m)v4]δ[ū3(/p3 + mµ)]γ
〈
T ψ̄

µ
δ (p4)ψ

µ
γ(p3)ψ

e
β(p2)ψ̄

e
α(p1)

〉
c
[v̄2(−/p2 + m)]β[(/p1 + m)u1]α

(13.5)
Now, we calculate the correlation function using our knowledge of QED. The electrons and muons are
connected via the photon field, which they are both coupled to. We will use the vertex:

Sint = −e
∫

Aν(ψ̄eγνψe + ψ̄µγµψµ) (13.6)

We will go to second order (intuitively - we need two powers in order to connect the ψe and ψµ fields),
and study the cross-terms:

i2

2
S2

int = −
e2

2

∫
A · (je + jµ)

∫
A · (je + jµ) ⊃ −e2

∫
A · je

∫
A · jµ (13.7)

We can drop the (Aje)2, (Ajµ)2 terms as they do not contribute to our observable of interest.
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The leading contribution is thus:〈
ψ̄

µ
δ ψ

µ
γψe

βψ̄e
α

〉
= −e2

〈
(
∫

Aρψ̄µγρψµ)ψ̄
µ
δ (p4)ψ

µ
γ(p3)ψ

e
β(p2)ψ̄

e
α(p1)(

∫
Aλψ̄eγλψe)

〉
free

(13.8)

and now we evaluate this via Wick contractions in the free theory; electrons must contract with electrons
and muons must contract with muons. We contract ψe with ψ̄e

α(p1) (two exchanges so no minus) and
ψe

β(p2) with ψ̄e, which yields:

[G(−p2)γ
λG(p1)]βα (13.9)

Doing the same story on the left with the muons (note there is now a minus sign to fermion exchanges),
we get:

−[G(−p3)γ
ρG(p4)]γδ (13.10)

Finally we contract the photons, and so at the end of the day we end up with (note that this was the
unique possible choice of contractions):〈

ψ̄
µ
δ ψ

µ
γψe

βψ̄e
α

〉
= +e2[G(−p3)γ

ρG(p4)]γδGρλ(p1 + p2)[G(−p2)γ
λG(p1)]βα (13.11)

This is the expression for the 4-point function. Dotting it with the (/p + m) factors will simplify things
because the Green’s function is precisely the inverse!

iM = e2(ū3γρv4)Gρλ(p1 + p2)(v̄2γλu1)

= e2(ū3γρv4)
−i

(p1 + p2)2 (ηρλ + (ξ − 1)
(p1 + p2)ρ(p1 + p2)λ

(p1 + p2)2 )(v̄2γλu1)

=
ie2

s
(ū3γρv4)(v̄2γρu1)

(13.12)

where ui = usi (pi), and in the third equality we use the fact that v̄2(/p1 + /p2)u1 = v̄2(−m + m)u1 = 0 to
kill the ξ-dependent term. In the last equality we have recalled the definition of the Mandelstam variable
(p1 + p2)

2 = −s.

13.2 Comparing to the scalar, e−e+ → e−e+ scattering

Compare this to the scattering we found for the scalar:

where:

M∼ g2
(

1
s + M2 +

1
t + M2 +

1
u + M2

)
(13.13)

we note that with our QED scattering, the only contribution is from the s-channel, and since the photon
is massless we do not have M2 terms as we did for the massive (Φ)-scalar mediated scattering. The third
difference is that we have the u/vs which depend on the external spin and momenta.

66



What about e−e+ → e−e+ scattering? The same diagram is allowed, but there is another allowed
diagram now coming from the fact that the we have two electron vertices (we get a t-channel t = −(p1 −
p3)

2 in addition to the s channel s = −(p1 + p2)
2). This comes out of the Wick contractions, but pictorially

we imagine that this second diagram corresponds to the electron staying as an electron, but radiating a
photon which hits an incoming positron (as opposed to the s-channel diagram, which corresponds to an
electron/positron pair “becoming” a muon/antimuon pair)

The u-channel diagram below is not allowed as it has ψψAµ:

So in summary we expect:

Me−e+→e−e+ =
e2

s
(ū3γρv4)(v̄2γρu1) +

e2

t
(v̄2γρv4)(ū3γρu1) (13.14)
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and you check this on the homework.

13.3 e+e− → µ−µ+ - Summing over spins

Going back to our result for the e+e− → µ−µ+, if we know the momenta and all the spins, our result
Eq. (13.12) is the final answer. A simpler answer arises if we sum over spins. This is also experimentally
relevant if the spin of the particles is not measured.

The probability of an event is ∝ |M|2. Let’s sum the probability for any outgoing set of spins:

|M|2 =
e4

s2 (ū3γρv4)(v̄4γλu3)(v̄2γρu1)(ū1γλv2) (13.15)

Let’s sum over the outgoing states s3, s4 using the completeness relations:

∑
s3=±

us3(p3)ūs3(p3) = (−/p3 + M) (13.16)

∑
s4=±

vs4(p4)v̄s4(p4) = (/p4 + M) (13.17)

with M = mµ. We can now convert the sum over spins into taking the trace of a matrix:

∑
s3,s4

|M|2 =
e4

s2 Tr(γρ(/p4 + M)γλ(/p3 −M))(v̄2γρu1)(ū1γλv2) (13.18)

Now we also average over all incoming spins 1
4 ∑s1,s2

:

1
4 ∑

s
|M|2 =

e2

s2 Tr(γρ(/p4 + M)γλ(/p3 −M))Tr(γρ(/p1 −m)γλ(/p2 + m)) (13.19)

with m = me. Now let’s deal with the traces:

Tr(γρ(/q + M)γλ(/k −M)) = −m2Tr(γργλ) + qαkβTr(γργαγλγβ)

= 4m2ηρλ + 4(qρkλ + qλkρ − kqηρλ)
(13.20)

We have two traces, and the results are subsequently contracted, so:

1
4

1
4

Tr(. . .)Tr(. . .) = [M2ηρλ + pλ
3 pρ

4 + pρ
3 pλ

4 − ηρλ p3 · p4][m2ηρλ + (p1
ρ p2

λ + p1
λ p2

ρ + p1 · p2ηλρ)]

= 4m2M2 + M2(−2)p1 · p2 + m2(−2)p3 · p4 + 2(p3 · p1)(p2 · p4) + 2(p3 · p2)(p1 · p4)− 4(p3 · p4)(p1 · p2) + 4(p3 · p4)(p1 · p2)

= 4mM2 − 2(M2 p12 + m2 p34) + 2(p13 p24 + p14 p23)
(13.21)

Thus the probability of scattering, ignoring spin, is proportional to:

1
4 ∑

s1s2s3s4

|M|2 =
8e2

s2 [2m2M2 − (M2 p12 + m2 p34) + (p13 p24 + p14 p23)] (13.22)

Indeed this is independent of spin and only depends on Lorentz-invariant contractions of four-momenta
pij = pi · pj. Finally, let us convert to Mandelstam variables:

s = −(p1 + p2)
2 = m2 − 2p12

p−conservation
= −(p3 + p4)

2 = 2M2 − 2p34 (13.23)
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t = −(p1 − p3)
2 = m2 + M2 + 2p13

p−conservation
= −(p2 − p4) = m2 + M2 + 2p24 (13.24)

u = −(p2 − p4)
2 = m2 + M2 + 2p14

p−conservation
= −(p1 − p3)

2 = m2 + M2 + 2p13 (13.25)

Thus replacing the pij in our probability expression:

1
4 ∑

s1,s2,s3,s4

|M|2 =
8e2

s2 [t2 + u2 + 4s(m2 + M2)− 2(m2 + M2)2] (13.26)

Last quarter, we saw how to get a differential cross section out of this; as we obtained for scalars; at
high-energies with p≫ M, m this yields:

dσ

dΩ
= Const. · e4

E2
CM

(1 + cos2 θ) (13.27)

See Schwartz (13.78) for details. What is the intuition for this expression? For scalars we found that

M = λ and
dσ

dΩ
= λ2

E2
CM

, coming from:

Now, we have angle dependence. Why? It has to do with the spin. Because the electron/positron pair
must create a photon to mediate their interaction, we need their helicities to align a helicity-1 photon state.
If the helicities are all pointing out of the page/normal to the direction of propagation, we have exactly
what we want. If instead they point in the plane of the collision, the helicities of muon no longer quite
align and hence we get a ∝ (cos θ)2 dependence.
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14 Soft and Collinear divergences in QED

We’re about to begin out last topic! It’s slightly advanced - it’s dealing with the fact that S-matrix cannot
be formally defined in a theory without a mass gap. This technique is crucial if you continue on in particle
physics, physics of jets, colliders etc. In QED, the photon is a massless particle, causing the problem; the
precise issue is that single particle states cannot be distinguished from the multi-particle continuum; few
particle “out” states look the same as few particle “out” states + soft/low-energy photons.

14.1 Sketching the problem

The dispersion if we only had electron looks like:

i.e. the theory has a gap, allowing us to define the S-matrix. But in QED, we now have photons, so we
have a continuum of electron + photon states:

In equations, an e− at momentum p has energy:

E =
√

p2 + m2 (14.1)

And a e− + γ state at total momentum p has e− with momentum p− k and γ with momentum k, so
the energy is:

E =
√
(p− k)2 + m2 + |k| =

√
p2 + m2 +O(|k|) (14.2)
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and crucially, there is no gap because k → 0 continuously in infinite volume. For finite size, k = 2π
L

becomes quantized; this is a hint for the resolution.
One cannot ignore this issue; loop corrections to matrix elements will have IR divergences, also known

as “soft” divergences. These are divergences of a very different type as UV divergences we have seen prior.
Either we have an EFT which the UV divergence indicates that there is a scale which the theory breaks
down, or the theory is UV-complete in which the case that the divergences can be regulated/removed by
counterterms.

What does the IR divergence tell us about the theory? It doesn’t tell us that the theory has a problem
(indeed we found that QED is IR-free from our RG analysis)! Rather, it tells us that the observables we
are choosing are bad. Here, we will see that the divergences arise in the step of putting the external
particles/legs on shell in LSZ. The “off-shell” correlators that we have been studying (e.g. ⟨T . . .⟩c) that
we have been studying are always well-defined; it is only when we take specific limits (in order to put
external legs on shell) that problems arise.

These will get resolved if we accept the fact that we cannot distinguish |ψ⟩ of interest with |ψ +
soft photons⟩. Fortunately, we will not have to consider an arbitrary number of soft photons. For example
at 1-loop order the cross-section σ is finite if we include states with one extra soft photon. Diagramatically:

Specifically, we will see that the cross-section:

σ(e−e+ → µ−µ+) + σ(e−e+ → µ−µ+γ) (14.3)

is IR finite. At higher orders, diagrams with more soft γs must be included - we do not need to include
them all at once because we look at perturbation theory in powers of e. Note that the calculation we did
last lecture was at tree-level and hence we did not have to worry about soft divergences there.

We use the above scattering cross section as an example, but really, IR divergences are everywhere.
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It is easy to see that there will be an IR issue in the diagram:

Because this diagram contains the propagator:

Gψ(p4 + ksoft) =
−i(M + /p4 + /ksoft)

(p4 + ksoft)2 + M2

p2
4=−M
=

−i(. . .)
k2

soft + 2ksoft · p4
∼ 1

ksoft · p4
(14.4)

which diverges as ksoft → 0.

14.2 One-loop corrections at e−e+ → µ−µ+

What are the 1-loop corrections toM(e−e+ → µ−µ+)? We have the 6 diagrams (in addition to the single
tree-level diagram we had previously):
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(2) drops out/does not contribute to the cross-section as the leg gets amputated. But this still looks
pretty bad - 5 diagrams to calculate. But let’s be a bit clever. Let’s slightly modify QED and assign different
charges Qe, Qµ ̸= 1 to the electron and muon. The reason to do this is:

Sint = −e
∫

Aν(Qeψ̄eγνψe + Qµψ̄µγνψµ) (14.5)

What is the motivation? Divergences in the electron and muon degrees of freedom have to cancel inde-
pendently. Although we are interested in Qe = Qµ = 1, this property nontheless carries over.

We start with looking at the effect the tree-levelM0, which looking at diagram (0) we seeM0 ∝ QeQµ

(each fermion vertex contributes a power of the respective charge). Let’s look at the other diagrams.
(1) is proportional to QeQµQ2

x because the fermion correction to the photon energy could come from
any mystery fermion x (it thus must cancel itself). (2) is not in M. (3) is proportional to QeQ3

µ, (4) is
proportional to Q3

e Qµ, (5) is proportional to Q2
e Q2

µ, and (6) is proportional to Q2
e Q2

µ.

IR divergences proportional to any Qce
e Q

cµ
µ have to cancel independently. We will focus on the QeQ3

µ

part/diagram (3) and look at its contribution to σ ∝ |M|2:

This correction indeed competes with the σ(e−e+ → µ−µ+γ) cross-section, because looking at the
diagrams with the soft photon:
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(note that we can only put the soft photon on the muon leg) we see:

σ(e−e+ → µ−µ+γ) ∼ |M|2 ∼ Q2
e Q4

µ (14.6)

This trick with introducing fictitious charges is nice because it simplifies the analysis to specific dia-
grams. Let’s now hone in and see how the divergences cancel.

14.3 Computing the one-loop correction

So, the only loop diagram we will have to consider is (3). The leading diagram is:

iM0 =
ie2

s
(v̄2γρu1)(ū3γρv4) (14.7)

the 1-loop correction is:’

iM1-loop =
ie2

s
(v̄2γρu1)(ū3Γρv4) (14.8)

with:
Γρ =

〈
jρ(p1 + p2)ψψ̄(−p4)

〉
amputated, 1-loop

(14.9)

this is just an old friend! We will notice that this actually has IR divergences when we put the external
legs on-shell, as is required by LSZ. Why didn’t we notice? In RG we didn’t put the external legs on shell,
so we didn’t see it. When we computed the electron dipole moment, we only looked at the terms which
were IR safe. This is why many of the early calculations were successful, even though they didn’t yet
know how to handle these IR singularities.

Let’s compute the diagram:
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We then have:

Γρ =
(−ie)2

2

〈
(ψ̄γρψ)p1+p2(

∫
Aαψ̄γαψ)(

∫
Aβψ̄γβψ)ψψ̄(−p4)

〉
(14.10)

Wick contractions in order to get a connected diagram:

Thus:
Γρ = −e2

∫
l
G(p3)γ

βG(p3 + l)γρG(l − p4)γ
αG(−p4)Gαβ(l) (14.11)

If we amputate the external legs:

Γρ = −e2
∫

l
γβG(p3 + l)γρG(l − p4)γ6αGαβ(l) (14.12)

Then we are left with (recalling that G(p) = − −i
M−/p

=
−i(M+/p)

p2+M2 and Gαβ(l) = −i
l2 ηαβ choosing ξ = 1):

Γρ = −ie2
∫ d4l

(2π)4

γα(M + /l + /p3)γ
ρ(M + /l − /p4)γ

α

l2((l + p3)2 + M2)((l − p4)2 + M2)
(14.13)

so with p2
3 = p2

4 = −M2 (on shell) the denominator becomes l2(l2 + 2l · p3)(l2 − 2l · p4) so as l → 0 this
goes as l2(l · p3)(l · p4) which implies:

Γρ ∼
d4l
l4 (14.14)

which is a (log) IR divergence. We can manifestly see how this arose from setting the momenta to be
on-shell. This is actually a bit too quick. The above analysis looks like just a log divergence. But actually it
can be even smaller, if l is collinear with p3/4 wherein the dot product vanishes. So when we integrate, we
will see additional singularities arise from collinear momenta. This will lead to log2 singularities, which
cannot be resummed via RG.

Before we show that this cancels with the other diagram, we need a way to compute it. In order to do
this, we need to be able to regulate it. We will choose a simple but ugly IR regulator, i.e. giving the photon
a mass mγ. A more physical (but slighty harder to work with) regulator is to put things in a finite volume
which gives the photon a maximum possible wavelength. In any case, with our choice of regulator the
photon propagator transforms as:

1
l2 →

1
l2 + m2

γ
(14.15)
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Focusing on the IR divergences, take l ≪ M, p3, p4. For simplicity, we further assume high-energy scatter-
ing, i.e. p3, p4 ≫ M. Then:

Γ ∼= ie2
∫

l

γα/p3γρ/p4γα

(l2 + m2
γ)(l2 + 2l · p3)(l2 − 2l · p4)

= ie2
∫

l

2/p4γρ/p3
(l2 + m2

γ)(l2 + 2l · p3)(l2 − 2l · p4)
(14.16)

If we sandwich the numerator with ū3(. . .)v4 then:

ū32/p4γρ
/p3v4 = 2ū3/p4γρ

/p3v4

= −2ū3(2pρ
3/p4 + /p4/p3γρ)v4

= −2ū3(2Mpρ
3 − /p3/p4γρ − 2p3 · p4γρ)v4

= −2ū3(2M(pρ
3 − pρ

4) + M2γρ − 2p3 · p4γρ)v4

p3,p4≫M
≈ 4p3 · p4ū3v4 = −2sū3v4

(14.17)

where in the last line we use:

s = (−p3 + p4)
2 = 2M2 − 2p3 · p4 ≈ −2p3 · p4 (14.18)

So at the end of the day, our Γρ looks like:

Γρ = −2ies
∫ d4l

(2π)4
1

(l2 + m2
γ)(l2 + 2l · p3)(l2 − 2l · p4)

(14.19)

So introducing Feynman parameeters with x = l2 + 2l · p3 and y = l2 − 2l · p4 we have:

Γρ = −4ies
∫ 1

0
dx
∫ 1−x

0
dy
∫

l

1
[l2 + 2l(p3x− p4y) + m2

γ(1− x− y)]3

= −4ies
∫ 1

0
dx
∫ 1−x

0
dy
∫

l

1
[(l + p3x− p4y)2 + m2

γ(1− x− y)− (p3x− p4y)2]3

= −4ies
∫

xy

∫
q

1
(q2 + ∆)3

(14.20)

Which we can compute via Wick rotation:

Wick→ 4es
∫

xy

2π2

(2π)4

∫ ∞

0

dqq3

(q2 + ∆)3 (14.21)

So then:

Γρ =
es
8π

∫ 1

0
dx
∫ 1−x

0
dy

1
∆

(14.22)

We will finish the calculation next week, but the ∆ is ∼ m2
γ + xys, the first integral gives ∼ log(...x)

x and the
second gives log2(. . .), which is how the collinear singularities manifest, as we discussed. We will see that
the result is ∼ log( s

mγ
)2.

15 Soft Divergences II

15.1 1-Loop correction to e+e− → µ+µ−, continued

We were computing the 1-loop correction to the e+e− → µ+µ− cross section:
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where we found:

iM =
ie2

s
(v̄2γρu1)(ū3(γρ + Γρ)v4) (15.1)

with:

Γρ =
〈

jρ(p3 + p4)ψψ̄(−p4)
〉

amp

∣∣∣∣
1-loop

= γρ
e2

8π2

∫ 1

0
dx
∫ 1−x

0
dy

s
∆

(15.2)

with:

∆ = m2
γ(1− x− y)− (xp3 − yp4)

2 = m2
γ(1− x− y) + (x2 + y2)M2 + 2p3 · p4xy

≈ m2
γ(1− x− y) + 2p3 · p4xy

= m2
γ(1− x− y)− sxy

(15.3)

where we focus on high E (E ≫ M) scattering in the second-to-last line, and in the last line we use the
approximate expression for the Mandelstam variable:

s = −(p3 + p4)
2 = 2M2 − 2p3 · p4 ≈ −2p3 · p4 (15.4)

Let’s look at these final two integrals. They will do something unusual. They can be computed exactly (as
you will see on PS8), and the leading mγ → 0 singularity is:

∫
xy

s
∆
≈ −1

2
(log

m2
γ

s
)2 =⇒ Γρ = −γρ

e2

16π2 (log
m2

γ

s
)2 (15.5)

this is quite unusual. These logarithms are called the Sudhakov double-logarithm. They are unlike what
we saw in RG, which were logarithms which we were able to resum.

Let’s sketch the computation of this integral. If we send m2
γ → 0, 1

∆ becomes singular for x → 0 or
y→ 0. Let’s take a look at these regions:∫

xy

s
∆

=
∫ 1

0
dx
∫ 1−x

0
dy

1
m2

γ

s (1− x− y)− xy
∼
∫ 1

0
dx
∫ 1

0
dy

1
m2

γ

s − xy

=
∫ 1

0
dx

1
x

log(
m2

γ

s
− xy)

∣∣∣∣∣
1

0

=
∫ 1

0
dx

1
x

[
log(

m2
γ

s
− x)− log

m2
γ

s

]

=
∫ 1

0
dx

1
x

log(1− s
m2

γ
x)

(15.6)

Now using the identity that
d
dz

1
2 log2(z) = log z

z we find that the above integral evaluates to ∼ 1
2 log2.
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Hence, our matrix element becomes:

i(M+MΓ) =
ie2

s
(v̄2γρu1)(ū3γρv4)

1− e2

16π2

(
log

m2
γ

s

)2

+ . . .

 (15.7)

where - nicely - the spins structure is exactly the same! So whatever we did for the tree level piece carries
over. We thus find that:

σ(e+e− → µ+µ−) =
∫ 1

4 ∑
s
|M|2dΠLIPS =

e4

12πs
[1− . . .]2 =

e4

12πs

1− e2

8π2

(
log

m2
γ

s

)2

+ . . .

 (15.8)

15.2 Real emission processes

Clearly this cross section doesn’t make sense. It involves an unphysical parameter, and if we send m2
γ → 0

it diverges. So it can’t possibly be the final answer to anything physical. But what we noticed last
week is that there are other types of diagrams involving soft photons (that we would usually associate
to different scattering events) that had the same dependence on parameters/charges. We may have hope
that these extra processes - known as real emission processes - may help us out here, and cancel out the
IR divergences. Let us thus study an “inclusive” cross-section that includes these soft photons. Thus:

σtot = σ(e+e− → µ+µ−) + σ(e+e− → µ+µ−γ) + . . . (15.9)

where we only need to consider one soft photon as at this order we have the σ ∼ e6/same order.

Let’s draw the two relevant diagrams for e+e− → µ+µ−γ, where we have a soft photon emitted from
the muon.
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These are just tree-level diagrams with no integrals. Where do the divergences come from? The
intuition is that we had a singular result in the no-photon case because our detector was insensitive to

emitted photons. For the photon cross-section, we need to integrate over all photon momenta
∫ d3pγ

(2π)2ϵγ
-

this indeed has a chance of introducing singularities.
The full derivation is tedious, and is in Schwarz Ch. 20 for your reference. Let’s start with the nontrivial

key step (which is one of the final ones). We have matrix element:

M∼ 1
s

1
p4 · pγ

(15.10)

where the 1
s comes from the photon propagator and the 1

p4·pγ
comes from the Dirac propagator. The

square of this gives:

M2 ∼ 1
s2

1
(p4 · pγ)2 (15.11)

To get the cross section, we integrate:

σ ∼
∫

dΠLIPS|M|2 (15.12)

so let us integrate over the photon phase space d3 pγ. Say we choose our coordinate system such that
p4 = (E, 0, 0, E). We can then take:

pγ = pγ(cos θẑ + sin θx̂) (15.13)

with the ϕ-integral giving 2π.

Putting the photon on-shell, the 0th component is given by;

p0
γ =

√
p2

γ + m2
γ = ϵ

γ
p (15.14)

So then:
p4 · pγ = E(

√
p2

γ + m2
γ + pγ cos θ) (15.15)

So then the integral gives:

σ ∼
∫ d3pγ

(2π)32ϵ
γ
p
|M|2 ∼

∫ 1

−1
d cos θ

∫ dpγ p2
γ

(
√

p2
γ + m2

γ + pγ cos θ)2 ·
√

p2
γ + m2

γ

(15.16)

Which if mγ → 0 then we get
∫ dpγ

pγ
∼ log m2

γ, with if we did the two integrals carefully, we would get

(log m2
γ)

2. Hence we will see the divergences cancel out.5

5Though we didn’t compute the finite part/the important part of the 1-loop correction, we certainly could have, and we would
see that the infinities/IR divergences cancel while the finite part persists.
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15.3 Cross section with soft photons, more carefully

From the two diagrams with soft photons, we compute:

iM =
〈
T Aµ(pγ)ψ̄a(p4)ψc(p3)ψb(p2)ψ̄a(p1)

〉
c

(15.17)

Now the various fields in this diagram become: [v̄2(−/p2 + m)]b (and other relevant v/u for the fermion

fields), and e(h)µ p2
γ for the photon helicity.

To construct the relevant diagrams with three vertices, we will insert i3
3! (Sint)

3 and contract with various
places. The 1

3! cancels with combinatorics, and we are left with:

⟨. . .⟩c = (ie)3

〈
Aµ(pγ)

∫
Aλψ̄γνψ

(∫
Aρψ̄γρψ

)
ψ̄d(p4)ψc(p3)ψb(p2)ψ̄a(p1)

∫
Aλψ̄γλψ

〉
(15.18)

where we can now contract the electro fields. The external photon and electron propagators cancel in the
LSZ formula, so we find:

iM = i2ϵ
(h)
ν [ū3(/p3 + M)]c[(−/p4 + M)v4]d(v̄2γλu1) · (ie)3

〈
(ψ̄γνψ)(pγ)ψ̄d(p4)ψc(p3)

(∫
Aρψ̄γρψ

)
Aλ(p1 + p2)

〉
(15.19)

Now we can contract the last two remaining photon fields. Further, we can contract ψc(p3) with the ψ̄ of
the soft photon, ψ of the pγ contracts with the rest of the vertex, and and the remaining ψ contracts with
ψ̄d(p4). Each of these gives a minus sign (three minus signs, so leads to −1). Option 2 is to contract ψ̄d(p4)
with the soft photon vertex. You can work it out to see that this also gives −1. Writing this out, we obtain:

iM = iϵ(h)ν e3 (ū3γρG(−p4 − pγ)γ
νv4 + ū3γνG(p3 + pγ)γ

ρv4
)
(v̄2γλu1)

−iηρλ

s

= iϵ(h)ν e3 (ū3γρG(−p4 − pγ)γ
νv4 + ū3γνG(p3 + pγ)γ

ρv4
)
(v̄2γρu1)

−i
s

= −ie3(v̄2γρu1)ū3

(
γρ 1

M− /p4 − /pγ

γν + γν 1
M + /p3 + /pγ

γρ

)
v4

1
s

ϵ
(h)
ν

≡ − ie2

s
(v̄2γρu1)(ū3 Jρνv4)ϵ

(h)
ν

(15.20)

So then:

|M|2 =
e6

s2 (v̄2γρu1)(ū1γρ′v2)(ū3 Jρνv4)(v̄4 Jν′ρ′u3)ϵ
(h)
ν ϵ

(h)∗
ν′ (15.21)

We can now sum over spins to simplify:

∑
s

u1
s ū1

s = −/p1 + m (15.22)

∑
s

v2
s v̄2

s = /p2 + m (15.23)

So averaging over incoming spins (and dropping the ms under the assumption of high-energy scattering)
and summing over the out spins, we get:

1
4 ∑

s1,s2,s3,s4

e6

s2 Tr(γρ(−/p1)γρ′/p2)Tr(Jρν
/p4 Jν′ρ′(−/p3))ϵ

(h)
ν ϵ

(h)∗
ν′ (15.24)
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We now sum over the photon helicities (we must do this! because we do not measure the state of the
outgoing soft photon):

∑
h=±

ϵ
(h)
ν ϵ

(h)∗
ν′ = ηνν′ (15.25)

This looks like a completeness relation in 4-dimensions, even though we only have two helicities! How is
this possible? It is in fact true within a matrix element. What is really true is:

ηµν = ∑
h=±

ϵ
(h)
ν ϵ

(h)∗
ν′ + C(pγ

ν p̄γ
ν′ + pγ

ν′ p̄
γ
ν ) (15.26)

The first term gives diag(0, 1, 1, 0). For the second term, we recall pγ = (Eγ, 0, 0, Eγ) and p̄γ = (Eγ.0, 0,−Eγ),
the first of which was decoupled, the second of which picked up the gauge-dependent piece and so was
unphysical. Hopefully we can then see that the second term gives diag(−1, 0, 0, 1). But in fact this piece
cancels in matrix elements via the Ward identity. For example consider the diagram:

Wherein:

(v2γλu1)ϵ
λ
(h)

ϵλ∝p1+p2
= v2(/p2 + /p1)u1 = 0. (15.27)

Thus we have found;

σ =
∫ 1

2s
|M|2dΠLIPS =

e6

2s4
1
4

Tr(γλ/p1γλ′/p2)
∫

Tr(Jνλ
/p4 Jλ′

ν /p3)dΠLIPS (15.28)

and in this integral we will see the IR divergence arise! The rest is just tedious/simple calculations.

16 Non-Abelian Gauge Theory, Yang-Mills & QCD

For the remaining lectures of this class, we can discuss some aspects of non-Abelian gauge theory, touching
on some ideas of Yang-Mills and QCD. This is in some sense the one missing puzzle piece we need to
construct all QFTs (well, other than perhaps gravity).

Non-abelian gauge fields arise in a number of settings:

• Particle physics: Electroweak sector, QCD.

• Condensed Matter: Non-Abelian quantum hall states (2+1d QFT).

• Quantum Gravity: N = 4SU(N) super Yang-Mills; our best understood models of gauge-gravity
duality.

• Also: Weakly coupled RG fixed points in 3+1d (Bankz-Zaks fixed points).

• Mathematical perspective: Connections on fiber bundles.
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16.1 A simple QFT with U(N) symmetry

We’ll follow an approach similar to QED, starting with a theory that has a global non-Abelian symmetry.
Specifically, we consider N Dirac fermions:

S =
N

∑
i=1

∫
d4xψ̄i(i/∂ −m)ψi (16.1)

These Dirac fermions have two indices ψiα; α is the usual spinor index we usually suppress, i is now the
flavour, or colour index, which ranges from i = 1, . . . N.

What are the symmetries of this model? We consider:

ψ⃗ =


ψ1
ψ2
...

ψN

→ Uψ (16.2)

and:
ψ̄† → ψ†U† (16.3)

which implies:
ψ̄→ ψ†U†γ0 = ψ̄U† (16.4)

in order for this action to be invaraint, we require that:

ψ̄ψ→ ψ̄U†Uψ = ψ̄U†Uψ (16.5)

which requires that:
U†U = I (16.6)

in other words, U ∈ U(N), i.e. the group of unitary N × N matrices. This is a continuous symmetry.
How many symmetries is this? It’s easier to think about unitary matrices as matrix exponentials:

U = eiT (16.7)

where U† = e−iT†
and U−1 = e−iT , so in order for U ∈ U(N) we require T† = T, i.e. T is Hermitian.

This is much easier to count; T is Hermitian so on the diagonal we have all real numbers, tii ∈ R and
for off diagonals we have tij = t∗ji. This gives us N2 parameters/symmetries (each matrix element provides
one real parameter). Compare this to the U(1) case, where we had a single symmetry/single complex
number/phase.

Let Ta, a = 1, . . . , N2 be a basis of generators of the algebra u(N). Now, we can write U ∈ U(N) as
eiλaTa = U, with λa ∈ R real parameters.

After U(1), the next simplest example is U(2). We consider a set of 4 2× 2 Hermitian matrices u(2).
We then have Ta = {I, σi}, so then;

U = eiλ0 eiλiσ
i ∈ U(2) (16.8)

So we notice that the identity part actually commutes with the rest! So, we can actually break up the
group. Note that I has a pure trace and σi are traceless, so the exponential has determinant 1. Thus we
can write:

U(2) = U(1)× SU(2) (16.9)

And more generally:
U(N) = U(1)× SU(N) (16.10)

82



the SU(N) part contains the Non-Abelian character of the group:

[Ta, Tb] ̸= 0 (16.11)

We then note that:
[Ta, Tb]

† = [T†
b , T†

a ] = [Tb, Ta] = −[Ta, Tb] (16.12)

using that the Ta are Hermitian, This implies that the commutator is anti-Hermitian:

[Ta, Tb] = i f c
ab Tc (16.13)

the f c
ab are known as structure factors. For SU(2), we have:

[σi, σj] = iϵijkσk (16.14)

so the structure factor of SU(2) is ϵijk.

16.2 Noether Currents for U(N) symmetry

To find the associated Noether currents for these symmetries, let us perform:

U(x) = eiλa(x)Ta ≈ 1 + iλa(x)Ta + . . . (16.15)

The change in the action then is:

S→ S′ =
∫

d4xψ̄U−1(x)(i/∂ −m)U(x)ψ (16.16)

The change in the action only comes from the term where the derivative hits U(x), so:

δS = S′ − S = −
∫

d4xψ̄γµ∂µλa(x)Taψ = −
∫

d4x∂µλa(x)ψγµTaψ (16.17)

So we can identify:
jµ
a = ψγµTaψ (16.18)

for a = 1, . . . , N2 as the Noether currents.

16.3 Gauging the symmetry

Let us try to make this theory more interesting by “gauging” the U(N) symmetry, in other words turning
the global U(N) symmetry into a local U(N) symmetry. The problem comes in with the kinetic term (the
mass term is already invariant - hence we saw it dropped out of the current). Let’s try to make the kinetic
term gauge invariant by adding a term jµ

a Aa
µ to L:

jµa Aa
µ = Aa

µψ̄γµTaψ = ψ̄γµ Aa
µTaψ ≡ ψ̄γµ Aa

µTaψ (16.19)

where we define a Hermitian matrix Aµ. The action then becomes:

S =
∫

ψ̄iγµ(∂µ + iAµ)ψ→
∫

ψ̄iγµU−1(∂µ + iA′µ)Uψ

=
∫

ψ̄iγµ[U−1∂µU + U−1iA′µU]ψ + ψ̄i/∂ψ
(16.20)

We wish for this to be Gauge invariant, which requires:

U−1∂µU + U−1iA′µU = iAµ (16.21)
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So:
Aµ → A′µ = UAµU−1 + iU(U−1∂µU)U−1 = UAµU−1 + i(∂µU)U−1 (16.22)

Now noticing that:
0 = ∂µ(UU−1) = ∂µUU−1 + U∂µU−1 (16.23)

(and a similar relation holds for ∂(U−1U)) we can write:

Aµ → A′µ = UAµU−1 − iU∂µU−1 = U(Aµ − i∂µ)U−1 (16.24)

To check that we’ve done this right, we can recall in the U(1) case that we had U = eiλ (a scalar) for which:

Aµ → Aµ − ∂µλ (16.25)

which is consistent with our general formula.
The transformation of A allows us to build a covariant derivative:

Dµψ = (∂µ + iAµ)ψ→ [∂µ + i(U(Aµ − i∂µ)U−1)]Uψ

= U∂µψ + (∂µU)ψ + iUAµψ + U(∂µU−1)Uψ

= U∂µψ + (∂µU)ψ + iUAµψ +−∂µUψ

= U(∂µ + iAµ)ψ

= UDµψ

(16.26)

With this building block, it is easy to build gauge-invariant actions:

S =
∫

d4xψ̄(i /D−m)ψ (16.27)

if we hide the flavour indices, looks just like QED again.

16.4 Building up a field strength

There is a slight subtlety - can we build a gauge invariant term out of Aa
µ only? We may be tempted to

consider the field strength, as we did in QED:

F̃a
µν = ∂µ Aa

ν − ∂ν Aa
µ (16.28)

But this turns out not to work:

F̃a
µνTa ≡ F̃µν = ∂µ Aν − ∂ν Aµ → ∂µ(U(A− i∂ν)U−1)− (µ↔ ν)

= U−1(∂µ Aν − ∂ν Aµ)U + [∂µUAνU−1 − i∂µU∂νU−1 + UAν∂µU−1 − (µ↔ ν)]

= U−1 F̃µνU ++[∂µUAνU−1 − i∂µU∂νU−1 + UAν∂µU−1 − (µ↔ ν)]∗
(16.29)

so we have unfortunately a bit of a mess. To find the correct expression for F, let us find something that is
0 for a pure gauge configuration:

αµ = −iU∂µU−1 (16.30)

which we can see is gauge equivalent to Aµ = 0. If F is gauge invariant, it better be zero when we hand it
the above.

Let’s compute our naive guess for this object - does it vanish?

∂µαν − ∂ναµ = −i∂µU∂νU−1 − (µ↔ ν)

= iU∂µU−1U∂νU−1 − (µ↔ ν)

= −i(αµαν − αναµ)

(16.31)
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This doesn’t vanish, but if we take the difference we get something that does equal zero for a pure gauge
configuration:

Fµν ≡ ∂µ Aν + iAµ Aν − (µ↔ ν) (16.32)

this vanishes if Aµ = αµ = −iU∂µU−1 a pure gauge. Spelling the above, nonlinear field strength out:

Fµν = ∂µ Aν − ∂ν Aµ + i[Aµ, Aν] (16.33)

for which the commutator vanishes if we have an Abelian gauge theory. Let’s see if this field strength is
indeed gauge invariant:

Fµν → U(∂µ Aν − ∂ν Aµ)U−1 + [. . .]∗ + [iU(Aµ − i∂µ)U−1U(Aν − i∂ν)U−1 − (µ↔ ν)] (16.34)

Let’s look at the third term; we have a U(Aµ Aν − Aν Aµ)U−1 which teams up with the first term to give
us the field strength. The other contributions from it cancel out perfectly what is in ∗:

U∂µU−1UAνU−1 + UAµ∂νU−1 − iU∂µU−1U∂νU−1 − (µ↔ ν)

= −∂µUAνU−1 + UAµ∂νU−1 − i∂µU∂νU−1 − (µ↔ µ)
(16.35)

Thus the transformation of the field strength is:

Fµν → U(∂µ Aν + iAµ Aν − (µ↔ ν))U−1 = UFµνU−1 (16.36)

So we’ve improved things, but it is not quite gauge invariant. However, by our construction we know Fµν

only transforms via unitary conjugation/a basis transformation, so we know that traces and higher powers
of it are fully gauge invariant:

Tr(Fµν), Tr(FµνFαβ), Tr(FFF . . . F), Tr(F . . . DF . . . F) (16.37)

However we can’t put these into the action directly because they have free Lorentz indices. The simplest
LI term is then the trace of F contracted with itself:

Tr(FµνFµν) (16.38)

Finally, we arrive at our QCD action:

S =
∫

ψ̄(i /D−m)− 1
4g2 Tr(FµνFµν) (16.39)

in QCD, the fermions ψi are quarks and the gauge fields Aa
µ are gluons. It looks deceptively similar to QED

(fermions, gauge fields, a dimensionless coupling g), but it as a crucial difference. Namely, even without
the fermions (i.e. the absence of matter), the gauge sector is interacting/non-linear. It is sometimes called
“pure glue”. Even the theory of “pure glue” is highly interacting/non-trivial! It is called Yang-Mills
theory:

SYM = − 1
4g2

∫
d4xTr(FµνFµν) (16.40)

which contains terms/diagrams:
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and is an unsolved theory. You’ll get a million dollars/a Millenium prize if you can figure out if
it confines at low energies - good luck. We can treat it with RG, however, and this approach has been
met with success (though perturbation theory breaks down in the strongly interacting regime - this has
motivated the bootstrap approach to QFT).

Next week, we will quantize this theory, following a similar procedure as we did for the photon, with
one small change.

17 Path Integral quantization of non-Abelian gauge theories

17.1 Photon/Abelian case refesher

We had:
S = −1

4

∫
F2 (17.1)

where the generating functional was:

Z =
∫
DAµeiS[A] =

∫
DAµ

∫
Dλδ(g(Aλ))det

δg(Aλ)

λ
eiS[Aλ ] (17.2)

with Aλ
µ = Aµ − ∂µλ. For example g(A) = ∂µ Aµ(x)− ω(x). In the above step, all that we use is a sort of

completeness relation to introduce 1. We then see that the integrand can be made independent of λ, so:

Z =

(∫
Dλ

) ∫
DAµδ(∂µ Aµ −ω)det

δg(Aµ)

λ
eiS[A]

=
∫
DAµδ(∂µ Aµ −ω)det

δg(Aµ)

λ
eiS[A]

∝ Dωe−i
∫

ω2
2ξ

(17.3)

Thus:

Z =
∫
DAµeiS′ [A] det

δg(Aλ)

λ
(17.4)

With:
S′[A] = −

∫ 1
4

F2 +
1

2ξ
(∂µ Aµ)2 (17.5)

δg(λ)
λ(y)

=
δ

δλ(y)

(
∂µ Aµ(x)− ∂2λ(x)

)
= −∂2δ4(x− y) =⇒ det

δg(λ)
λ(y)

= det(−∂2δ4(x− y)) (17.6)

which is independent of λ, as it should be.
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17.2 Path integral for U(N) gauge field

We apply the same strategy to our N2 U(N) gauge fields Aa
µ, a = 1, . . . , N2. We gauge fix each one;

ga(A) = ∂µ Aa
µ −ωa.

Then (introducing an integral of 1 N2 times):

Z =
∫
DAa

µeiS[A] =
∫
Aa

µ

∫
Dλa

N2

∏
b=1

δ(gb(Aλ))det
δgb(Aλ)

λ
eiS[Aλ ] (17.7)

Again the integral
∫
Dλa evaluates to 1, so:

Z =
∫
DAa

µ

N2

∏
b=1

δ(gb(Aλ))det
δgb(Aλ)

λ
eiS[Aλ ] =

∫
Dωe−i

∫ 1
2ξ Tr(ω2) (17.8)

with ω ≡ ωaTa. ThusL

Z =
∫

DAa
µeiS′ [A] det

δga(Aλ)

λb (17.9)

with:
S′[A] = −

∫ 1
4

Tr(F2) +
1

2ξ
Tr((∂µ Aµ)2). (17.10)

The determinant piece is now more interesting. Let us expand out the gauge transformed A:

Aλ
µ = eiλ(Aµ − o∂µ)e−iλ ≈ Aµ − ∂µλ + i[λ, Aµ] (17.11)

or:
Aλ a

µ = Aa
µ − ∂µλa − f a

bc λb Ac
µ (17.12)

The last term is what is new, and it will cause all the trouble. Computing the functional derivative:

δga(x)
λb(y)

=
δ

δλb(y)

(
−∂µ[(∂µδa

b + f a
bc A c

µ )λ
b(x)]

)
= −∂µ

[
(∂µδa

b + f a
bc A c

µ )δ
4(x− y)

]
(17.13)

we see that this depends on A, in contrast to the Abelian case! So then:

Z =
∫
DAa

µ det
(
−∂µ

[
(∂µδa

b + f a
bc Ac

µ)δ
4(x− y)

])
eiS′YM [A] (17.14)

What can produce a determinant from an integral? Let us recall that:∫
dxe−

1
2 xT Mx =

C√
det M

(17.15)

Getting rid of the square root is easy; we can just do the same integral twice, or we can do an integral over
complex numbers: ∫

dze−z† Mz =
C

det M
. (17.16)

For Grassman variables (where we can just Taylor expand to first order because they square to zero):∫
dηe−

1
2 ηT Mη = C

√
det M (17.17)

or with complex grassman variables: ∫
dηdη̄e−η̄Mη = C det M (17.18)
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so we can get determinants, and this is just a nice, Gaussian action! So, let’s apply this trick; it will
introduce some funny fermions into our path integral:

det(−∂µ(∂µδb
a + f a

bc Aµ)δ
4(x− y)) ∝

∫
DcDc̄ei

∫
c̄a∂µ(∂µδa

b+ f a
bc Ac

µ)cb (17.19)

This introduces new fields! Specifically, it introduces 2N2 fermionic “ghosts” ca=1,...N2 and c̄a.
So, our final result:

Z =
∫
DADcDc̄eiSYM (17.20)

with:
SYM, final = −

∫ 1
4

Tr(F2) +
1

2ξ
Tr((∂µ Aµ)) + c̄a∂µ

(
[∂µδa

b + f a
bc Ac

µ]cb

)
(17.21)

We get ghosts appearing in the diagrams which previously only contained gluons, as follows:

Wwe could have very well done this for the Abelian case, but note that the structure factor f a
bc Ac

µ
vanishes in that case.

So - we have obtained our fully quantum description of QCD:

Z =
∫
DADψ̄DψDc̄DceiSQCD, final (17.22)

with:
SQCD, final =

∫
ψ̄(i /D−m)ψ + SYM, final (17.23)

one can look at the β function for this theory - interestingly, depending on what N is and how many
fermions we have, we can change the sign of the β function. So there is a rich landscape of non-Abeliean
gauge theories, leading to lots of interesting phenomena. For example in QCD one finds that the β function
is the opposite of QED; the theory is UV-complete; it can predict everything microscopically, but at low
energies it becomes strongly coupled and it is difficult to study quantitatively. Thus, it is a topic of current
research to find techniques for QCD beyond perturbation theory.

17.3 Wilson Lines

We’ve figured out how to build gauge-invariant actions. We have local terms ψ̄(x)ψ(x). How do we come
up with gauge-invariant terms for, e.g., quarks that are spatially separated? We do know how to create
semi-local gauge invariant operators via using covariant derivatives, such as ψ̄Dµψ and ψ̄DµDνψ.

Let’s try to build a field ψ̃x2(x2) that transforms like ψ(x1). Currently, we have ψ(x2) → U(x1)ψ(x2)
which is not what we want, we want ψ̃x1(x2)→ U(x1)ψ̃x1(x2).
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Let’s Taylor expand ψ(x2) around x1:

ψ(x2) = ∑
n≥0

(x2 − x1)
n

n!
∂n

x1
ψ(x2) (17.24)

which transforms like U(x2)ψ(x2), again not what we want. Let’s now replace the derivatives above with
covariant derivatives Dx = ∂x + iAx:

ψ̃x1(x2) = ∑
n≥0

(x2 − x1)
n

n!
Dn

x1
ψ(x1) (17.25)

This transforms like U(x1)ψ̃x1(x2) as desired. This is because:

Da
xψ(x1)→ U(x1)Da

xψ(x1). (17.26)

We can now construct a gauge-invariant non-local/extended operator:

ψ̄(x1)ψ̃x1(x2)→ ψ̃(x1)U−1(x1)U(x1)ψ̃x1(x2) (17.27)

Let’s try to get a nicer expression for ψ̃x1(x2). Consider:

∂x1 ψ̃x1(x2) = ∑
n≥0

(x2 − x1)
n

n!
∂x1 Dn

x1
ψ(x1)− ∑

n≥1

(x2 − x1)
n−1

(n− 1)!
Dx1 Dn−1

x1
ψ(x1)

= ∑
n≥0

(x2 − x1)
n

n!
(∂x1 − Dx1)Dxn

1
ψ(x1)

= ∑
n≥0

(x2 − x1)
n

n!
(−iAx(x1))Dxn

1
ψ(x1)

= −iAx(x1)ψ̃x1(x2)

(17.28)

so the operators obey a very simple evolution equation. This is fairly analogous to the time-dependent
Schrodinger equation:

∂tψ(t) = iH(t)ψ(t) (17.29)

whose solution is the time-ordered exponential:

ψ(t1) = T e−i
∫ t1

t2
H(t′)dt′

ψ(t2) (17.30)

So for us, the solution is just the path-ordered exponential:

ψ̃x1(x2) = Pe−i
∫ x1

x2
dx′Ax(x′)

ψ̃x2(x2) (17.31)

but, ψ̃x2(x2) = ψ(x2) (from the definition, we can see that all but the n = 0 term vanishes). So, our
gauge-invariant object is:

ψ̄(x1)ψ̃x1(x2) = ψ̄(x1)Pe−i
∫ x1

x2
dxAx(x)

ψ(x2) (17.32)

where we define the Wilson-line operator:

Wx1,x2 ≡ Pe−i
∫ x1

x2
dxAx(x) (17.33)
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Since ψ̄(x1)ψ̃x1(x2) is Gauge invariant, this tells us that the Wilson line operator transforms as:

Wx1,x2 → U(x1)Wx1,x2U−1(x2) (17.34)

We can generalize this construction to arbitrary paths:

WP = Pe−i
∫

P dxµ Aµ(x) → U(x1)WPU−1(x2) (17.35)

We can also define this for a closed loop:

WC = Pe−i
∮

C dxµ Aµ(x) → U(x)WCU−1(x) (17.36)

Where the Wilson-loop observables:
WC = Tr(Pe−i

∮
C dxµ Aµ) (17.37)

are gauge invariant!

A few comments:

• For very small loops C, they reduce to gauge-invariant local observables; using Stokes’ theorem (this
is done in Peskin 15.3):

•
WC ∼ 1− iTr(Fxy)Area(C) + const.Tr(FxyFxy)(Area(C))2 + . . . (17.38)
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• They can be used as order parameters; if we have ⟨WC⟩ ∼ e−area(C) then we are in the confined
phase (there is tension), and if ⟨Wc⟩ ∼ e−perimeter(C) then we are in the deconfined phase, without
membrane tension. In modern language, we would associate this with the spontaneous breaking of
higher-form symmetries.

• Wilson loops play a key role in topological phases/QFTs. They have the property that ⟨WCWC′⟩ ∝
linking(C, C′):

And that ⟨WC⟩ ∝ self-linking(C):

They are very useful as probes in theories where the characteristics are non-local/local order param-
eters do not exist.

This is the end of QFT II - it’s been a fun ride, and QFT has many many more beautiful aspects and
topics. I hope you keep learning!
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