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Introduction:

This is a set of lecture notes taken from UChicago’s PHYS 443 (Quantum Field Theory I), taught by Luca

Delacrétaz. Topics covered include the classical to quantum transition, Free scalar field theory, Lorentz

Invariance, Symmetries, Correlation functions, The path integral formalism, Wick’s theorem, Noether’s
theorem and Ward identities, Interacting theories, Counterterms, The renormalization group, Scattering

and the LSZ formula, The S-matrix and particle cross-sections.
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1 Introduction

1.1 Motivation and Logistics

QFT is at the center of HEP, CMP, Soft matter/stat mech. Historically from HEP, but now useful every-
where. All the fields have their own insights, and their own answer into the question; why QFT?

e HEP: Unique way to combine quantum physics with Lorentz invariance/SR; need it to describe the
fundamental properties of the universe. This perspective is nicely emphasized in Weinberg. This
was developed in parallel with experiments in particle physics, culminating in the standard model
of particle physics, one of the most precise scientific theories that we have.

* CM: QFTs are an efficient way to parametrize many degrees of freedom, i.e. that may appear in
many-body physics. An interesting notion here is then Effective Field Theories - in CM we aren’t
interested in the fundamental particles, generally; we know the microscopics of the system and can
look at the emergent properties of a system. We can study EFTs that might be different from those
that govern fundamental particles, that describe the system accurately at low-energy scales.

e Stat-mech: Field theories and QFT methods are very useful in classical contexts! As an example, in
water, at a phase transition point between liquid and gas the system is described by a conformal
field theory/CFT. In this context, we replace quantum fluctuations with thermal ones (statistical
field theory). The idea of the renormalization group comes in, and coarse graining can give rise to

universality.
Water
o liquid T
z CFT
;:3 solid
gas
Temperature

Figure 1.1: Phase diagram of water. At the critical point, the system is described by a conformal field
theory/CFT.

In this course we’ll try to take a holistic perspective of QFT. The textbook is Srednicki - it’s maybe not
the best QFT textbook; it doesn’t give good insights (come to lecture for that), but takes you through the
details and developing techniques. Grade from weekly problem sets, assigned on Thursday and due the
next Thursday.

1.2 Review of Classical and Quantum Mechanics

It will be useful to review the quantum simple harmonic oscillator as the simplest QFT is simply a collec-
tion of QSHOs.
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Figure 1.2: Sketch of an arbitrary 1-D potential V().

Classical SHO - Variational Method

Let’s start with the classical SHO. Consider a (classical) point particle in a potential V'(x). Its dynamics is
described by the action:

1
- / drsm(r) = V(x(1)) (1.1)
where the first term is the kinetic energy and the second term is the potential energy.
To get the equation of motion from the action approach, we look for the trajectory x(t) that extremizes
the action (which is a functional, as it depends on a function x(t)) S[x(t)]. We use a variational approach

to find the extremizing trajectory. Under an arbitrary éx(t) (to the true path x(t)), we must have 6S = 0.
Let us look at the variation, to linear order:

0=65= / dtmisx — V' (x(t))6x (1.2)
Now, integrating by parts, we have:
/dtx&x = 9¢( x&x /dtx(Sx (1.3)

where the first term is a total derivative, which we take to be zero assuming the variation dies off at the
infinite past and future. We then obtain:

0=065=— /dt&x(t) () + V' (x(8))] (1.4)

Since this must vnaish for all variations Jx, we obtain the equation of motion:

mi(t) +V/(x) =0 (1.5)

This is a nonlinear ODE, and difficult to solve; however when the potential is quadratic:
V(x) = =kx? (1.6)

it becomes linear and we can solve it! In this case, we have:
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Figure 1.3: A quadratic potential V(x) = Jkx2.

0 = mx + kx (1.7)
The general solution is:
x(t) = Aot 4 Be~'wo! (1.8)
where we have introduced the characteristic frequency wg = v/k/m. A,B are integration constants fixed
by the initial conditions. Since we want x(f) € R for all ¢, this enforces B = A*.

Classical SHO - Hamiltonian Formalism

We solve the same problem, but in the Hamiltonian formalism. We identify the conjugate momentum:

oS ,
p=5. =mi (1.9)
And the Hamiltonian is given by:
2 2 2
—xpL=P P Ly P L
H=xp L—m 2m+V—2m+2kx (1.10)

and can be viewed as the generator of time translations. To obtain the EOM from the Hamiltonian, we
consider the Poisson brackets:

X = {x, H}pB (1.11a)
p=1{p H}pp (1.11b)
Where {}pp denotes the Poisson bracket:
{f(x,p),8(x,p)}pp = 9xfdpg — pforg (1.12)
So the EOM become:
- _F
X =0dpH = " (1.13a)
p=—0H=—kx (1.13b)
From which we obtain:
p=mi=—kx (1.14)

which is precisely hte same equation we had previously.
A comment; the conjugate coordinate momentum pair satisfy:

{x,ptpp =1. (1.15)



1.3 The Quantum SHO

In canonical quantization, one starts from the coordinates in phase space (in this case, x and p) and then
promotes them to quantum-mechanical operators satisfying canonical commutation relations:

{x,p}pp — [%,p] =i (1.16)

where 7 is a constant with dimensions - by appropriate choice of units we can set it to 1, which we do
for the remainder of this course. Thus, instead of measuring momentum in kg m/s, we will measure it in
Ii/m to make the commutator dimensionless.

H is also now an operator; it has the same expression as before, but now involves £, p:

a2
A p 1, 0

= — 4= . 1.17
H o + 2kx ( )

H acts on states |¢) of a Hilbert space. The dynamics are governed by the Schrodinger equation:

i) = Hly) (1.18)

Acting on this equation with (x| a position eigenstate, we obtain the Scrodinger equation in position space:

dip(t, x) = —ﬁailp(t,x) + %kx%p(t, x). (1.19)

where (t,x) := (x|ip) and we recall that p — —id, when acting in position space (this can be derived
from the canonical commutation relations).

This is a partial differential equation; in general, this is not trivial to solve (though we may of course
put it on a computer and see the time evolution for arbitrary initial conditions). Instead of solving it fully
generally, we look for stationary solutions:

P(x, ) = e Fyp(x) (1.20)
We then obtain an ODE, which is slightly easier to work with:

Eyp(x) = —ﬁailp(x) + %kxzyb(x). (1.21)

We would like for the solutions to be normalizable such that we are able to normalize 1(x) and interpret
|$(x)|? as a spatial probability distribution. Mathematically, this is the condition:

/dx|1/)(x)]2 < oo, (1.22)

Although in the classical SHO we had an infinite, continuous set of solutions, the normalization condition
interestingly reduces the set of solutions to a discrete (though still infinite) set. In this sense we have
quantized the SHO. We can label this discrete set of solutions as |n) for n € IN:

Hin) = E,|n). (1.23)

Let us review how to obtain the spectrum of the QSHO. We do this by diagonalizing H, which we do
via the method of raising and lowering operators, which are defined as linear combinations of %, p:

f= \2 [\/mT;Ox +i ] (1.24)

W p] (1.25)



The coefficients are chosen such that:
(8,4t =1 (1.26)

and such that:

A = wy(ata+ %) (1.27)
Defining N := dta, the eigenstates are discrete; let |n) be the eigenstates of N:
N|n) = n|n). (1.28)
we show that n € IN. This follows as:
Na|n) = ataa|n) = ([a%,a] — aa%)a|n) = —a|n) +aa'aln) = (n —1)a|n) (1.29)

so 4 lowers the eigenvalue of N by one. In order for the spectrum to be bounded, we require a state
annihilated by 4, i.e. that which 4|0) = 0 (else there is no lower bound to the spectrum). We then note
that:

N|o) = a*a|0) = 0 = 0|0) (1.30)

thus this is an eigenstate (the ground state) of H with eigenvalue wy/2. The rest of the spectrum can be
built using 4's. Via a similar argument to Eq. (1.29), it can be shown that 4" increases the eigenvalue of N
by one, and thus the eigenstates are:

ny = &) (131)
Vn!

where (n|n') = 6,,s, N|n) = n|n), and H|n) = wp(n + })|n). Thus the spectrum is:

E, = wo(n+ %) . (1.32)

This QSHO will be the building block from which we will construct quantum field theories.

1.4 Free Scalar QFT

Consider a SHO on every site of a M-site lattice: The action is then simply the M-fold sum of our previous

.
-
L —

| 2 3 .
Figure 1.4: We begin to construct the simplest QFT, the free scalar QFT, by placing non-interacting quan-

tum SHOs on sites of a lattice.

action

M 1 Mo o1, 1
S=m)_ /dtixj(t) - %wéxj(t) = Z/dticp]z(t) — Ea;(%cpj(t) (1.33)
j=1 j=1



where we have defined ¢; = /mx;. This is a quantum many-body system, but the solution to this is
already known! It will simply be M copies of the previous single-body system. Eigenstates are labelled

by a collection of occupation numbers where:

Tl]' ,
|{”j}> = |ny,n2,...,np) (1.34)

and the energy eigenvalues is just the sum of the individual energies:
- 1
al{n}) :]ZEj|{n]-}> :]Zwo(nj+2)|{n,-}>. (1.35)

Adding interactions

This will become more interesting if we couple the SHOs, for example with nearest neighbour couplings.
We add a term to the action:

1 2
s —2 [y~ gt} — 550 =) (1.36)

The last term represents an energy penalty to the positions of neighbouring oscillators not being aligned.

C = ™M

é o

/(‘\

r - Ef\d)7 pa\a,ﬁ'lbs

Figure 1.5: We introduce couplings between QSHOs by imposing an energy penalty when neighbouring
oscillators are misaligned. The relevant length scale of the interaction is given by the lattice spacing J.

¢ is the spacing between lattice sites and c has the dimensions of velocity. The term must have units of

tlz , and we see that g indeed has this.

This turns out to be a much richer system! The action/Hamiltonian is not diagonal in the i label. The
trick is to do a change of basis, via a Fourier transform:

s LN iy,
P = \/M];e ¢; (1.37)

which we will show can be inverted:

ekl @ (1.38)

R
\
g~
M=

T
I



and k € {—% —|—1,...,—1,0,1,...,M} . ZT” We will then show that:

S= % [ dtm il — Sl - (1 - cos(ke)) il (139)
. AP eald il :

We then notice that the s don't talk to each other/are decoupled! We are back to having decoupled
SQHOs, just in a different basis. This immediately gives the spectrum.

10



2 Free Scalar Field Theory Part 2, Lorentz Invariance

Recall the action for a collection of QSHOs coupled with nearest neighbour interactions:

=1 /dg% LT P 1)

where we have periodic boundary conditions, such that ¢;, »; = ¢;. The lattice spacing is ¢ such that the
total length of the chain is L = MJ.
We will solve this via a change of basis of degrees of freedom ¢; to momentum space:

5 1 ik M M) 2m
= To; i — —\ .=
Px \/M];e i, ke{ > Tl 1,0,1,...,2} 3 (2.2)
Note that the ¢s are no longer real, but they do satisfy the reality condition:
()" = P& (2.3)
We will show: )
1+ 1 ~ c -
S=Z/w;mf—;@mﬁ—ﬁu—mMMMwF (24)
k

The Fourier transform diagonalizes the action (each of the ¢s are independent) and we can also now see
that the characteristic frequency of the ¢ has a dependence on k through the cos(dk).
Note that the inverse Fourier transform is given by:

L ikéj 7
¢; Mﬂ;e¢k (2.5)

To check that this is the case, let us plug in the expression for the forwards Fourier transform and check
that we recover ¢;:

B % Yy e Rle T gy = Z‘P Zelm = = E(P] ji (2.6)
P 7

In the second equality we commute the two sums and first carry out the sum over . For the third equality
(where we carry out the sum over j') note that if j = j/ then the argument of the exponential is zero and
so the sum is just an M-fold sum of 1, i.e. just gives M. If j — j/ = 1, then the sum is ¥ ¢*°. The first term
P i 27T 27 21

in the sum is ¢(0) = 1, the next term is ¢! 7% = eM, the next is ee™ 2, and so on. This is a sum over points
on the unit circle in C for which the sum is just the center of mass, i.e. 0.

For j — j' # 0 in general, we repeat the argument (potentially skipping point as larger j — j' has larger
frequency around the circle). This is why we conclude that ¥ e*(~J ) = M.

Let’s now convert the action:

M
Z (P]Z _ % 2 (2 eikéjq‘}]{) <Z eik/éj(i)j’> L Z¢k¢k’ Eezké]ezk 0j — Z‘Pk¢k’ Z 615] (k+K') (2'7)
j=1 j j K kk’ kk’

Applying the same argument as we saw in checking the inverse Fourier transform, we know that
ZM pl0j (k+k") — Mfsk’,fk SO

=Y GkPrdp, k= Z¢k¢ k= 2|‘Pk|2 (2.8)

kK’

Mﬂ:

11



Figure 2.1: When looking at Zke’k‘“ i), for k € {—% + 1,...,—1,0,1,...,%} ZL”, and |[j —j| =1, we
can view the sum as going over points in the complex unit circle. Above, we have M = 8. The sum of the
points has its center of mass in the center of the unit circle, i.e. 0 and so the sum evaluates to zero. For
lj —j'| > 1, we simply skip points (the sum goes around the circle at “higher frequency”), but the sum
cancells in the same way.

where in the last equality we use the reality condition (¢ )* = ¢_.
The time derivative term works out exactly the same way, just take the dot along for the ride:

M
) 2
Yob =Yl 2.9)
=1 k
The term that is more subtle (and more interesting) is the interaction term. Let us study this now.
2
u 1 ko ¥ ko (j+1) 7
Z =)’ =300 | | = UV (2.10)
=1 i\ K k
The two terms appearing are almost identical, so we factor out the piece that looks the same:
u ik iko 7 ik'ok ik'6
Y@= j1)? = 5 Z Y (1-¢%) ) [ L e —e*?) (211)
j=1 K

Now doing the trick we’ve seen twice already, we interchange the order of the summations and take the j
sum first:

j=1 kk’ kk/

2 —pj1)? = Ewk/ — R0 (10 Yy IR Z¢k¢k/ (1—e®)(1 = %) M6y, (212)
)
We are then left with:

M , ‘ 4 o }
Y (@5 — 1) = Y Gebr(1 =) (1 =) = Y| g (2 — (% + 7)) = 2 )| g|*(1 — cos (k)
j=1 k k k

(2.13)

12



where the last equality follows via Euler’s formula. We have thus successfully obtained the action S in the
k-basis. The modes are now not labelled by sites, but by the wavevector (number as we are in 1-D) k.
Question: How could we have guessed that this was a good choice of basis? One intuition is that the
action (in the position basis) was translation invariant. When we have a translation invariant problem,
momentum is conserved and thus the momentum basis is convenient to work in.
Since we now have diagonalized the action - we have M decoupled QSHOs labelled by k; the eigenstates
and spectrum easily follow. The eigenstates are:

|{1’lk}> = |n(—%+l)2T”" . .,7172%1,7’10,1/12%,.. .,n%%ﬂ (2.14)
The energy is simply the sum of the energy of each of the modes:
H{m}) = Equ l{ne}) = Y En [{mc}) (2.15)
k
where:
1 s A2
Ey = (nx+ 5) w§ + Zﬁ(l — cos(6k)) (2.16)
which is obtained by looking at the action in Eq. (2.4), and taking the square root of the terms multiplying
114 |2
3 |l

We have thus solved our first nontrivial quantum many-body problem! Although simply, this already
has applications in nature; this simple model describes phonons in a crystal, and can be used to predict
the heat capacity of a crystal. Note that in a crystal, the spacing ¢ is finite (the lattice/atomic spacing).
However, what we will do now is take the continuum limit.

2.1 Continuum Limit: QM to QFT

What we really did above is solve a quantum-mechanics problem; we now take § — 0 and go from QM
to QFT. Let’s see what happens to the g—i(l — cos(0k)) term in this limit. Taylor expanding the cosine, we

have:
lim f(1 — cos(dk)) = lim e (1 - (1 - (5';)2)) = %czkz (2.17)

60 62 60 62

Thus the action becomes: 1 1
=Y [ dtldl - 5 (@ + ) @l 2.18)
k

1
En = (mg+ E)\/w% + c2k2 (2.19)

You will explore this a little more in the first problem set.
Let us see what happens in position space in the continuum limit! Recall the action in position space:

and the spectrum becomes:

M 2
1., 1, lc 2
s= ) [ ardf = 0b 55 (9= 91) (2.20)
]:
Then noting that, ¢; = ¢(x = jé) in the continuum limit the interaction term becomes:
6+48) = () \”
5—0 6

13



where we recognize the definition of the derivative. In addition, the sum over lattice sites becomes an
integral over position space, so the action becomes:

s=fat| dx%(at(p(t,x))z - %cz(qub(t,x))z - %w%@p(t,x})z (2.22)

where we can (loosely) recognize the wavevector k becoming d, in position space. Now, let’s obtain the
classical equation of motion for this system:

0=265= / dtdxop — 0x4d:0¢ — wipd (2.23)
Like last time, we wish to factor out d¢, as we can then conclude that whatever it multiples must be
zero. We integrate by parts, and we choose the variation to be zero at spatial/temporal infinity so that we

may throw away the boundary term (we don’t have to impose this - not doing so would give us an extra
condition, but for now we don’t care about the boundaries). We are left with:

0= / dtdxsp(—2¢ + 2% — wi) (2.24)

and since this must be true for all choices of variations d¢(t, x), we obtain:

(07 — 202 + wW3)op(t,x) =0 (2.25)

which is the classical equation of motion for this field, known as the Klein-Gordon equation. The first two
terms we recognize as those appearing in the standard wave equation, with solutions f(x = ct). The w3 is
an addition to the wave equation, which tells us that disturbances propagate at speed < c. Although the
dynamics are a little more complex than the wave equation, it is still a linear PDE and can be solved.

This equation is accidentally relativistic (it is Lorentz covariant, as we shall soon see), without try-
ing. Interestingly, ¢ may not be the speed of light in materials, yet such systems have a sort of Lorentz
symmetry.

Note that even with interactions, this QFT is still called free scalar field theory, as the action is quadratic
in the field. We will also in the future look at (non-linear) interactions, which will be more difficult and
lead to further phenomenology.

2.2 Lorentz Invariance

Some systems have relativistic symmetry, in which case we should use it; it is also just a great example of
how we can use symmetries to constrain and understand QFTs. Finally, it is a symmetry of nature, so we
should care about it, as humans, not just as physicists'. Symmetries are described by groups, and then we
can do things like classifying particles by representations of groups (e.g. spin-1/2 particles described by
representations of the Lorentz group).
Historically, Maxwell’s equations were the first hint that the laws of nature are not invariant under
Galilean boosts:
X—>x+0ovt, t—t (2.26)

(where time is left invariant) but rather invariant under Lorentz boosts:

ov

- X
c2

X —>XxX+ovt, t—t+

(2.27)

where we note that time is also transformed. At low velocities |v| < c this effect is small so we may be
able to neglect it, but (e.g.) in electromagnetism or in relativistic systems it becomes highly relevant.

1Luca: I try to tell this to my friends, but it doesn’t really work...

14



From now on, we choose units such that ¢ = 1.

Note that the transformations appearing in Eq. (2.27) are the infinitesimal form, but this is all we really
need; from these we can easily find the finite versions.

How can we understand Lorentz transformations? They are those that leave spacetime distance between
pairs invariant:

x> — 12 = (x+6vt)? — (t+6v-x)? = |x|> — 12 4+ 2x - Ovt — 2tx - ov = |x|* — 12 (2.28)

where we neglect terms O((6v)?).

Figure 2.2: Lorenz transformations leave the spacetime distance |x|?> — t?> between two spacetime points
invariant, here x% — t%.

We here consider a more compact notation in the form of 4-vectors, where we group the 3 spatial and
1 temporal (3+1) coordinates into a single vector:

= (1, x1 2, x3) (2.29)

where we can then write the spacetime distance as:

T
t -1 0 0 O t
2 2 1 x1 0 1 0 0 X1
Fx=1 0 01 0]|x (2.30)
X3 0 0 0 1 X3

the 4 x 4 matrix appearing above is the Minkowski metric 1, = diag(—1,1,1,1), and we can write the
spacetime interval as:
1% + |x|? = xFx’ = 22 (2.31)

where y,v = 0,1,...,d where 1Y =t and d is the spatial dimension, 3 in this case. This is the correct
choice of the metric signature, according to Luca, though it was met with murmurs of mild controversy
from the crowd.

2.3 Classifying all Lorentz Transformations

Let us try to find all Lorentz transformations, i.e. linear transformations:

xt — AbxV = x# (2.32)
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that leave the spacetime interval invariant:
X = rux” — rywx,”xlv = UWAZAgx“xﬁ (2.33)

This yields the condition:
H}IVAKA}/S = Map (2.34)

i.e. the A matrices leave the Minkowski metric invariant.

Notice that these include spatial rotations, which rotates space and leaves time invariant! These satisfy
t — t and |x|? — |x|? (rotations leave spatial distances invariant). So, one subclass of Lorentz transforma-
tions are
0 00

R (2.35)

S O O

Where R are the 3 x 3 rotation matrices satisfyingR” - R = T.
Note that Lorentz transformations form a group; let us check that they satisfy the group axioms. (1) If
A1, Ay € G, then:
(M1A2) (A1 A2) = Ag (ATgA) A2 = Agipha =1 (2.36)

so A1y € G. (2) The As are just matrices, so clearly their multiplication is associative:
A1(A2A\3) = (A1 Ag)As. (2.37)

(3) There exists the identity element I; this is just A = diag(1,1,1,1) which maps x* — x*. Finally (4)
There exists an inverse A~! € G such that A"!A = I. Intuitively this is true, e.g. for rotations we just
rotate in the opposite direction and that is the inverse transformation. We will examine the condition more
closely next class.
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3 Lorentz Invariance Part 2, Transforming Fields

3.1 Inverses of Lorentz Transformations
Recall the Lorentz transformations:
Xt - X" = AlXY (3.1)

Which has the property of preserving spacetime distance:
(X')? = X? = X'X". (32)

Where n = diag(—1,1,1,1) is the Minkowski metric and x* = (xo = tx!,x2, x3). Thus they have the
property:
U}thZA}é = Tap 3.3)

or alternatively:
ATyA =7 (3.4)

The Lorentz transformations form a group O(1,3), where O stands for orthogonal. Last time we
discussed the group axioms, one of which is that each group element has an inverse. Thus to conclude
our argument about Lorentz transformations forming a group, for a given A € O(1,3) let’s find its inverse.
To this end, we notice:

nATpA =n(n) =1 (35)
thus:
A"1=nATy. (3.6)
The inverse condition can also be phrased as:
(AHEAY, =) 3.7)
So the matrix elements are:
(AN, = Mg (3.8)

For more compact notation, it is often convenient to raise and lower indices using the Minkowski
metric. For example:

Xy = Huwx’. (3.9)
But be careful! Note that this means:
xy = (—t, X2, x3) =+ xM (3.10)
With this convention, we can write:
(AH = A (3.11)

Note that Greek indices «, B, 1, v we take to run from 0,...,3 and regular letters i,j,k,I we take to run
from 1,...,3 (spatial only).

3.2 Infinitesimal Lorentz Transformations

We consider infinitesimal versions of the Lorentz transformations; this makes the analysis more simple,
and we can build up the finite versions from the infinitesimal ones. Thus, we consider:

A =1+ dw (3.12)
thus:
Al =6l + 6w’ (3.13)
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Thus for A € O(1,3):

1 =ATgA = (T4 6w?)y(I + dw) ~ 17+ éw + dwTy (3.14)
Thus:
0= (néw)uw + (5wT17)W = Nuadw', + 5“}‘17,,41,. (3.15)
Let us define:
Swyp = rlwawﬁ‘s (3.16)
So then:
0 =dwyy +owyy = dwyy = —dwyy (3.17)

i.e. the dw matrix is antisymmetric! This might remind you of rotations; where the generators are antisym-
metric. This tells us the general structure of infinitesimal Lorentz transformations; they are parametrized
by antisymmetric matrices. Thus, the question of classifying Lorentz transformations becomes how many
antisymmetric matrices they are.

In D = 2, we have a single independent antisymmetric matrix (Os on the diagonal, 2 on the off diagonal,
and —a on the other off diagonal), corresponding to a boost. In general for D dimensions we have M
independent antisymmetric matrices; this can be seen from the fact that the diagonals are always zero, and
then the upper triangle of the matrix - of which there are D=V entries - specifies the matrix (the lower
triangle is fixed by antisymmetry). In D = 4, this corresponds to 6 independent infinitesimal Lorentz
transformations; 3 rotations and 3 boosts. In a flat world (i.e. D = 3) we have 3, corresponding to 1

rotation and 2 boosts.

3.3 Action of Symmetries - Representations

In a little while, we will consider QFTs that have these symmetries. We are thus interested in learning how
these symmetries act on the states. In QM and QFT, symmetries act as unitary operators on the Hilbert
space.

For example, for a given Lorentz transformation A, there is a unitary operator U(A) which acts on the
Hilbert space, i.e.

[p) — U(A)[9). (3.18)

where U(A)" = U(A)~!1. Alternatively, we can consider their action on operators:
O — u(A)fou(a) (3.19)

This is a representation of the group symmetry, and this representation must be faithful. In particular:

U(A1)U(A2) = U(A1A2) (3.20)
which implies:
U(lg) =1 (3.21)
as well as:
UMNUA YD =Ulg) =T = uAH)=umn?t (3.22)

note that the I appearing in (-) is the identity group element, while the I appearing on the RHS is
the identity operator. We drop the subscript as which is a group element/operator should be clear from
context.

For this course, we will generally consider faithful representations, though there are some cases where
this is broken in a small way, e.g. up to a phase where U(A1)U(Ay) = U(A1Az)e™2.

So, if we consider the unitary representation of the infinitesimal Lorentz transformations:

UL+ 6w) =1+ é(swwwv (3.23)
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here, M is a Hermitian operator:
(MY = pimv, (3.24)

In a QFT, we will make M out of 4y, ﬁ,‘:, ¢ etc. We can think of M as a matrix of operators, acting (here) on
an infinite-dimensional Hilbert space.

An observation; Lorentz transformations act on coordinates in a continuous way; so the only way to
accommodate this is to have fields, which are infinite-dimensional.

We now derive very general results about QFTs with Lorentz invariance. We consider:

U(A) "U(T + 6w)U(A) = U(A NI+ 6w)A) = UT+ A swA) =T+ %m;ﬁwﬁ (3.25)
Where we have notated 6w’ = A~15wA. Writing out its components:
Sw'y = (A’l)"‘yéw“vA” = A,j‘z;w”VAVﬁ (3.26)

Thus:
Swpg = N Aoy (3.27)

On the other hand, if we work out the LHS of Eq. (3.25), we have:

U(A)t (1 + ;&awM”V) U(A). (3.28)
Thus comparing the left and right hand sides:

U(A) MU (A) = A AT, M*P (3.29)
Thus we see that we have a collection/multiplet of six operators M" (the generators of the Lorentz group)

that get shuffled by Lorentz transformations. Thus, we can say that the generators M*' transform in a
tensor representation of the Lorentz group.

3.4 The Lorentz Algebra

So, we have started to understand how Lorentz symmetries act on themselves. The statements that follow
from symmetry are very simple and universal (in contrast to a lot of things about QFT)... Let’s push this
a little bit more to get one more interesting property. Let’s also take the symmetry A to be infinitesimal:

A=1T+dw (3.30)

thus learning how infinitesimal Lorentz transformations act on each other. Taking A to be infinitesimal in
Eq. (3.29), we have (to leading order) on the LHS:

i . R i . . i NP
(11 - 25%,31\/1“!3) M (11 + 25%,31\/1“!3) ~ MM — E(swaﬁ[wﬁ, MM (3.31)

where we note that the inverse of the infinitesimal transformation simply flips the sign of i. The RHS of
Eq. (3.29) gives:

((55 + éw};) (5:; + 5(4]”5) MNP ~ MM+ 5wlfxl\7l”“/ + 5w”51\71”ﬁ = M" + dwyp (n“”M”ﬁ - 77”5]\71”“’) (3.32)

where we note the swap of indices causes the flip of the sign in the last M term due to antisymmetry.
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We want to now equate the two pieces; however note a small subtlety! éw,g is not a fully general
matrix; it is a general antisymmetric matrix, and thus places no constraint on the symmetric part of what it
multiplies. So, we need to put the RHS expression into antisymmetric form via antisymmetrization:

[N V] = i (W NP — B — (o ﬁ)) (3.33)

where we note that the antisymmetric part of a matrix is given by 1 (itself — (a > B)).
Our conclusion: any QFT with Lorentz invariance will obey the Lorentz algebra. The boost generators
are

R; = M (3.34)
i.e. mix space and time, and the rotation generators are the Ms that involve two spatial indices.
<1
Ji = EeijkM]k- (3.35)
The commutation relation between rotations and boosts are given by Eq. (3.33):
i Ri] = LW, 619) = Legy (~7NI0 — (k 15 1)) = —e M0 = e RF = 3.36
Ul/ ]] - Eezkl[ 4 ] - Eelkl - - ( A ) = —€ikj = €ijk - ( . )
So, we see that boosts transform like vectors:
JiKil=0 (3.37)
(1, Kz] = iK3 (3.38)
Similarly, the other commutation relations can be obtained:
i i) = i€l (3.39)

which describe the group of rotations SO(3) or SU(2). The group of rotations is closed. The commutator
of two boosts gives:

[Ki, Kj] = —ieijJx (3.40)
which tells us that we cannot have a theory that is only invariant under boosts, we have to also include
rotations.

3.5 Transformations of Scalar Fields

So, we have seen how we can classify objects according to their representation (i.e. how they transform
under the group). We saw:

e Scalar/trivial: a — a (e.g. x> = xFxVnj,)
e Vector: x* — x'* = A”vx”
e Tensors: xHx, MH*

but we now ask; how do fields ¢(x#) transform? The simplest reasonable possibility is that the fields do
not transform, up to change in coordinates:

¢(x) = ¢ (x') = ¢p(x) (3:41)

For example, if we consider the temperature field T(x) in a classroom, if we change coordinates then
the temperature field should not change up to accounting for the coordinate transformation. In terms of
Lorentz transformations:

¢'(x) = (A 1x) | (342)
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This is the scalar field transformation. Note that after we have constructed a scalar field, we can then
define composite fields, e.g. O(x) = (¢(x))?; indeed we see that this obeys the transformation law for a
scalar field:

0 = 0'(x) = [¢)] = [p(a 0] = 0(ax). (3.43)

This will be the same for ¢3,¢* etc. This means the “mass term” in our simple scalar field Lagrangian
from last lecture is a scalar field:

Ly = %mchZ. (3.44)

Note that a scalar field is not a scalar, but it instead describes the behaviour under transformations.
Notably, the Lagrangian is not Lorentz invariant; however, the action is:

5= / d4xL(x) — / Bl (x) == / dxL(Ax) = / d4f|det%|£(f) — / d45L () (3.45)
where we note that: 4
X
deta = |detA| =1 (3.46)
as:
ATyA =y = detA = £1. (3.47)

This is why the action approach is so important; it is Lorentz invariant. The Hamiltonian formulation is
not, as energy is not Lorentz invariant.
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4 Transforming Fields Part 2, Revisiting the Relativistic Scalar Field
Recall the transformation of a scalar field:
¢(x) = ¢'(x) = p(A"x) (4.1)

If £(x) is a scalar field (e.g. £ = 1m2¢?), then its integral:
S— / 4L (%) 4.2)

is Lorentz invariant. We checked this mathematically, but its also obviously true; e.g. for temperature, all
people in the room will agree on the average temperature of the room. This makes the action principle
nice when we talk about symmetries/Lorentz invariance (compared to the Hamiltonian formulation).

4.1 Transforming Derivatives of Scalar Fields

If the Lagrangian was just £ = %mZQDZ, things would be a bit boring; let’s consider adding derivatives, e.g.

9up(x) = o ¢(x). We would intuitively expect this to transform like a vector; let us check this intuition:

d d
Ou(x) = 75 = 4ot P(A"1x) = T 4o $(x) = A/O,(x = A x) (4.3)

1%
where we identify j;{ with A™1 = A;f .

So the derivative transforms not as a scalar field, but as a vector field; you may have seen this before
as Ay(x), which appears in Maxwell’s equations, or in QED for spin-1 particles.

In this course, we mix a bit of traditional QFT I/II; we will go as deep as possible into scalar fields. In
the second Winter term we look at fields with spin, photons etc. so stick around!

Now, we note that:

5= / d40,(x) (4.4)

is not a Lorentz invariant action. So, how do we built a L.I. action with derivatives? The answer is to
contract them, e.g.:

n"0,0v¢ 4.5)
or:

7" pdyp = —¢* + (V¢)? (4.6)

are scalar fields. The second term is generally more interesting to include as it is quadratic in the fields.
Note that Lorentz invariance forces the term in front of the gradient to be one; i.e. L.I. fixes the speed of
light to be ¢ (1 in our units).

Thus, the action for a free relativistic scalar is thus:

1 1 _ 1., 1 1
S=— / A1 xo (097 + SmPg? 5 / AP = S(V)? = Snitg? 47)

where:
(09)* = (9u9)* = 7" 9updvgp (4.8)

Note we will soon see that this leads to the expected form of the Hamiltonian:

H= /ddx%rﬁ - %(qu)2 - %m2¢2 (4.9)
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4.2 Translations
Translations are also a symmetry of nature:
ot — x4 at

D(Dfl)

We have seen that Lorentz symmetry has

(4.10)

generators, which for D = 4 is 6 generators (K;, Jj, or

M,,,). Translations have D generators, for D = 4 they are P, = (P, P;). These all mutually commute:

[Py, Py] =0
We can extend the Lorentz algebra to include translations:
[]ll Py

| =
Ul/ ]] Z€Z]kPk
[KZIPO]

] =

]

4.11)

(4.12a)
(4.12b)
(4.120)
(4.12d)

4.3 Return to Relativistic Free Scalar Field Theory; Quantizing the Continuum

The equation of motion of the relativistic free scalar field is:

g; =0 = 0=7"0,0,¢ — m*¢p

which of course is just the relativistic Klein-Gordon equation, which with the notation:
0O =y"9,9, = —0} + V?

becomes:
O¢ — m*¢p = 0.

Let us directly canonically quantize this theory in the continuum.
The momentum conjugate to ¢(x) is

Our Hamiltonian is:
H= /ddxrhp L(x /dd ST 4 2 (V) + 1 m2¢?.
The (equal-time) classical Poisson brackets read:

{p(t,x),T1(t,y)} = 6 (x —y)
{¢, ¢} ={IL11} =0

We diagonalize by working in momentum space:

o) = [ e X (x 1)

with the reality condition (¢y)* = ¢_. Thus looking at the Poisson bracket of the ks:
(P Tl = [ dhxdlye ™YK g (x,0), Ti(y, 1)} = [ dtxe MK — (2m)57 (i + K)

23

(4.13)
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(4.16)
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(4.18)
(4.19)
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Note the slightly interesting point that the Dirac delta sets k' = —k.
The Inverse Fourier transform is:

e,
‘b(t’x):/(zn) *

CNg(y,t) = [alo(x=y)p(y,t) = p(x, 1) (422)

Note that we do the change of basis first, and then quantize later. If we plug these definitions of the k
basis fields/momenta in the Hamiltonian, we obtain:

d”’k 1 1
i = [ Gy Tl + 50 4 1) P @23)

We define:

e = Vm? + K2 (4.24)

as the energy of a quanta with momentum k. To see how we got here, for example we have:

dkdx’ dkdik’ dik dik
JEELE [ttt — [ 2m) s (k4 1) T T :/7( I :/( I 2

(2m)2d (2m)2d (27) 2m)d K 277)
(4.25)
We now canonically quantize: A
(§(t%),T1(t,x)) — (@(£,%), T1(t, %)) (426)
so the Poisson brackets become promoted to commutators:
[p(t,%), 11t y)] = id" (x — y) (4.27)
(1, [T ] = i(271)46% (k + K') (4.28)

Note that there is the objection that this does not look very Lorentz covariant (we pick a time ¢, and H,I1
themselves are frame-dependent); since our action is Lorentz invariant this is OK, but we will see later
that path integrals will resolve this apparent slight tension.

We diagonalize the SHOs in the usual way:

R IT
e = ) X Gy +i—X) (4.292)
2 €k
. €Kk ~ I
ie= /5 Gox—i—) (4.29b)
€k
which obey the expected commutation relations:
Ay, at)] = (2m)70% (k — K) (4.30)
This yields the quantum Hamiltonian:
dk 1
= / d (afay + 5) (4.31)

where we define the vacuum |0) as the state that is annihilated by all 4ys:
ax|0) =0 Vk (4.32)
A single particle state is:

ag0) = | =1, my_y = 0) = [K) (4.33)
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This single-particle state has energy e = v'k2 + m?2 above the vacuum, as one can check by acting H upon
it.

Notice that the ground state energy is infinite; this is why we discuss the energy relative to the vac-
uum/ground state. This doesn’t matter in QFT, but it does matter in QGravity (this is known as the
cosmological constant problem - we won't solve it in this class).

Note that these states do not have norm 1!

(KIK') = (Olaxal,[0) = (0]([a, 3}] — abd)|0) = )0k~ K) —0 = @n)ol(k~K).  (434)

Note that if we wanted to do things more rigorously, we could have a finite norm by working in finite
volume and then take volume to infinity at the end. For our purposes, it will be more convenient to work
in infinite volume where we have exact Lorentz invariance. The issue really comes about because the k
labels are continuous in the thermodynamic limit (labelled by k € R¥).

44 Lorentz Invariant Normalization

In L.I. QFTs, there is a slightly better choice of normalization such that the norm of the states are L.I;
indeed;
(k|K') = (2m)%5% (k — K') (4.35)

is frame-dependent, which is something we would like to avoid. The intuition is because the normalization

only depends on the d space degrees of freedom. To see it explicitly, first determine how the k states
transform. Recall that: X
§(x) = UA)$()U(A) = p(A™x) (4.36)

and from this we will find:
k) — |k) (4.37)

where k' = Aiﬂk”.
It is tempting to introduce 4-vector k* = (k%, k) where we choose k® = e, = v'k2 + m2. We then obtain:
(0)ageat, |0y = (27) 4169+ (k — k') (4.38)
However because k, k6 are fixed, this norm is actually infinite:
Ok —K) =6k — K)o (k — K') = (e — 1) (k — k') = 6(0)0%(k — k') = c0- 8% (k — K')  (4.39)

The idea is that we really need to use a fixed number of delta function; there is no room for an extra one
due to the fixing of the energy. But, there is something else that we can do here; we have an object that is
not L.I.; we can try multiplying it with something else that is not L.I. and get a L.I. quantity out. Namely,
we multiply by the energy €. Then:

(0]ayaf,0) = (27r)"2€10% (k — k') (4.40)

and we will see that the changes to the delta function and the energy will perfectly cancel. In this choice
of normalization, we redefine the ladder operators:

A — V261 dx. (441)

4.5 Effective Field Theory

EFT is a big part of QFT; this is useful in CM but also in HEP. Here, we don’t pretend to know what the
exact action is, but I may know some things, e.g. the symmetries and degrees of freedom. We then try to
write down the most general action that has these symmetries.
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For example, going back to our action, let us add to it:
1 1
S=— /d4x§(a},¢)2 + Emz¢>2 + Agt + mp + Aed® + ...+ [(3ug)H* + TP + ... (4.42)

Note that if one has a ¢ <+ —¢ Z, symmetry, this would forbid the ¢® term (and odd powers of ¢ more
generally). Also to explicitly spell out some of the terms above:

[(940)°1 = [1"3,0u ) (4.43)

Do = (1"0,0,17*Fudpd) P (4.44)

Note that we should make sure the mass dimensions of each of these terms makes sense. We've set
c="h=1,s0then E ~ m and w ~ p. With this, let us study the mass dimensions, where [m"] = n.

We want each term in the action to have the same dimension, and we can make sure that the couplings
have the correct mass dimension by comparing to other terms. Each derivative adds a mass dimension, so
for example with a term A929%¢¢ we would want [A] = —2 to make sure it has the same mass dimension
(e.g) as 5(9u¢)%.

What renormalization group will tell us is that terms with negative mass dimension are irrelevant, i.e.
they are not relevant at lower energy scales, allowing us to consider simpler theories, i.e. higher order
powers of ¢ in the action do little to change the physics at low energy.
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5 Correlation Functions

Today is very exciting because we will study our first observables in QFT! We will study correlation func-
tions, which are important observables in not just QFT, but also QM, SM, CM...
A type of correlation function we will consider is a two-point function of our scalar field:

(01 (t1,x1)P(t2,%2)|0) (5.1)

This object measures the correlation between two different points (measuring the correlations of the fluc-
tuations in the quantum field at different points in spacetime); it is like a joint probability.

5.1 The Utility of Correlation Functions

These are related to many observables; for example, in linear response theory, two-point functions are
related to observables like susceptibilities, conductivities, etc. For example, in Ohm’s law, we study the
linear response the current to an electric field:

J =0E (5.2)

with ¢ the conductivity. In a quantum system, ¢ is related to the two-point function of a current operator:
o~ <jj> : (5.3)

This will only become obvious later, when we introduce the path integral. For now, we just consider it as
an example.

Another example comes from particle physics. Scattering amplitudes (the S-matrix) can be obtained
from correlation functions, using what is known as the “LSZ formula”. We will see this soon!

5.2 Symmetry Constraints on Correlation Functions
Translations

Translation invariance implies that the correlators only depend on the differences between coordinates.
Let us show this:

(01 (F1,x1)$(t2,%2)[0) = (0] (t1, xq )¢ (+Psx2) (0, 0) (242 ) g (5.4)

Now, for the free scalar field the vacuum is translation-invariant, and that it is annihilated by the Hamil-
tonian:
P|0) =0, H|0)=0. (5.5)

This allows us to write:
(0l(t1,x1)$ (b2, %2)10) = (Ofe "X (1, x1)e!127E (0, 0)|0) (5.6)
Then, using the conjugation to translate the first field:

(0[@(t1,x1)(t2,%2)10) = (0[@(t1 — t2,x1 — x2)$(0,0)[0) (5.7)

Thus we see that the correlator only depends on the difference between the spacetime coordinates. Note
we have used two things here; the translation invariance of the vacuum, as well as the fact that [H, P] = 0
(else we cannot nontrivially place them in the same exponential!) Note that this is not always true, for
example this symmetry is broken in some condensed matter systems.

This motivates the following definition:

G (x) = (0l (t, x)$(0,0)[0) (5.8)

This is known as a Wightman function. It is a Green’s function.
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Lorentz Invariance

We assume now that:
U(A)|[o) = 10). (5.9)

This implies that:
G (x) = (O[U(A) ') U(A)U(A) ' H(0)U(A)[0) (5.10)

Then using the transformation property of a scalar field:
Gw (x) = (0lp(A™1x)$(0)[0) = Gw(A™'x) (5.11)

Thus, the Wightman function is invariant under a Lorentz transformation between the coordinates. For
rotations, this implies for example that the correlation between two points is the same if I look at two
points rotated. More generally, this implies that the Wightman fucntion can only depend on a Lorentz
invairance combination of xs, i.e. it can only depend on x? = 17, x#x":

Gw (x*) = Gy (x?). (5.12)

So with very little work, we have shown the 2-point functions only depend on a single variable (as opposed
to the four variables t,x1,xp,x3). This is the power of symmetry. Note that this result holds for any
quantum field theory (interacting, or free) with this symmetry.

5.3 2-Point Correlator for the Free Scalar Field Theory

Let us work out the correlation functions explicitly.
We defined:

ax = (exPy +ilTy) (5.13a)
alt = (ekgﬁ,k — iﬂ,k) (5.13b)

where we note the redefinition such that the normalization of the momentum eigenstates will be Lorentz
Invariant (see HW2):
(0]axat|0) = 26, (271)96% (k — k') (5.14)

with e = Vk? + m2. We introduced these operators because they solved the problem, in the sense that
they have trivial time evolution:
etha;r(e*th = elextgl (5.15a)

el =it — o—iewt g, (5.15b)

which is worked out from [H, aﬂ] = ekui. Then, from this we know the time evolution of ¢y:

P = ﬁ(ak +aty) (5.16)

Using this, let’s work out the Wightman function:

d dyr
Gur () = (019(609(0,0)10) = [ 5 2550 Ol 0)1) 617
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Only the raising term will contribute for the ¢/ (0), and only the (time-evolved) lowering term will con-
tribute for ¢y (), thus:

Gw (x*) = ddkddk’iei(k‘x_ekt) 0laxa’ [0
w(xt) = deren ( |ﬂkﬂ7k'| )
R dsd '
— / dkd’k “Teen (2m)%6% (k 4 K')2e) (5.18)

/ ddk e i(k-x—et)

This is a bit tedious to compute in general (on HW3), but for now we consider a special case where we
can solve this live in closed form. Two simplifications; we take d = 1 and we will set m = 0:

dk i (kx—klt)

We will make this easier for ourselves by computing the time-derivative of the Wightman function, which
will cancel out the |k| appearing in the denominator:

G () = — & geiwf'km (5.20)

Since there’s an absolute value, let us separate the integral out into the k > 0 and k < 0 part:

Gy (xH) = _% [ i pik(x—t) +/ oik x+t] (5.21)

These integrals look simple, but also don’t look like they want to converge... which tells us these ob-
servables are a little subtle. In order to make them converge, we evaluate the function at t — ie for €
small:

2 27'(
i ik (x—(t—ie)) |% ik (x+(t—ie)) |*
T ||, i),

i { -1 1 }
4 |i(x — (t—ie))  i(x+ (t—ie)) (5.22)
_ 1 x—i—(t—ie)—[x—(t—ie)]]

9:Gw (t — i€, x) __[ dk oik(x—(t—ie) +/ k(x+(t—ie) ]
0

41t x2 — (t —ie)?
_ 1 t—ie
C 2w — (t—ie)?

__1 2 (42
= 4n8tlog(x (t —ie)”)

In the numerator, we may take the € — 0 limit smoothly always, but in the denominator singularities can
occur, so in general we need to be careful about taking this limit.
Thus; up to a constant:

G () = —% log(x? — £2) (523)
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Figure 5.1: Plot of log(x* — t?), courtesy of Luca.

Note that this is indeed Lorentz invariant, as it only depends on x,x*! It is also interesting to plot, where
we see that it is sharply peaked on the lightcone.

This should not surprise us; the massless free scalar propogates at the speed of light, hence the field is
very correlated with itself on the lightcone.

Remark for the formally minded: In an axiomatic approach to QFT, real-time correlators are defined
by € — 0 limits of Wick rotated (analytic continuations) to imaginary time versions of the correlators, and
there are perscriptions on how to handle those limits/navigate around branch cuts.

5.4 2-Point correlator for the Free Scalar Field Theory: Momentum Space

Restoring m # 0 and general d, one can evaluate the Fourier transform of the correlator of Gy:

Gw(w, k) = / dtd?xe = XNG (1) x)

524
_ / dtd?xd’K’ (k)X gi(w—e )t L (5.24)
(2m)d 2€y
The x integral is simple and sets k’ = k. We are then left with:
- ellwmadt 28w — ey)
G (w, k) = / ar' s — = T (5.25)
Thus:
Gw(w, k) = M (5.26)
2€k

which tells us that the Green’s function only fires/resonates when w = €x. When we evaluated the
position-space Green’s function, we had the Lorentz invariance constraint. We might expect this for the
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momentum space version, namely:
Gw(p") = Gw(Ap"). (5.27)

It does not look manifestly Lorentz invariant, but it is, and we will show this.

5.5 The Feynman Correlator
We now consider:
Gr(t,x) = (01T {(t,%)$(0,0)} |0} (528)
where 7 {-} denotes the time-ordering operation. In other words:
Gr(t,x) = T {§(t,x)$(0,0) } = O(£)(0[¢(t,x)$(0,0)0) + O(=£)(0[$(0,0)(£,x)[0).  (5:29)
With © the step function. This is still a measure of correlation between two points, but slightly modified.
Evaluating this:
A elllex—ext) A e i(kx—ext)
Ge(t,x) =0(t) [ 5~ +e(-1 [ . 530
F( X) ( ) (Zﬂ)d 261( + ( ) (Zﬂ)d 2€k ( )

Let’s compute the Fourier transform of this expression:

Gr(w, k) = /dtddxei(“’t*k'x)GF(x”)

ellw—ei)t ol (wter)t
0o pilw—extie)t 0 ol (wte—ie)t
:/ dti—i-/ at———
0 2€k —o0 2€k
1 [ ol (w—extie) el (wteg—ie)t 0 ]
T 26 | i(w— e + i€ i(w + e, —i€)t
k| lw—etie)| — ilwt+e—ie)t| (5.31)

1 -1 1

T 2e [i(w—ek—%ie) * i(w+ek—ie)}
S

w? — (e — i€)?

1

T2z
w — € +1€

—1i
p? +m? — i&
We have again introduced the appropriate ies in order to avoid the divergences. Note that later on we
will see a physical application of this; in the context of unstable particles, we have a decay that introduces

some broadening of the linewidths. Also in the last lines we redefine & as we don’t care what the small
factor is, only its sign. Thus:

—i

Gr(w, k) = (5.32)

p? + m? — ié

Note that this is qualitatively pretty different from the Wightman function; it does still diverge at p*> =
—m?, but it is non-zero “off-shell”, i.e. when p? # —m?. Conversely, the Wightman function only fires
on-shell. We will use this correlator all the time in the path integral formalism.
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6 The Path Integral Formalism

We could now go on from what we have used to explore how QFT can make experimental predictions -
but, instead we will take a step back and explore the path integral formalism, which is a deep and widely
applicable mathematical framework to understand QFT (and other fields).

6.1 Motivating the Path Integral

Let us return to the single particle:
. P? A
H = M +V(Q) (6.1)
at position g at time 0 and 4’ at time T. Classically, we could solve for the trajectory g.(t) by solving
6S = 0 subject to the boundary conditions.
Quantum mechanically, the procedure is quite different. We would instead compute the matrix ele-
ments: ”
P(q at time T) = |{g/|e~ 7|2 (62)

This doesn’t really seem like it has to do anything with the classical method of solving this same problem.
On the other hand, we know that classical physics emerges from quantum physics - classical mechanics
should be the limit of QM as i — 0. And this classical limit is indeed made clear in the path integral
approach to QM. We will see that the above amplitude is related to eSl7:(t)],

Advantages of the path integral formalism include:

¢ Jt makes the semiclassical limit of QM manifest

e It involves the action S rather than the Hamiltonian H (This is particularly nice from the perspective
of QFT, as the action allows for Lorentz invariance to be much more easily imposed, as the action is
a scalar; conversely the Hamiltonian is a four-vector, and choosing a time coordinate breaks L.1.)

¢ Streamlined calculations (e.g. correlation functions - you will see how it is possible, but tedious, to
do these calculations in the “old-fashioned” approach, but the path integral formalism makes these
much easier). Specifically, we will be computing lots of Gaussian integrals.

¢ Connections to statistical mechanics. In stat mech, we consider finite temperature fluctuations and
weighing all possible field distributions weighted by their probability. This allows us to probe
classical many-body physics, phase transitions etc. The path integral approach lends itself very
nicely to this.

¢ Topological aspects of QFT/QM.

And there are no negatives. Just kidding. One drawback is a mathematically precise definition is difficult.
But, this could be seen as a strength - the path integral gave hints towards things that were very hard to
prove formally, but laid the groundwork/intuition for hard results.

6.2 “Deriving” the Path Integral
Consider again the transition:

(@'l lg). (63)
Subdivide T into N steps 6t = 4. Then:

—iHT|q> —iHot N e—iH&te—iH§t|q> (6.4)

(q'|e =(q'le
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Now, we insert the resolution of the identity:

1= [ dgilg;) ai 65

in between each of the exponentials. Then:

(q'le™T]q) = / dqy ... dqn-1(q'le” lan-1) (gn-1l .- 92) (g2l ™ g1) (gl ]g)  (6.6)
This handles nicely the V(Q) term in the Hamiltonian. Now, we also insert:

d .
1= [ Eip)ipi 6.7)

in each matrix element. We then have:

dqy...dgn_1dp1...d iR _ifl _ifl
J RS o) (ol an ) - (@alp2 pale ) ) (il a) - 68)

Now we can compute all of these factors! We have a bunch of (g|p) factors, which is just the wavefunction
of the momentum eigenstate:

(alp) = €. (69)
A quick way to remember this is:
Oqtpq(a) = dq{alp) = (aliplp) = iplalp) = (alp) = . (6.10)

For the other factors, we expand the exponentials, and use the fact that we have both a position and
momentum eigenstate it can act on (from the left and right):

(ple=q) ~ (gl (1= iF(Q, P)ét ) [p) = (qlp) (1= iH(p,)0t) = e~ (1= iH(p,q)ot) = =P~ Hpa)t

(6.11)
We thus have the expression for the transition amplitude:
11 ,—iHT 5 dpi —ifst
(@le™ gy = [ day...dana [T [ 5 ailp) (pile™ " gi1) (6.12)
27
i=1

where go = g and gy = g'. Now we apply the two calculations we did:
<q’\g*iHT|q> = /dq dgq ﬁ/”%eimpieiqilpiiH(pifqil)ét
Lo SN 27
:/d41--~dﬂlN 1H/ exp(ipi(qi — qi-1) — it 55 pl —i6tV(gi-1))
M iM .
:/d%---dﬂll\l 11—I/ﬂe xp —15t*( pi— 5 (@i — qi- 1))? +§E(‘1i_Qi—l)z_létVWi—l))

i i M .
= /d41--~dﬁlN 1| |/2p exp(—idto - P )exp(Z(St( —qi1)* — 0tV (1))
6.13)

where in the third equality we have completed the square, and in the fourth equality we have changed
variables to p; = p; — % (i — qi—1). Carrying out the p integral, we just get a constant C that it independent
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of the gs, so:

i N iM .
(@'l T]g) = N [ dgy...dgn T Texp(5 5, @ — ai1)% — 6tV (g 1))
' =1 (6.14)

NTiM .
=cV /%:q - dgo...dgnexp() LfST —gi-1)* — 15tV(¢7i1)})

i=

We are left with an integral over coordinates, which we can interpret as an integral over all possible
intermediate values of the coordinates. The N — co limit of this expression now yields the path integral.

In this limit, dtY; — [ dt. Also, % — §. Thus, taking the limit:

Jo _ T
(e Tlg) = ¢ [ Dgexpi [ iz M~ vi(g)) (6.15)

We observe that what we integrate in the exponential is just the classical action:

(q'le” lHT|q C/quxp / atL(q,q C/quxp iS[g,4]) (6.16)

Thus, the transition amplitude is simply the sum over all trajectories, weighed by a phase equal to the
integral over the classical action.

In semiclassical situations, we have S > ki = 1. This makes extrema of the action highly important;
since the action is very large, the action widely oscillates for most trajectories. But, around the classical
solutions/trajectories, the phase does not vary widely (and thus the phases do not cancel), hence the path
integral is dominated by trajectories very close to the classical trajectory, allowing us to recover classical
physics. This is true qualitatively, and can be seen explicitly in some models, e.g. the quantum harmonic
oscillator for large occupation numbers. In particle physics, we are usually not interested in semiclassical
situations. We look around ¢ ~ 0, which is a highly quantum limit. But if we hit the crystal for example,
causing macroscopic osciallations, then ¢, and S become large and we recover classical physics.

Question; how do we know this weird, infinite-dimensional measure preserves the symmetries we care
about? The answer is it does not, always. This is how anomalies manifest at the quantum level.

6.3 Computing Correlators with Path Integrals

We start with a slightly different correlator than the one we discussed last lecture:

(q', T|Q(t1)19,0) 6.17)

This is a one-point function; we see how to treat this with path integrals before moving onto more com-
plicated examples. We write the above as:

(g'e”HT—1) Q=M |g) (6.18)
Following the same procedure as previous, we slice up time T = NJ and t; = ndt, and we get:
[dar - dana(g'le gy 1) - (gal Qe ¥ g, 1) ... (qr]e= ) (6:19)

so up to the g, factor,we have the same set of integrals as before, and in the continuum limit this appears
as q(t):
(@, TIQ()1a,0) = [ D q(tr)eS04 (620)

More generally, the one point function of O(P,Q)(t;) amounts to the replacement with the number
O(p(t1),q(t1)) inside the path integral.
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What about two-point functions? They are slightly more interesting. A reasonable assumption would
be that we get two of these factors. Lets work this out if t, > f;:

A N s A i T ‘ol s
(W TIQ(2)Q(t)lg, 0 = (g'le AT Qe AIt00 ™ ig) — [T pg g()g(e)esvil (621

If instead t; < t1, then we get:

| Paa(t)q(t)eSil = (¢, TIQ()Q(t2)19,0) (622)

i.e. the path integral produces time-ordered correlation functions. Thus, in summary:

/ Dg 0(q(t2))0(q(11))eS1 = O (t, — 1) (|O(Q) (£2)O(Q) (1))
10(0)(1)O(Q) (1)) (6.23)
= (| T{O(Q)(t2), O(O) (1) }])

Thus, time-ordered (Feynman) correlators naturally arise in path integrals. Note that time-dependent
Hamiltonians would require much more work, as the time-evolution operator would be a time-ordered
exponential in this case.

One observation; operators in 7{...} “commute” in an obvious sense. Everything appearing in the
above equation is symmetric in t1, tp.

What we have done here for 2-point function generalizes for higher-point functions. For example:

[ Paattn)..alt)eSo) = (T{Q(t).. Q(t)})- (624)

and of course we can generalize to functions of Q.

For functions of P, we have to keep track of this when doing the integrals over p in the path integral
derivation, and to first order this will give us ~ 4 inside of the integral.

Finally, it seems like position and time have manifestly different roles here. But its worth noting that
the Qs should not be thought of as position, just coordinates in some configuration space (e.g. a quantum
dot). We will apply this formalism to theories with Lorentz invariance soon.
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7 The Path Integral Formalism, Part 2

7.1 Ground State Correlators

Last class, we showed the derivation of the time evolution as a path integral:

A _ e o i 9(T)=q" .
(q'le~tlg) = tim [ dgy...dan(q'le Mgy 1) .. qale B g) (@r]e ¥ g) = [ Dgesli 7.1)

7(0)=q

As well as how we can evaluate (time-ordered) correlation functions” using this machinery:
q(T)=¢' sl
/q(o):q Daq(t)q(t2) ...e°" = (¢, TIT{Q(t), Q(t2), - }|q,0) (7.2)

To connect this back to what we were doing previously, we are mostly interested in correlations in the
ground state (which we will later see will be related to scattering amplitudes). So, today we will look at
ground state correlators/excitations above the ground state. In this case, things simplify, as we will soon
see. Rather than looking at:

A H(t—D) A _iAI(T qltp)=q" __ ;'f _
(11100 gt = (e MO Qe A1) = [ T pget b gy 73)
q(t)=q
We would like to look at: o
(0|1Q(F)...|0). (7.4)
The issue; for most field theories (e.g. interacting field theories), we do not know what the ground state
|0) is! But, we do know that (by definition) it is the lowest energy state. Let us focus on ¢/fl'i|g) factor.

If we take t; — —oo(1 — i€), then this factor will become ¢/f0%|0)(0|q), i.e. only the contribution from the
ground state will survive (to derive that expression explicitly, insert a complete basis of energy eigenstates,

and see how all terms proportional to e~e®(Ei~Eo) _, 0 (unless E; = Ep)). Doing the same on the bra, we
consider (¢'|e”"H!f and send ¢ £ — oo(1 — ie), again exponentially suppressing everything but the ground
state, and giving (4'|0)(0]e "E0'f. The bottom line; up to some factors, we have:

1 ie) | dtL(g,t)

OIT{Q(n), At HO) o [ Daa(t2)q(tr)e -~ 75
An interesting observation is that the boundary conditions no longer matter in the time dependence of the
correlation! They only matter for the normalization, which we fix now. Let us set the norm of the vacuum
to be one:

(olLo) =1 (7.6)
Which then tells us that:
f— 111616 dt[‘ q’ )
(O1T{O(), Q) oy = L Paaltr)altz )l 7.7)
f qu —oo(1 lgle dtL(q,l’)

By looking at ratios of path integrals, we don’t have to worry about the factors that we had lying around.
Srednicki says that by normalization fixing, we can choose the measure such the “empty” path integral in
the denominator can be normalized to one, but this is a matter of convention. In any case, we now have a
recipe for computing things in the path integral formalism!

From now on we drop the ies in our notation, until we need to explicitly use them.

2An aside - path integrals always give us the time-ordered correlation functions, but these objects contain the information neces-
sary to get other correlation functions.
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7.2 Generating Functionals

In some cases (e.g. the simple harmonic oscillator), instead of computing the correlation functions one
by one, we can construct one general object - namely, the generating functional - from which all of the
correlation functions can be derived. Let us define:

ZIf] = / DyelSlal+i [ dtf(Da) 78)

By taking functional derivatives %, we can generate correlators involving Q(t). Let us study:

0
5f(t1)

The functional derivative of a function w.r.t itself is just the delta function which fires only when the
arguments are the same:

ZIf] = [ DgeSisi T arent o [ arf (o) 79)

Sf(H) o
3f(h) =6(t—t) (7.10)
so then the above becomes: 5
_Y — i iS+i [dtf(t)q(t)
7 2] = [ atia(e)es s 4o 7.11)

Which is not quite what we want, but let us consider taking a ratio, and setting the source term to zero
after taking the derivative:

D iS R
il - LR — oo 7.12)
Let’s now consider more derivatives!
11 6 1 ¢ Dygq(ty)q(ty)e's . .
Zi(Sf(tl)i(Sf(tz)Z[f]’ -4 q}%;ﬁfs”e = (0|T{Q(t), O(t2)}]0) (7.13)
=0

Z[f] is a very rich object (a functional of a functional), which makes it generically hard to compute
(but we can for free QFTs, and the harmonic oscillator). An observation; we can write the above formulas
as:

1 6
- log Z 7.14
iof(t) 8 [f]‘fzo 719
For higher derivatives, we have:
1 6 1 6 1 6 f’qu(tl)ei5+iffq
e ——logZ = - 7.15
P 5f(h) 7 07 () 08 2] ‘f_o P5fL) ZLf 7.15)

Now that now there are two places where the functional derivative can hit. When it hits the numerator,
we get a two-point function as before, when it hits the denominator, we get something that looks like a
one-point function. Let’s spell this out:

1.9 _ [ Dgq(t)g(t2)e’® [ Dq(tr)e’® [ Dgq(ta)e’

7 57 () kgzm‘ o I Z0] 700 e
= (0|T{Q(t1), Q(t2) }|0) — (0]Q(£1)[0) (0] Q(£2)10) '
= (0]7{Q(t1), Q(t2)}|0)c
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where Z[0] = [Dge'S. The object above is a connected correlator. Thus we say that log Z generates
“correlated” correlation functions. Why is this important? Well, suppose Q was equal to 6 everywhere.
Then the raw two-point function would just be 62 = 36. Thus, looking at the connected correlation
function removes this background, and actually tells us about the important correlations; this is intimately
tied to covariance in probability theory. In the context of scattering, connected correlators tell us about
nontrivial scattering processes.

7.3 Path Integral for the Harmonic Oscillator

The action for the simple harmonic oscillator is:

1o 15
Z42— Zm 717
5 /dtzq >™Mq (7.17)
Let’s try to compute Z:

] = / DyelS+/atfHa) (7.18)

Since we have time translation invariance, it will be convenient to study this object in frequency space. Let
us define:

Jw = /dtei“’tq(t) (7.19)
where the inverse fourier transform is then:
dw _;
9(8) = | 5S¢0 (7.20)

Plugging this into the action, we can perform the integral over ¢, then use the resulting delta functions to
carry out one of the two w integrals, and we end up with:

_ fdwl, 5 5
5= Ei(w —m”)gwl—w (7.21)
with g_, = gf,. Now we study the source integral:
dwy dw _ dw dw 1
/dtf 2711 2 /dt i(wy+w))t fen Gy = Equ_ = /55 (qu w +f—wf1w) (7.22)

where we symmetrize in the last equality. We are now ready to compute the beast that is the functional
integral. Spelling out the exponents, we have:

o fdw
2U7) = [ Daexpli| [ G 36" = Mt + 3 (- + )] .29
Now completing the square:
. d(U 1 2 2 1 1 1
= /quxp(l [ ﬂi(w —m )(%+mfw)(q7w+ mﬂ w) — 2w2 szf ])
(7.24)
Let us shift our g variable g, — §ow = quw + ﬁ fw. Then our path integral becomes:
fl= [ Drewpli |5 [ 2@~ mude)Jow(—1 [ L fro) 02
gexp(i = aJ m”)Jwiw|) exp 2 2 mszf .

Note that the path integral has decoupled from the source part! Since the first piece is just the generat-
ing functional without sources, so Z[f] decouples to Z[0] times a fairly simple functional of our source

function:
dw 1

Z[f] = Z[0] - exp(— 2 znmfwf w) (7.26)
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The logarithm is even simpler:

dw 1

7 afef-w (+1ogZ[0]) (7.27)

The Z[0] part is independent of our probe f, so it is irrelavant for the calculation of our correlation
functions - let’s look at some of them now!

= (0]Q(t)|0) =0 (7.28)
£=0

log V4

of

We see this as we take the derivative of one of the fs, the other remains and gets set to zero, thus making
the one-point function vanish. Let’s now look at two-point functions, but first let’s go back to the time
domain:

log Z[f :—f/dtdt deo W ) Zimzf(t)f(t’) (7.29)

Let us call the frequency integral above G(t — t')

log Z[f] / dtdt' G(t — ') () f() (7.30)

Now looking at the connected correlation function (which is equal to the bare two-point function, since
the one-point functions vanish):

OT{Q(), Q)0 = £ 57057 5775 108 2

1 6 1 / / 4 /
= 757 <—> /dtdt G(t—t) (f(Of())

7 57 (1) oo
1 9 ’
- 1575 ( >/dtdtG ( (t—tl)f(t’)+5(t’—t1)f(t)>
= 2(5ff (/dt Gt —t")f(t) +/dtG(t—t1)f(t))
Now we take the second derivative, which is easy, as there is only one f to hit in each term:
OIT{Q(1), Q(12)}[0) = & (Gt — £2) + Glt2 — 1)) 732)

N

Since G is symmetric in its argument, we find:
(0| T{Q(t1), Q(t2) }|0) = iG(t2 — 1) (7.33)
Since the two-point function is just the Feynman’s Green’s function, we ave;
Gr(ta —t) =iG(f2 — 1) (7.34)

On Thursday we evaluate this explicitly, and we will have to be careful about poles (we will see the return
of the ies). We will then move onto free quantum field theories, where connected higher point functions
are then easily computed.

39



8 Wick’s Theorem, Path Integral for Free Scalar Field Theory

8.1 Review

We computed the path integral with sources (also known as the generating functional) for the SHO, with
action:

dw 1
S= /dtzq 7 = = Z(wz — 1) e —w (8.1)
which gave the generating functional:
. dw 1
= iS+[dtf(t)q(t) —
the logarithm which gives:
i [dw dew e~ iw(t=t)
logZ[fl = 5 [ 5o mea,f,w - /dtdt e fuf-u= /dt A (—1)G(t— ') fuof e
(8.3)

We can then generate (connected) correlators by taking functional derivatives 5 f( o) and then setting the
source to f = 0. For example:

A 1 6 1 1) )
OIT 1Q(t), Q(t2)  10) = = —— log Z[f] = —iG(t; — ) = Gp(t; — ) (8:4)
i 0f(t) i 6f(a)
£=0
8.2 Evaluating the Green’s Function
Now, let’s evaluate the fourier transform:
iwt
Gty =— [dw__e (8.5)

27T w? — m? + ie

We were dropping the ies previously, but when evaluating this integral, it becomes relevant for locating
the poles of the function. So, we re-introduce it here (we know what the correct perscription of the poles
for the Feynman correlator is).

The poles are located at wi+ = ++v/m? —ie. They are close to £m, but they are shifted from the real
axis. How do we treat these ie? We don’t care about the magnitude, only that it is a positive number. We

consider a Taylor expansion:
Wi ::I:m\/l—% = +m(1 —ie) (8.6)

where we have neglected factors of m,2 as we don’t care about the magnitude of €, only its sign. Hence,
the poles are at:
wy = +m(1 —ie) (8.7)

which when sketched graphically:
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How do we perform this integral? It depends on whether t is positive or negative. If ¢t < 0, then we
want to close the contour in the lower half plane. Why this choice? We are concretely interested in the
integral from —oo to oo, i.e. Ci!. For this, we like to have a closed contour in the complex plane to carry
out the integrals using residue theorems. We use Jordan’s lemma. The integral over the semicircular part

CB vanishes - as long as w has a negative imaginary part, when we push the C} to be a sufficiently large

arc to infinity (¢! = e@t = ¢~ ltlw “Z0). So, this total closed contour is precisely equal to the integral

over the real line.

xo“r'i-"‘-'g ff/mm

By the residue theorem:

d ) 1 —iwt iyt —im|t|
g 27tiRes(=— ¢ LW = wy) =1 ¢ — ¢ (8.8)
2 (w — w4 ) (w —w-) Wy —w_ 2m

G(t) = — —..
(t) C 2

If t > 0, we close the contour in the upper-half plane:
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dw 1 elwt plw-t e—imt e—imlt|
H=— | —=...=-2mR W w )= —i — —
G(#) C, 27 & es(Zn (w—wi)(w—w-) w = w-) lw,—w+ om ' om
(8.9)

8.3 Higher-Point Functions and Wick’s Theorem

What about higher point functions? Let’s study the 4-point function. (All odd higher point functions
vanish due to symmetry).

A A R A 11 ) 1) 1) )
O|7T{Q(t t t t1)}H0) = = =3 Z 8.10
< | {Q( 1)Q( Z)Q( 3)Q( 4)}| > 7 (Z>4 (Sf(tl) (5f(t2) (5f(i’3) (5f(i’4) [f] o ( )
The connected 4-point function (denoting d; = 3 5;?#) ):
81828384 IOgZ = 818283 (84ZZ>
=910, (33842 _ 832342)
Z zZ Z 8.11)
_ 5 0203042  0304Z 0pZ  0203Z04Z  0320204Z 282Z83ZS4Z '
-z Z Z 2 72 72 -0
_ 01020304Z  0304Z 0102Z  070320104Z 0103202042
N Z zZ Z z2 z2

An observation; only terms with an even number of derivatives will survive when we set f = 0, which we
use in the last equality (we discard all terms with an odd number of derivatives). We use this observation

in the last equality. Thus:

(0]T{Q(t1)Q(t2) Q(t3)Q(ts) }0)c

= (0] T{Q(t1)Q(t2) Q(t3)Q(t4) }0) — (0]Q(t4)Q(t3)]0) (0]Q(t2) Q(£1)[0) — ...

= (0] T{Q(t1)Q(t2) Q(t3)Q(t4) }|0) — Gr(ts — t3)Gr(ta — t1) — Gr(ta — t2)Gr(ts — t1) — Gp(ts — t1)Gr(t3 — t2)
(8.12)

i.e. the connected correlation function is just the 4 point function minus all possible pairs of contractions.
Note that this result is true beyond the simple harmonic oscillator (there was no dependence on the actual
form of Z here), and is true of any theory where there is a Q ++ —Q Z; symmetry.
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For the SHO (and “Gaussian” theories more generally), we found that logZ o f2, i.e. all connected
higher-point functions vanish. This gives us a way to express the four-point function in terms of the
two-point functions:

OIT{Q(t1)Q(t2)Q(t3)Q(ts) }|0) = Gr(ts — t3)Gr(ta — 1) + Gr(ts — t2)Gr(t3 — t1) + Gp(ts — t1)GE(t3 — t2)

(8.13)
Or, phrased another way; in terms of all contractions. In PS3, we showed this using a very different (brute
force) approach. The proof we did here is much easier to generalize to higher-point functions. This is
generally known as Wick’s theorem, which (if the connected correlation functions vanish) we can express
higher point functions as all contractions of lower-degree correlation functions.

8.4 Path Integral for the Free Scalar
Our action for the free scalar field is:
S= /dt%qz - %mzqz — S = / dtd"lx%(—ap,gb)2 - %m2¢2 (8.14)

Where the distinction from the SHO case is we have changed from the classical coordinate g(t) to the
classical field ¢(t,x), or in terms of quantum operators, from the operator Q(t) to the field operator

P(t, x).
We again consider a generating functional and sources, where we promote the source f(t) in the SHO
case to the source J(t,x) = J(x). Thus, we have the action plus source:

5+ / A () (). (8.15)

The path integral is an integral over all histories ¢