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1 Problems

1.1 Space Package Delivery (Adapted from K&K 7.4)

Figure 1.1: Diagram of space package delivery.

A spaceship is sent to investigate a planet of mass M and radius R. While hanging motionless in space
at a distance 5R from the center of the planet, the ship fires a package with speed v0, as shown above. The
package has mass m which is much smaller than the mass of the spaceship. You as the space-Amazon
delivery person must figure out the angle θ to launch the package at such that the package just grazes the
surface of the planet.

(a) What quantities are conserved, and why?

(b) Use (a) to show that θ = arcsin( 1
5

√
1 + 8

5
GM
Rv2

0
).

(c) Explain why the delivery fails if v0 is too small, and find the minimum v0 for which it succeeds.
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1.2 Rotating Planet

ω(t)

R
α

Figure 1.2: Illustration of the planet and the attached rockets (in blue). The left rocket points out of the
page, and the right rocket points into the page. Both are located at an angle α from the equator, and
induce an angular velocity ω(t) onto the planet in the direction shown.

Far into the future, humanity is looking to colonize other planets after Earth has become hostile to
human life. A new candidate planet was found, but unfortunately it has angular velocity of ω0 = 0,
leading to the stellar-facing side to be too hot and the other to be too cold. To rectify this, NASA engineers
decide to strap two high-powered rockets at angles α from the equator, pointing in opposite directions
(as shown in the figure - one pointing in one pointing out of the page). From prior measurements taken
of the planet, it is known to have mass M and radius R, and uniform mass density. The rockets impart
a time-dependent force F(t) = kt (their output ramps up in time). Your goal is to find what time (from
when the rockets turn on) the planet completes one full rotation.

(a) Show that the moment of inertia of a uniform-density disk of mass m and radius l about an axis going
through the center is given by I = 1

2 ml2.

(b) Using (a), show that the moment of inertia of the planet rotating about an axis through its center is
given by I = 2

5 MR2.

(c) What is the torque τ = ∑2
i=1 τi = ∑2

i=1 ri × Fi that the two rockets impart on the planet?

(d) Find the angular velocity ω(t) of the planet.

(e) Finally, find the time T it takes for the planet to undergo one full rotation.
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2 Solutions

2.1 Q1 Solution

(a) Angular momentum about the center of the planet is conserved, since the gravitational force is central

(and hence applies no torque). Additionally, total mechanical energy is conserved, since the

gravitational force is conservative .

(b) Denote by v the tangential velocity of the package when it grazes the planet. Conservation of angular
momentum gives:

Li = L f =⇒ m|(vi × ri)| = m|(v f × r f )| =⇒ mv05R sin θ = mvR. (2.1)

where we note that v f and r f are prependicular. Thus we obtain the relation:

5v0 sin θ = v (2.2)

Next, conservation of energy gives:

Ki + Ui = K f + U f =⇒ 1
2

mv2
0 −

GmM
5R

=
1
2

mv2 − GmM
R

=⇒ v2 = v2
0 +

8
5

GM
R

(2.3)

Substituting in the equation we have from conservation of angular momentum to eliminate v:

(5v0 sin θ)2 = v2
0 +

8
5

GM
R

=⇒ sin θ =
1
5

√
1 +

8
5

GM
Rv2

0
(2.4)

From which we obtain:

θ = arcsin(
1
5

√
1 +

8
5

GM
Rv2

0
) (2.5)

(c) If v0 is too small, the RHS of Eq. (2.4) becomes large - since |sin θ| ≤ 1, this implies that for small v0
that the grazing delivery fails (and the package misses the planet). This gives us the constraint that:

1
5

√
1 +

8
5

GM
Rv2

0
≤ 1 =⇒ v0 ≥

√
15R
GM

(2.6)

2.2 Q2 Solution

(a) The disk has uniform surface mass density σ = m
πl2 . Looking at the moment of inertia, we have:

I =
∫

r2dm =
∫

r2σdA = σ
∫

r2dA (2.7)

now in polar coordinates dA = rdrdθ, so:

I = σ
∫ 2

0
πdθ

∫ l

0
r2rdr = σ(2π)

l4

4
(2.8)

and substituting in our surface density:

I =
1
2

ml2 (2.9)
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(b) The mass density of the planet is given by:

ρ =
M
V

=
M

4
3 πR3

(2.10)

We slice up the planet into infinitesimally think disks of mass dm = ρdV and infinitesimal volume
dV = πl2dz. The infinitesimal moment of inertia of one such disk (using (a)) is:

dI =
1
2

dml2 =
1
2

ρπl2dzl2 =
1
2

ρπl4dz (2.11)

By integrating over the height z, we obtain the moment of inertia of the solid sphere by stacking such
infinitesimal disks:

I =
∫

dI =
∫ R

−R

1
2

ρπl4dz (2.12)

By pythagoras, l2 + z2 = R2, so l4 = (R2 − z2)2 and so:

I =
1
2

ρπ
∫ R

−R
(R2 − z2)2dz = ρπ

∫ R

0
(R2 − z2)2dz (2.13)

where the last equality follows via the symmetry of the integrand. The integral is then:

I = ρπ
∫ R

0
(R4 − 2R2z2 + z4)dz = ρπ

(
R5 − 2R5

3
+

R5

5

)
= ρπ

8R5

15
(2.14)

then substituting in ρ we find:

I =
2
5

MR2 (2.15)

(c) For the left rocket we have r1 = −R cos αŷ − R sin αẑ and F1 = ktx̂ and for the right rocket we have
r2 = R cos αŷ − R sin αẑ and F2 = −ktx̂, which yields a total torque:

τ = r1 × F1 + r2 × F2

= (−R cos αŷ − R sin αẑ)× (ktx̂) + (R cos αŷ − R sin αẑ)× (−ktx̂)
= −2R cos αkt(ŷ × x̂)

(2.16)

Therefore:
τ = 2R cos αktẑ (2.17)

(d) Since the moment of inertia I of the planet does not change with time (assuming we can neglect the
mass of the rockets and how they would change in time as fuel was burned - this would certainly
complicate the question!), we can relate the torque τ, the moment of inertia, and the angular velocity
via:

τ =
dL
dt

= I
dω

dt
(2.18)

Thus using our previously known results for the moment of inertia and torque, we obtain the differ-
ential equation:

dω

dt
=

5k cos α

MR
t (2.19)

This can be solved via separation of variables:∫ ω(t)

ω(0)
dω =

∫ t

0

5k cos α

MR
dt′ =⇒ ω(t) =

5k cos α

2MR
t2 + ω(0) (2.20)
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Since the planet is not spinning at t = 0, we conclude:

ω(t) =
5k cos α

2MR
t2 (2.21)

(e) Since ω =
dφ

dt
where φ is the rotation angle of the planet, we have the differential equation:

dφ

dt
=

5k cos α

2MR
t2 (2.22)

This again we solve via separation of variables:

∫ φ(t)

φ(0)
dφ =

∫ t

0

5k cos α

2MR
t′2dt′ =⇒ ϕ(t) =

5k cos α

6MR
t3 + φ(0) (2.23)

Setting φ = 0 at t = 0, we have:

φ(t) =
5k cos α

6MR
t3 (2.24)

We are interested in the time T in which φ = 2π, so:

φ(t = T) = 2π =
5k cos α

6MR
T3 (2.25)

and isolating for T:

T =
3

√
12πMR
5k cos α

(2.26)
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