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1 Force from Monopoles

A spaceship (modelled as a point) carrying charge +q and with velocity v = 3
5 cx̂ passes by/above a

pointlike planet consisting of electric + magnetic monopole (located at the origin), with E and B fields:

E =
1

4πϵ0

Qe

r2 r̂

B =
µ0

4π

Qm

r2 r̂
(1.1)

Supposing that the closest point of approach is at d = dŷ - at this point, what is the force that we ob-
serve acting on the charge in the rest frame? What is the force we observe acting on the charge in the
charge/moving frame? (Also: why is this question unphysical, beyond the super-fast travelling space-
ship?)

Solution. In the rest frame, at d = dŷ the electric/magnetic fields look like:

E =
1

4πϵ0

Qe

d2 ŷ

B =
µ0

4π

Qm

d2 ŷ
(1.2)

So using the Lorentz force law:

F = q(E + v × B) = q(
1

4πϵ0

Qe

d2 ŷ +
3
5

cx̂ × µ0

4π

Qm

d2 ŷ) =
q

4πd2

(
Qe

ϵ0
ŷ +

3cµ0Qm

5
ẑ
)

(1.3)

For the moving/charge frame, we first calculate γ:

γ =
1√

1 − ( 3
5 c)

2

c2

=
5
4

(1.4)
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Then we find the fields in the transformed frame to be (noting that all fields here are perpendicular to the
direction of motion):

E′ = γ (E + v × B) =
5
4

1
4πd2

(
Qe

ϵ0
ŷ +

3cµ0Qm

5
ẑ
)

(1.5)

B′ = γ(B − v
c2 × E) =

5
4

(
µ0

4π

Qm

d2 ŷ − 1
c2

3
5

cx̂ × 1
4πϵ0

Qe

d2 ŷ
)
=

5
4

q
4πd2

(
µ0Qmŷ − 3Qe

5cϵ0
ẑ
)

(1.6)

In the moving frame, the charge has v′ = 0 so:

F′ = q(E′ + v′ × B′) = qE′ =
5
4

q
4πd2

(
Qe

ϵ0
ŷ +

3cµ0Qm

5
ẑ
)
=

5
4

F (1.7)

This is just γF, as we might have expected. The situation is unphysical because:

∇ · B = µ0Qmδ(r) ̸= 0 (1.8)

which violates the Maxwell equations. But theorists like to assume magnetic monopoles may exist out
there, somewhere...

2 Capacitor Frisbee

Consider a parallel plate capacitor travelling with velocity v = vx̂, with surface charge density (as mea-
sured in the lab frame) σ.

(a) What is the electric and magnetic fields inside/outside of the plates?

(b) What is the force per unit area on one plate of the capacitor?

(c) What is the speed v at which the capacitor must travel if the forces are to balance?

(d) What do the fields/force look like in the capacitor frame (this should require very little calculation)
and what happens in the limit of (c)?

Solution.

(a) The electric field is just the superposition of two infinite sheets of uniform charge density σ, i.e. we
will have:

E =

{
− σ

ϵ0
ẑ between plates

0 elsewhere
(2.1)

To find the magnetic field, we first consider just one of the two plates (say, embed it in the xy plane).
There is clearly no x-component to the B field as B and v are perpendicular. Further there is no z-
component (we can observe that any contribution from a filament of current at +y is cancelled by one
at −y). So there is only a y component. Now using Ampere’s law with an Amperian loop of length l
(figure taken from Griffiths - depicted is a sheet of uniform current, which is analogous to if we have
a moving sheet of charge):
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through which we have enclosed current Iencl = Kl = σvl = σlv. We then read off:∮
B · dl = 2Bl = µ0 Iencl = µ0σlv (2.2)

Hence for an infinite moving sheet of charge (i.e. an infinite plane of current):

B =

{
µ0
2 σvŷ below plate
− µ0

2 σvŷ above plate
(2.3)

and superimposing the two distance-independent magnetic fields from the two sheets, we obtain:

B =

{
µ0σvŷ between plates
0 elsewhere

(2.4)

(b) The attractive electric force per unit area on the upper plate is:

Fe = σE = − σ2

2ϵ0
ẑ (2.5)

The total force for a surface current is F =
∫

K × Bda, so the force per unit area is then:

K × B (2.6)

so with K = σvx̂ for the upper plate and the lower plate creating a magnetic field B = µ0
2 σvŷ, we find:

Fb =
µ0

2
σ2v2ẑ (2.7)

so the total force per unit area is:

F = Fe + Fb =
σ2

2

(
− 1

ϵ0
+ µ0v2

)
ẑ (2.8)

(c) We search for the speed at which the above force vanishes:

− 1
ϵ0

+ µ0v2 = 0 =⇒ v =
1

√
ϵ0µ0

= c (2.9)

i.e. the speed of light!

(d) In the capacitor frame, the top plate sees itself and the bottom plate as fixed, so there are no cur-
rents/moving charges; hence B = 0. As for the E-field; the lab frame measures a surface density of σ,
but in capacitor frame the surface density is reduced to σ0 = σ

γ(v) (with γ(v) = 1√
1− v2

c2

), and the electric

field is suppressed by the appropriate γ factor. The limit in (c) corresponds to limv→c γ(v) → ∞ and
hence the fields (and force) vanishes because the surface density in the capacitor frame goes to zero.
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3 Vector potential for solenoid

To give us a bit of practice with the vector potential, let us calculate it for an infinite solenoid of radius R
with current I and n turns per unit length running through it. From Ampere’s law (as you saw in class!)
we know that the field inside is uniformly B = µnIẑ and B = 0 outside.

First, we can use symmetry to constrain the form of A. If we look at the definition of A in terms of the
current:

A(r) =
µ0

4π

∫ J(r′)dV′

|r − r′| (3.1)

we see that the contributions to A are all aligned in the direction of the current. Since J ∝ θ̂ everywhere, it
must follow that A ∝ θ̂ as well (i.e. the r̂, ẑ components vanish). Since the system is translation invariant
in z (the solenoid is infinite) and rotationally invariant in θ, A = Aθθ̂ can further only depend on r.

Now, we note via Stokes’ theorem that the surface integral for the flux Φ through a surface S is
equivalent to a path/loop integral on the boundary of S:

Φ =
∫

S
B · da =

∫
S
(∇× A) · da =

∮
∂S

A · dl (3.2)

Thus we can use the known results of the magnetic field to find the vector potential; for r < R/inside the
solenoid we have:

Φ =
∮

C
A · dl =⇒ B(πr2) = Aθ(2πr) =⇒ Aθ =

(µ0nI)(πr2)

2πr
=

µ0nIr
2

(3.3)

and outside the solenoid (for r > R) we have:

Φ =
∮

C
A · dl =⇒ B(πR2) = Aθ(2πr) =⇒ Aθ =

(µ0nI)(πR2)

2πr
=

µ0nIR2

2r
(3.4)

So:

A =


µ0nIr

2 θ̂ r < R
µ0nIR2

2r θ̂ r > R
(3.5)

it can be verified that ∇× A (check it in cylindrical coordinates!) recovers the correct expressions for B
inside/outside the solenoid.

Although completely outside the scope of this course - one argument for why A is the more physical
quantity (rather than the B field itself) is the fact that

∮
C A · dl can be measured via an experiment that

measures a quantum-mechanical phase shift arising from particles travelling on the outside of a solenoid.
The experiment is able to pick up on the fact that

∮
C A · dl ̸= 0 - even though B = 0 everywhere outside!

This is the celebrated Aharanov-Bohm effect, and is one motivation for a potential-centric development of
electromagnetism (the other motivation being that A is necessary for when we think about how to couple
electromagnetic fields to charge matter, such as in quantum electrodynamics).
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