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1 Problem Statement

This discussion is based on Purcell 1.24 and 1.83.
In your quiz this week, you studied an infinitely long solid cylinder of radius a and uniform positive

charge density per unit volume of +ρ. You found the electric field (choosing a coordinate system such
that the center of the cylinder is aligned with the z-axis) using Gauss’ Law to be:

E(r) =


ρr

2ϵ0
r̂ r ≤ a

ρa2

2ϵ0r r̂ r > a.
(1.1)

In this discussion, we will find the energy stored in this charge configuration/the electric fields (per
unit length) using two methods:

(i) Consider building up the cylinder layer by layer by bringing charges from a faraway radius R (if we
bring the charges in from infinity, we will find that the energy diverges), and adding up the energy
contributions from each layer.

(ii) By evaluating the integral U = ϵ0
2

∫
E2dV over all space (again, consider integrating out to some large

radius R).

2 Solution

(i) For the first method, we consider that at an intermediate stage, the cylinder has radius r; the electric
field at this point at radius r′ is:

E(r′) =
ρr2

2ϵ0r′
r̂ (2.1)

Therefore, the work done in bringing a charge dq from radius R to radius r is:

dW = −
∫ r

R
dqE · dr = −

∫ r

R
dq

ρr2

2ϵ0r′
dr′ = dq

ρr2

2ϵ0
ln(

R
r
) (2.2)

Building up the cylinder, we are bringing in cylindrical shells of charge:

dq = (2πrdr)lρ (2.3)

Thus the total work done in bringing in shells of radii r = 0 to r = a is:

W =
∫

dW =
∫ a

0
dq

ρr2

2ϵ0
ln(

R
r
) =

∫ a

0

(2πrdr)lρρr2

2ϵ0
ln(

R
r
) =

πρ2l
ϵ0

∫ a

0
r3 ln(

R
r
)dr (2.4)

The integral can be solved via integration by parts, with u = ln( R
r ) with du = − 1

r and dv = r3,

v = r4

4 : ∫
r3 ln(

R
r
)dr =

r4

4
ln(

R
r
)−

∫ r4

4

(
−1

r

)
dr =

r4

4
ln(

R
r
) +

r4

16
(2.5)

1



So then:

W =
πρ2l

ϵ0

 r4

4
ln(

R
r
) +

r4

16

∣∣∣∣∣
a

0

 =
πρ2a4l

4ϵ0

(
ln(

R
a
) +

1
4

)
(2.6)

The total work done is equal to the potential energy stored in the configuration, so dividing this out
by l (to get the energy per unit length), we conclude:

U =
πρ2a4

4ϵ0

(
ln(

R
a
) +

1
4

)
(2.7)

(ii) For the second method, we evaluate the volume integral:

U =
ϵ0

2

∫
field

E2dV. (2.8)

We have already found the field, so all is left to carry this out. Consider a length l of the cylinder.
The energy stored in the field from radius r = a to r = R (outside of the cylinder) is thus:

Uext =
ϵ0

2

∫ 2π

0
dφ
∫ l

0
dz
∫ R

a

(
ρa2

2ϵ0r
r̂

)2

rdr =
ϵ0

2
2πl

∫ R

a

ρ2a4

4ϵ2
0r2

rdr =
πρ2a4l

4ϵ0

∫ R

a

dr
r

=
πρ2a4l

4ϵ0
ln(

R
a
)

(2.9)
The energy stored in the field from radius r = 0 to r = a (inside of the cylinder) is:

Uint =
ϵ0

2

∫ 2π

0
dφ
∫ l

0
dz
∫ a

0

(
ρa2

2ϵ0r
r̂

)2

rdr =
πρ2l
4ϵ0

∫ a

0
r3dr =

πρ2a4l
16ϵ0

(2.10)

The total energy stored in the field per unit length is thus:

U =
Uext + Uint

l
=

πρ2a4

4ϵ0

(
ln(

R
a
) +

1
4

)
(2.11)

3 Extra: Electric potential

The electric potential can also be derived easily from the electric field; taking ϕ(r = 0) = 0, we have (for
|r| = r < a):

ϕ(r) = −
∫

0→r
E · dr = −

∫ r

0
Edr = −

∫ r

0

ρr
2ϵ0

dr = − ρr2

4ϵ0
(3.1)

and for |r| = r > a:

ρ(r) = −
∫

0→ar̂
E · dr −

∫
ar̂→rr̂

= −
∫ a

0

ρr
2ϵ0

dr −
∫ r

a

ρa2

2ϵ0r
dr = −ρa2

4ϵ0
− ρa2

2ϵ0
ln(

r
a
) (3.2)
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