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Introduction:
This is a set of lecture notes taken from UChicago’s PHYS 353 (Advanced Statistical Mechanics), taught
by Peter Littlewood. Topics covered include the discrete to continuous transition, the ferromagnetic and

antiferromagnetic Heisenberg chain, Ginzburg-Landau Theory, Fluctuations, The Scaling Hypothesis,
The Renormalization Group, Perturbative RG, Continuous Symmetries, the non-linear σ model, the 2-D

XY model, Disorder and random system, Random fields, Spin glasses, Replica symmetry breaking,
Neural networks and Boltzmann machines, and Non-equilibrium dynamics.
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1 Introduction

I was 34 minutes late to lecture due to misunderstanding the start time - thanks to Kalpak for providing his notes!

1.1 Probabilities in Statistical Mechanics

In stat mech, probabilities are given by:

P(µ) =
e−βH(µ)

Z
(1.1)

for a microstate µ. Here, Z is the partition function:

Z = ∑
µ

e−βH(µ) (1.2)

and β = 1
kBT is the inverse temperature. The free energy can be obtained as:

F = − 1
β

ln Z (1.3)

What is meant by a state µ? In some sense, there is a tension, as one slices up the continuous state
space of classical physics. This is resolved by fields.

1.2 Spin Models

A rich setting to explore statistical mechanics is spin models. For example, the celebrated Ising modelis
defined by the Hamiltonian:

HIsing = ∑
ij

JijSiSj (1.4)

with Jij the coupling between classical spins Si ∈ {1,−1}. We can also generalize this for arbitrary spin
directions by promoting the spins to vectors (giving rise to a continuous degree of freedom), yielding the
Heisenberg model:

HHeisenberg = ∑
ij

JijSi · Sj. (1.5)

As is clear from the sums appearing in the above expressions, we are considering discrete spins (per-
haps on some lattice). We can convert to momentum space via a Fourier transform, and then via a
“coarse-graining procedure” (formalized by the renormalization group) we obtain a roughly continuous
spectrum, which we may treat as a field.

1.3 From discrete models to fields

For example, we can consider the linear dispersion relation:

ω(k) = c|k| (1.6)

which gives rise to the density of states:

d3n = u(k)d3k = u(ω)dω (1.7)

Which by then considering a sphere in k-space of surface area 4πk2 this becomes:

qu(ω) = u(k)4πk2 dk
dω

(1.8)
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The energy density u(k) we take to be constant, i.e. just V/(2π)d = L3/(2π)d (for a box of length L) and
dk
dω

is obtained from the dispersion relation, yielding:

d3n =
L3

2π2
ω2

c3 (1.9)

This is the Rayleigh argument for black-body radiation. Of course this is incorrect, as the density of energy
diverges as ω → ∞. This is fixed by quantum mechanics, where the Einstein blackbody argument yields:

u(ν) =
8πhν3

c3
1

e
hν

kBT − 1
. (1.10)

Let’s now return to the spin model, and consider a field construction of the system. We define te
magnetization:

m =
N

∑
i=1

Si (1.11)

and we nwo coarse grain, taking m = m(x) to be a function of x. We look at a window/block of spins and
describe it with a theory in the continuum limit. For a given window/block i, we can consider:

m(xi) = ∑
i,j<N

Si+j (1.12)

Phenomenologically, we can guess the theory with legal terms:

H =
∫

dx
[

am2(x) + bm3(x) + cm4(x) + k(∇m)2 + k′(∇2m)2 + . . .
]

(1.13)

and use this to probe the explore of the system. Note that the Hamiltonian cannot have terms of order m
or ∆m as this breaks the Z2 inversion symmetry. However, such terms can enter in the forms of external
fields (yielding terms like hm) which break the symmetry.

1.4 Phase Transitions

We can also think about phases of matter and phase transitions between them. E.g. phase transition
between solid/liquid/gas phases are discontinuous. Can have discontinuous phase transitions between
different phases; find free energy minimums of two different phases, and they cross. There’s a subtlety
at the critical point, however, which we return to later (it turns out that this point is scale invariant, and
described by a conformal field theory). Also note that there are V for which no apparent symmetries
broken in the liquid-to-gas transition, i.e. the phase transition is continuous (but it does turn out that an
emergent symmetry becomes broken).

In the magnet case, we can have magnetic and non-magnetic phase. In magnetic phase, has to choose
a direction for the magnetization to point in. This breaks the Z2 symmetry. Looking at the phase diagram
for a magnet, we have the parameters T temperature and h the external magnetic field. For h > 0 we
have magnetization up and for h < 0 we have magnetization down. At zero temperature the transition
is abrupt. There is a critical temperature Tc above which the transition is smooth, and below Tc we have
varying degrees of an abrupt transition. Interestingly, the critical point between liquid and gas “looks
like” an Ising transition.

We can obtain scaling laws for the magnetization:

m(T, h = 0) =

{
0 T > Tc

|t|β T < Tc
(1.14)
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Figure 1.1: Phase diagram of water. There is a lot of rich phenomenology in the phase transitions, for
example at the critical point where the system is scale invariant and described by a CFT.

Figure 1.2: (a)h (external field) vs. T (temperature) phase diagram for the Ising model and (b) behaviour
of m (magnetization) as a function of h for different T. For h > 0 we have ⟨m⟩ > 0 and vise versa for h < 0.
For T < Tc, there is an abrupt transition in m at h = 0 (yellow line). This can be seen by studying the
behaviour of m for different temperatures; for T = 0 the transition is abrupt (as we would expect; since
the external field is the only contribution to the energy, any finite magnetic field fully polarizes the spins).
Below Tc the transition stays abrupt, though with a smaller “jump” in the magnetization, and above Tc
the transition is smooth.
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m(T = Tc, h) ∼ h1/δ (1.15)

There are other quantities we may compute; for example we could measure the magnetic susceptibility

χ =
∂m
∂h

(t). Because the system becomes very polarizable near the phase transition, we may expect that
χ has a peak/divergence at T = Tc, which is characterized by a further exponent. We could also compute
the specific heat of the system, which also has its associated exponent and so on.

There’s a whole zoo of critical exponents, and it turns out that there are (universality) classes where
the exponents are the same - i.e. near these phase transitions very different systems are governed by the
same theories.

Note that the theory described by Eq. (1.13) is known as Ginzburg-Landau theory (or the mean-field
theory), and was written down to describe phenomenology. We have a power series expansion in the
magnetization, with the coefficients (e.g. a) as smooth functions governed by T, h, and so on.

We can consider a ϕ4 theory:
F = aϕ2 + bϕ4 + hϕ (1.16)

with a phenomenological guess of a = a0(T − Tc).

dF
dϕ

= 0, ϕ2 = − a
b

or ϕ = 0 (1.17)

We then have ϕ ∼ (Tc − T)1/2, i.e. β = 1/2.
General procedure: Start with mean field theory. Then, aspects of field theory will turn out. One

aspect will be thermal fluctuations about the mean field theory states. Then we think about terms like
k(∇m)2, which tells us that there are energy costs to (e.g.) mis-aligned spins. This is known still as the
Gaussian model as the Hamiltonian with this term is still quadratic in the fields. The moment I have a
gradient term, I get modes in the system that can propagate. If I have a lot of modes, I don’t get a phase
transition.

Scaling Hypothesis - I know there are a set of critical exponents. How are they related? Via scaling.
So, suppose I look at the system on different scales. As I average over different scales, if the system has to
look self-similar. RG gives us a way to obtain critical exponents.

Other systems - we will also look at systems in low-dimensions, which can be interesting. There are
also systems with inherent disorder/randomness, e.g. glasses which are frozen but not ordered systems.
There is at least one model that realizes this, which Parisi got a Nobel for. We will also look at dynamical
systems; what happens to open/driven systems? There are ways to formally write them in a very similar
language. E.g. friction, forced flow, growing things at an interface, biology. Finally, we may study
information and data. The straightforwards introduction for physicists is spin glasses, which can (in
theory) be used to encode data via learning a set of interactions Jij.

2 From Particles to Fields

In this lecture, we will look at a chain of atoms, and a chain of ferromagnetic spins.

2.1 Phonons

We consider atoms of mass m connected by springs of spring constant ks, with equilibrium a. We can
notate the displacement of the nth atom from its equilibrium position as ϕn, and xn the distance of the nth
atom from the end of the string.

The Lagrangian of the system is then:

L = T − V =
N

∑
i=1

[
1
2

mẋ2
n −

ks

2
(xn+1 − xn − a)2

]
=

N

∑
n=1

[
1
2

mϕ̇2
n −

ks

2
(
ϕn+1 − ϕn

)2
]

(2.1)
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Figure 2.1: Diagram of a chain of atoms connected by springs.

notice there is a potential energy piece and a kinetic energy piece, both quadratic. We will want to solve
for the eigenmodes of these problem. There are N degrees of freedom and as such we expect to find N
eigenmodes.

This problem is solvable! We can write down the equation of motion of the springs; this is just nearest
neighbour couplings so we can write down an analytic solution.

We promote:
ϕn → a1/2ϕ(x) (2.2)

with the a1/2 introduced for dimensional purposes, namely in such a way that we measure position in
units of x

a , i.e. making it dimensionless. Then:

(ϕn+1 − ϕn) → a3/2∂xϕ(x) (2.3)

Finally, we convert from a discrete sum to an integral:

∑ → 1
a

∫ L=Na

0
dx (2.4)

Thus the Lagrangian becomes a functional (i.e. a function of a function) of a field:

L[ϕ] =
∫ x

0
L(ϕ, ∂xϕ, ϕ̇) (2.5)

where L is the Lagrangian density:

L =
1
2

mϕ̇2 − ksa2

2
(∂xϕ)2. (2.6)

We then write down the classical action:
S[ϕ] =

∫
dtL[ϕ] (2.7)

Currently the field ϕ is not determined; it is a function of x, t. Our next task is to look for solutions that
minimize the action.

To this end, we have the Euler-Lagrange equation:

∂L
∂ϕ

− d
dt

∂L
∂ϕ̇

− d
dx

∂L
∂(∂xϕ)

= 0 (2.8)

which is derived from the principle of least action. Working out the Euler Lagrange equation, we get the
expected result:

[m∂2
t − (ksa2)∂2

x]ϕ(x, t) = 0 (2.9)

this is a wave equation! What we can see is it describes sound waves. Notice that the above equation is
translation invariant, and as such the general solution is the sum of a right and left handed wave:

ϕ+(x + vt)− ϕ−(x − vt) (2.10)
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with velocity:

v = a

√
ks

m
. (2.11)

Often however, it is common to look at this equation and say that it is simplest to study it in terms of
Fourier modes; consider solutions:

ϕ(x, t) = ϕ0ei(ωt−kx) (2.12)

which plugging into the wave equation gives us the dispersion relation:

ω = vk (2.13)

The waves oscillate in time and in space.
Going back to the discrete case, we have the eigenmodes:

ϕn(t) = ∑
k

1√
N

ei(ωkt−kna) (2.14)

with dispersion:

ω(k) = 2

√
ks

m
|sin(

ka
2
)| (2.15)

This solution knows about the discreteness of the lattice. Going to the continuum, we lost something,
but we have a much simpler theory. In particular, the theory is good for small k/large wavelengths. The
coarse graining made us lose information about the short-wavelength modes; we should not use the field
theory for microscopic wavelengths. But, say for populating the chain with low-T bosons (i.e. low energy
bosons) this captures the phenomenology well.

The dispersion curves looks like:

Figure 2.2: Continuum and Discrete Dispersion. The continuum dispersion is linear in k, while the discrete
dispersion is ∼ |sin(k)|. The two dispersion relations agree for small k/large wavelengths/small energies.

We can now use this to do thermodynamics! We can write down the internal energy:

E(T) = E0 + ∑
k

h̄ω(k)
[
⟨nk⟩+

1
2

]
(2.16)

where:
⟨nk⟩ =

1

e
h̄ω

kBT − 1
(2.17)

In the limit where kBT ≪ h̄ω, h̄ω(k) → h̄vk and the energy goes as ∼ T2. This is the well known
thermodynamic dependence of the spring chain.
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2.2 Ferromagnetic Heisenberg Chain

We consider the quantum Hamiltonian:

Ĥ = −J
N−1

∑
m=1

Ŝm · Ŝm+1 (2.18)

where we take the coupling J > 0 such that the spins aligning result in lowered energy (i.e. we are
describing a ferromagnet). At each site we have spin operators:

[Ŝi
m, Ŝj

n] = iδmnϵijkŜk
n (2.19)

with δmn the Kronecker delta (which tells us that the spin operators only have nontrivial commutation on
the same site) and ϵijk is the totally anti-symmetric tensor. We denote the total spin as S, a number (can
be 1/2, 1, 3/2, etc.). We can consider the eigenstates of Ŝz:

Ŝz
m|sm⟩ = s|sm⟩. (2.20)

where |Sm⟩ form a ladder of states from s = −S,−S + 1, . . . , S − 1, S. We guess the ground state:

|Ω⟩ =
N⊗

m=1

|Sm⟩ (2.21)

i.e. all the spins are spin up. This clearly minimizes the energy, as for each coupling term Sm · Sm+1 we
get energy −JS and so the total energy of |Ω⟩ is −JSN. Note however in writing this ground state down
we broke some symmetry, as indeed the spins could be all aligned in any direction, and we would get the
same ground state energy.

Recall that on a single site, we can have the raising/lowering operators:

Ŝ±
m = Ŝx

m ± iŜy
m (2.22)

which takes us up/down the ladder of |sm⟩ eigenstates. We can now rewrite our Hamiltonian to be of the
form:

Ĥ = −J ∑
m

(
Ŝz

mŜz
m+1 +

1
2

(
Ŝ+

m Ŝ−
m+1 + Ŝ−

m Ŝ+
m+1

))
(2.23)

We now play a trick, namely the Holstein-Primakoff transformation. We define new operators (some-
time known as magnon variables):

Ŝz
m = S − â†

m âm (2.24)

Ŝ+
m =

(
2S − â†

m âm

)1/2
a (2.25)

Ŝ−
m = â†

m

(
2S − â†

m âm

)1/2
(2.26)

where:
[âm, â†

n] = δmn (2.27)

It can be verified that this transformation is exact (though it looks strange!) as it preserves the spin
commutation relations. Why does this work? Intuitively, we have introduced the bosons through the
operators â, â†; the ladder of spin states look like the ladder of spin states (just that one is an infinite, and
one is a finite ladder). But the square roots actually make sure that the dimensionality of our Hilbert space
is preserved, because when I hit the walls of ±S, the state vanishes. However it is instructive to consider
the case where S is large:
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Let us Taylor expand Ŝ±:

Ŝ+
m ≈

√
2Sâm +

O(â†
m âm âm)√

2S
(2.28)

if S → ∞, then we can throw away all but the first order term. Interestingly, it has a habit of working even
when S = 1

2 . Let us write the Hamiltonian to second order in the operators:

Ĥ = −JNS2 + JS ∑
m

[
â†

m âm + â†
m+1 âm+1 − â†

m âm+1 − â†
m+1 âm

]
+ O(S0) (2.29)

The number operator terms come from the Ŝz, while the exchange terms come from the Ŝ± cross terms.
As such, we have now rewrote the Hamiltonian in terms of bosonic modes. Because this is periodic,
the natural thing to do is to go back to the phonon problem in the discrete sense. There, we went into
momentum space, and we shall do that again here:

˜̂ak =
1√
N

∑
m

eikm âm (2.30)

where the ˜̂ak corresponds to a momentum annihilation operator and âm corresponds to a position annihi-
lation operator. Note that the momentum operators obey the same algebra:

[ ˜̂ak, ˜hata†
k′ ] = δkk′ (2.31)

which transforms the Hamiltonian into:

Ĥ = −JNS2 + ∑
k

ωk ˜̂a†
k

˜̂ak (2.32)

where:
ωk = 4J sin2(

k
2
) (2.33)

This is a quadratic (at small k) dispersion relation. Note that we still have a zero mode at k = 0 where the
symmetry is preserved. Note also that in the HW, you will solve the classical version of this problem, and
find the same dispersion.

Figure 2.3: Small k dispersion relation for the ferromagnetic Heisenberg spin chain. For small k, the
dispersion is quadratic.
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We call these objects “spin waves”. This is clearly an approximation, as we have ignored the O(S0)
terms in the Hamiltonian which include terms such as â†aâ†a which correspond to interactions between
spin waves. So long as we stay near the zero mode, there is “nowhere to go” so the interactions can be
neglected (if we look at large k modes on the other hand, the interactions become relevant).

A naive field theory for this would produce ωk ∼ k, but it turns out spin conservation + rotational
invariance gives us ωk ∼ k2. On Friday, we will look at the antiferromagnetic version of this problem,
where we will see we obtain ωk ∼ k (due to vacuum fluctuations).

3 Antiferromagnetic Heisenberg Chain,

3.1 Review of the Heisenberg Chain

Recall the Heisenberg spin chain Hamiltonian:

Ĥ = −J ∑
m

(
Ŝz

mŜz
m+1 +

1
2

(
Ŝ+

m Ŝ−
m+1 + Ŝ−

m Ŝ+
m+1

))
(3.1)

and after the Holstein-Primakoff transformation, this became:

Ĥ = −JNS2 + JS ∑
m

(
â†

m âm + â†
m+1 âm+1 − â†

m âm+1 − â†
m+1 âm

)
+ O(S0) (3.2)

Note to get here we first did an exact transformation into bosonic operators, then expanded this transfor-
mation in a Taylor series to obtain a Hamiltonian quadratic in â/â†. This can be turned into a field theory;
loosely, we can replace the as by field operators:

âm → ϕ̂(x), â†
m → ϕ̂†(x) (3.3)

Further, we can consider:

âm+1 ≈ âm +
∂

∂x
âm (3.4)

which can give us ∇ϕ̂ terms. We also have the promotion of the commutators to the continuum:

[âm, â†
m′ ] = δmm′ → [ϕ̂(x), ϕ̂†(x′)] = δ(x − x′)a (3.5)

Note that this would give us a free field theory (as the bosonic operator terms are all quadratic).

3.2 Antiferromagnetic Case

Formally, we change the sign of J in Eq. (3.1) so that it is now J < 0. Now, we guess our ground state to be
alternating between spin up/down, with spins on the A sublattice being up and those on the B sublattice
being down:

So, let us consider applying a π rotation on the B sublattice of spins, i.e. taking:

Sz
B → −Sz

B, Sy
B → −Sy

B, Sx
B → Sx

B (3.6)

So the Hamiltonian becomes:

Ĥ = −|J|∑
m

(
Ŝz

mŜz
m+1 −

1
2

(
Ŝ+

m Ŝ+
m+1 + Ŝ−

m Ŝ−
m+1

))
(3.7)

or with the H.P. transformation:

Ĥ = −|J|NS2 + |J|S ∑
m

(
â†

m âm + â†
m+1 âm+1 − âm âm+1 − â†

m+1 â†
m

)
+ O(S0) (3.8)
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J > 0, FM

J < 0, AFM

A B A B A B A

i − a i i + a
1

Figure 3.1: Cartoon picture of FM and AFM Heisenberg chain. J > 0 (ferromagnet) encourages the spins
to align, while J < 0 (antiferromagnet) encourages the spins to anti-align. Our guess for the ground state
in this case is to bipartition the chain into two sublattices, A, B for spins pointing up and down. We
do note that this is an ansatz/guess for the ground state, and is not an exact eigenstate of the quantum
Hamiltonian.

If we diagonalize this (which we can always do - it is a quadratic form!) we obtain:

Ĥ = −N|J|S(S + 1) + |J|S ∑
k

(
â†

k âk

)( 1 cos k
cos k 1

)(
â−k
â†
−k

)
(3.9)

where:
âk = ∑

m
eikm âm (3.10)

Now doing a Bogoulibov transformation:(
α̂k

α̂†
−k

)
=

(
cosh θk − sinh θk
− sinh θk cosh θk

)(
âk

â†
−k

)
(3.11)

with tanh 2θk = cos k. With this rotation, Ĥ becomes:

Ĥ = −N|J|S2 + 2|J|S ∑
k
(sin k)α̂†

k α̂k (3.12)

Which gives us the spectrum - it is linear! We can think of these eigenstates as linear superpositions of
spin waves in the original basis.

Unfortunately, we aren’t quite done. These operators are not conserved. Because the ground state is
defined by α̂k|0⟩ = 0, but α̂k is a combination of a†/as and so can create excitations.

Let us look at the magnetization of the ground state:

M = ⟨0| 1
N ∑

i
Ŝz

i |0⟩ = S − 1
N ∑

i
⟨0|a†a|0⟩ = S − 1

N ∑
k

sinh2 θk (3.13)

I.e. we see it is nonzero! These are quantum fluctuations on top of the classical ground state. Looking at
the integral form for this, we have:

M = S −
∫ 1/a

0
dk

1
k

kd−1 (3.14)

which diverges at k = 0 for d = 1. An important note to make; fluctuations, even quantum ones, can
destroy phase transitions! E.g. the 1D classical Heisenberg model orders, the quantum one does not. But
of course when we look at thermal fluctuations thing disorder even more.

The fact that M diverges in 1D tells us that the approximation (i.e doing the sublattice divisions...)
we made at the beginning was incorrect. This sublattice division is incorrect as there is no local SU(2)
symmetry (only a global one). This might have been okay if I was just asking about long range order. If
M turned out to be finite, we would still have a magnet... but here that is not the case.
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3.3 Phase Transitions in the Classical Magnet

We consider a classical magnet (i.e. a lattice of classical spins), subject to two parameters, an external
magnetic field h and a temperature T. We consider the magnetization m(T), which is something we may
measure in a lab:

m(T) =
1
V

lim
h→0

M(h, t) (3.15)

where:
M(h, T) =

1
N ∑

i
Si (3.16)

is a quantity that depends on the external field and temperature.
We have the scaling of the magnetization:

m(T, h = 0) =

{
0 t > 0
|t|β t < 0

(3.17)

with t = Tc−T
T . We can also consider the scaling of m w.r.t. h at the critical temperature:

m(T = Tc, h) ∝ h1/δ. (3.18)

The β, δ appearing above are the critical exponents that quantify the phase transition.
We may also consider the measurement of a response function, i.e. the response of the system to some

perturbation that we put in. An example is the magnetic susceptibility χ:

χ(T, h = 0) =
∂m
∂h

(3.19)

or the specific heat:

C =
dE
dT

∣∣∣∣
T

∝ c|t|−α± (3.20)

How do we calculate these quantities? We start with some partition function:

Z = Tr(e−β(H0+m.h.)) (3.21)

with β = (kBT)−1, H0 = −J ∑ij SiSj and m.h. = −h ∑i Si (the magnetization in field h). The trace here is
a shorthand to say we compute the exponential for every possible configuration of spins, with the terms
weighted by the energy (you could do this numerically, e.g. by doing a Monte Carlo simulation).

If I have a partition function, I can compute things! In particular, if I want to compute the (average)
magnetization:

⟨M⟩ = ∂ ln Z
∂(βh)

=
1
Z

Tr(Me−β(H0+m.h.)) (3.22)

We can then compute χ:

χ =
∂M
∂h

= β

[
1
Z

Tr
(

M2e−βH
)
− 1

Z2

(
Tr(Me−βH)

)2
]

(3.23)

Of we look at this carefully, we see the first term is the expectation of M2 and the second term is the
square of the expectation value of M, i.e.:

χ = β

(〈
M2
〉
− ⟨M⟩2

)
. (3.24)
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Figure 3.2: Plots of various measurable quantities and their behaviours near the critical temperature. (a)
External field vs. Temperature. (b) Magnetization vs. Temperature for h = 0 and h > 0. (c) Magnetization
vs. External field for various T. (d) Magnetic susceptibility vs. Temperature. (e) Heat capacity vs.
Temperature.

Thus, the susceptibility tells you about fluctuations from the average.
This M we have written here is an average over all configurations and over all space. We may also be

interested in an average just over space. To this end, we may consider that the macroscopic magnetization
is just the integral over the course-grained position dependent magnetization m(x):

M =
∫

d3rm(x) (3.25)

from which:

χ = β
∫

d3rd3r′
(〈

m(r)m(r′)
〉
−
〈
m(r)

〉 〈
m(r′)

〉)
. (3.26)

Now, if r, r′ are closeby, we expect the magnetization to be correlated, and if they are not, it depends on
the ordering of the state. To this end, let us define here a connected average of C:〈

m(r)m(r′)
〉

C
=

〈
(m(r)−

〈
m(r)

〉
)(m(r′)−

〈
m(r′)

〉
)

〉
= G(r − r′)− m2 (3.27)

where G is a (Green’s) function that depends on the distance r − r′. With this, the integral for χ becomes:

χ =
V

kBT

∫
dr
〈
m(r)m(0)

〉
C . (3.28)

So, interestingly, the susceptibility tells us something about the correlation function of spins. Generically,
I expect this to decay:

G(r) ∼ e−r/ξ (3.29)
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which introduces the idea of a correlation length ξ. As I approach the phase transition, far-away degrees
of freedom become more and more correlated- from the divergence of χ at the phase transition, we can
also conclude that the correlation length ξ must also diverge. Thus, we hypothesize:

ξ ∼ |t|−ν. (3.30)

Also, notice that this happens on both sides of the transition.

3.4 Ginzburg-Landau Theory

Another way we can thing about the partition function:

Z(T) = Tr(e−βH) =
∫

D[m(r)]W(m(r)) (3.31)

I.e. look at all spatial configurations D[m(r)] of the order parameter, for each of these compute the
statistical weight W, and add them up.

We can use the W to define a Hamiltonian:

βH[m(r)] = − ln W[m(r)] (3.32)

we do this to avoid writing down a microscopic Hamiltonian. Then, βH[m(r)] is a functional of m, so:

βH[m(r)] =
∫

ddrϕ[m(r), r] =
∫

ddrϕ[m,∇m,∇2m, h, . . .] (3.33)

We assume that ϕ is an analytic function of all of these variables, and stop at some point because we
would consider some terms to not be relevant.

4 Ginzburg-Landau Theory Continued

4.1 Review from last class + Symmetries

We will go into the phenomelogical G-L theory, showing how the mean field theory are derived from the
saddle point approximation. We then consider small Gaussian fluctuations about this saddle point. Some-
times these fluctuations are not actually small, which will get us into discussion of the renormalization
group.

We start with the partition function:

Z(T) = Tr(e−βH) =
∫

D[m̄(r)]W(m̄(r)) (4.1)

Here, m̄ is a coarse-grained averaged of the order parameter, the coarse-grained version of the microscopic
spins Sis. We take an integral over all configurations, and we associate with each configuration a statistical
weight W.

We then define the (effective) Hamiltonian as:

βHeff[m̄(r)] = − ln W[m̄(r)] =⇒ W ∼ e−βHeff (4.2)

We remark that RG will eventually allow us to derive the effective Hamiltonian from the microscopic one.
Then, βH[m̄(r)] is a functional of m, and we assume that Φ, whose integral gives the effective Hamiltonian,
is local:

βHeff =
∫

ddrΦ[m̄(r), r] (4.3)
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and then we may expand it perturbatively:

Φ[m̄(r),∇m̄(r),∇2m̄(r), . . .]. (4.4)

The next assumption that Φ is an analytic function. We now consider symmetries of the system. For
example for the Heisenberg chain, we have rotational symmetry:

H[Rm̄] = H[m̄] (4.5)

This symmetry implies that the leading order term must be m̄2 = m̄ · m̄, and then m̄4 and so on (the
rotational symmetry forbids odd powers). Further, inversion symmetry forbids odd powers in ∇m, so we
consider:

(∇m̄)2 =
n

∑
i=1

d

∑
α=1

(∂αm̄i)(∂αm̄i) (4.6)

What if the system is anisotropic? E.g. we have a unit cell that has different x/y lengths; then we can
rescale via redefinition y → yb, x → x/a to recover isotropy. The symmetries must then be preserved.

4.2 Minimal Model

We consider a scalar field m, where:

βH = const +
∫

ddr{1
2

tm2(r) +
1
4

um4(r) +
1
2

k(∇m)2 − hm} (4.7)

Where we note the model has inversion symmetry up to the external magnetic field term. At the moment,
the constants appearing in the model are all phenomelogical, e.g. t = t(T, B, P, . . .) For now, we don’t care
about the parameters precisely - we are just trying to see if there is any interesting behaviour generically
interesting in theory. Are there any points in parameter space where it changes its behaviour? This is
quite a different approach from trying to “solve” a specific microscopic model.

For this theory to be sensible, we must have u > 0; else the magnetization will grow to infinity (as
m → ∞ would then prove to be the lowest energy configuration), and there is nothing to stabilize the
model (if u < 0 we require a m6 term to stabilize it). k > 0 is also known from the phonons in the
model; it gives the dispersion at long wavelengths; if k < 0, it would disperse downwards, and at finite
wavevectors the model would be unstable.

4.3 Mean Field Theory from Saddle Point Approximation

The next question - a technical one - is what does D[m(r)] mean? The idea will be to discretize:

∫
D[m]F(m,

∂m
∂x

, . . .) = lim
N→∞

N

∏
i=1

∫
dmiF[mi,

mi+1 − mi
δ

, . . .] (4.8)

Large fluctuations have a high energy cost (due to the gradient term) and thus have low statistical weight.
The first thing we are tempted to do when minimizing h is to choose configurations where m is uniform;

the zeroth order guess is to say that m(r) = m + δm(r), where δm(r) are the fluctuations we return to in a
moment. We then have:

Z ∝ Const
∫

dm exp(−V(
1
2

tm2 +
1
4

um4 − hm)) (4.9)

where V is the volume. Now, this is an easy integral; since V is large, the dominant term is the minimum
of the function in the exponential. We can now compute the free energy:

F = − 1
β

ln Z ± Const + V min
m

[Φ(m)] (4.10)
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An aside; there are all kinds of constants that flow around in this problem due to taking limits and large
numbers of integrals. We can ignore these, because all multiplicative constants that go into the partition
function end up going into an additive constant into F which we can drop (it just sets the zero energy).

We minimize Φ, so the condition on the minimal m is:

tm + um3 − h = 0. (4.11)

Sign of t Minimizing m Critical Exponents Specific Heat
t > 0 m = h/t α ∼ 1

t , γ = 1 0

t < 0 m = ±
√

t
m β = 1/2 1

2u

t = 0 m =
(

h
u

)1/3
δ = 3

Table 1: Table of minimizing m and Critical exponents depending on t.

If t > 0 then we have one solution, if t < 0 then we have broken symmetry and we have two solutions.

The specific heat is obtained from C = −T
∂2F
∂T2 , where we note that:

βF =

{
0 t > 0
− t2

u t < 0
(4.12)

and we note that there is a discontinuity at t = 0.
Note that there are models where this is exact. Consider a system with finite range interactions, where

the interactions drop off at some length scale R0.

Figure 4.1: Plot of the interactions/couplings Jij, where the interactions are the same up to some long
length scale R0.

In the Ising model, this looks like:

H = ∑
ij

JSiSj =
J

N0
∑

|i−j|<R0

SiSj (4.13)
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This looks like a coarse grained version:
H = ∑

i
Sihi (4.14)

where:
hi =

J0

N0
∑

i
Si = J0 ⟨S⟩ (4.15)

In the N0 → ∞ limit, this theory becomes correct (i.e. long range interactions get us closer to mean field
theory, which makes sense! If all spins interact with each other, then the mean field literally is the physical
field felt). A variant of this was used to win the Nobel prize last week (We will discuss the Hopfield model
later in the course - it is a ferromagnet).

Note that the saddle point approximation works in a high number of dimensions, but it generally
fails in a small number of dimensions - despite the dominance of the saddle point, there are many ways
of making fluctuations; hence entropy comes in, competing with the energetics argument we have made
here.

4.4 Fluctuations

We have two classes of models we consider, characterized by their symmetries.

Continuous (Rotational) Symmetries

These are found, e.g., in X-Y models, Heisenberg models, superconductors. These generically have sym-
metries like U(1), O(2), SO(2). The order parameters have amplitude and a phase, ψ(x) = |ψ0|eiθ(x). At
the mean field level, we can write |∇m|2 = m2

0|∇Θ|2. We consider Hamiltonians with fluctuations of the
form:

βH = Const +
∫

ddx{1
2

k|∇ψ|2} → |ψ0|2
∫

ddx
1
2

k(∇Θ)2 (4.16)

The stiffness is 1
2 k|ψ0|2, where ψ0 is the order parameter. Because this vanishes above the transition, the

modes do not have stiffness above the critical point; they do below, with the stiffness vanishing as they
approach the critical temperature. We can rewrite this as:

1
2
|ψ0|2k ∑

a
a|Θa|2 (4.17)

If we start populating these modes (as if they are bosons), we can get a very large number of them. We
saw this in the AFM spin chain. Something similar will happen here.

Why are they called soft modes? If I am far below Tc, the slope inb the dispersion relation is finite. As
I approach Tc in the mean field model, the slope goes to zero as the order parameters go to zero. Hence,
they are “soft”.

Discrete (Z2) symmetry

Next, we consider;

βH =
∫

ddx[ϕ =
1
2

tm2 +
1
4

um4 +
1
2

k(∇m)2] (4.18)

To which we can consider a more general E-L equation to find the extremum:

k∇2m = tm + um3 (4.19)

We can now consider solutions that start into one well and cross into another well. We can solve this
explicitly:

m = m0 tanh(
x − x0

ω
) (4.20)
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Figure 4.2: Depiction of “soft modes” in the dispersion relation, where as the temperature approaches the
critical temperature below the slope in the dispersion (and the “stiffness”) approaches zero.

where the width is:

ω =

√
2k
−t

(4.21)

This is another stationary solution; we previously found the lowest energy solution, this is a higher-lying
stationary solution. As t → 0, the domain wall becomes very long and the energy goes to zero. Notably,
this is a particle-like excitation, with a lot of degrees of freedom as there are many points where it could
be placed. Thus, we have to sum over all possible places to put 1, 2, . . . , N domain walls. Each one has
finite/small energy, but there are very many of these, so the entropic contribution is likely to win.

Next class, we will discuss how to measure these fluctuations (i.e. scattering experiments).

5 Fluctuations, Continued

5.1 Phase and Amplitude Fluctuations

We consider ϕ (the effective Hamiltonian/energy):

ϕ(m) =
κ

2
|(∇m)|2 + t

2
m2 +

u
4

m4 (5.1)

where m is a order parameter with magnitude m = |m(x)| but also a phase (as it has a direction).
Looking at the potential, we have massless “Goldstone” modes that go between the two wells and the

massive modes that oscillate inside of a given well.
We wish to find the probability distribution:

P [m(x)] = exp(−
∫

ddxϕ(m, x)). (5.2)

Let us notate ⟨m⟩ = m̄ and then write:

m = [m̄ + ϕl(x)]ê1 +
n

∑
α=2

ϕt,α(x)êα (5.3)

Where ê1 is a vector parallel to the magnetization, and and êα for α = {2, . . . , n} are vectors perpendic-
ular to the magnetization and mutually orthogonal. The ϕl , ϕt appearing above are the longitudinal and
transverse fluctuations, respectively.
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Figure 5.1: We consider a potential/energy ϕ that depends on an order parameter m(x). The order
parameter has magnitude m = |m| and direction θ. There are massless Goldstone modes (red) that go
between the wells of the potential, and massive modes that stay within a potential. For a given direction
of the order parameter, we choose locally a coordinate system such that ê1 points along the direction of
magnetization and ê2 (and other vectors) to be mutually orthogonal. This plot is for t < 0.

We consider the mean field solution:

m̄ =

0 t > 0√
− t

u t < 0
(5.4)

Which we then obtain:

− lnP = V
[

t
2

m̄2 +
u
4

m̄4
]
+
∫

ddx

κ

2
|∇ϕl |2 +

(
t + 3um̄2

2

)
ϕ2

l

+
∫

ddx

κ

2
|∇ϕt|2 +

(
t + um̄2

2

)
ϕ2

t

+O(ϕ4
l/t)

(5.5)
Let us rescale:

κ

ξ2
l
= t + 3um̄2 =

{
t t > 0
−2t t < 0

(5.6a)

κ

ξ2
t
= t + um̄2 =

{
t t > 0
0 t < 0

(5.6b)

Where the ξ are called correlation lengths. Above the mean-field phase transition they are the same.
Below, they are different. The 0 is the Goldstone mode (gapless, linear) and the −2t is the massive mode
(gapped, looks like a harmonic oscillator at long wavelengths).

We now have translation invariance, so a natural change of basis is to go into Fourier/momentum
space:

ϕ(x) = ∑
q

ϕq
eiq·x
√

V
(5.7)
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We then find:
P [ϕlq, ϕtq] ∝ ∏

q,α
exp(−κ

2

(
q2 + ξ−2

α

)
|ϕαq|2) (5.8)

We can now start to compute objects of interest, e.g. correlation functions (between fluctuations). We call
this the structure factor:

S(q) =
〈

ϕαqϕβq′
〉
=

δαβδq,−q′

κ(q2 + ξ2
α)

(5.9)

The decoupling of longitudinal/transverse gives the first delta function and the second comes from mo-
mentum conservation. The denominator comes from the computation of the Gaussian integrals. Plotted,
it looks like:

Figure 5.2: Plot of structure for transverse modes as a function of q. For t < 0 we have ξt = 0 and so
the structure factor diverges at 0. For t > 0, ξt is finite so the structure factor at 0 does not diverge.
The structure factor for the longitudinal fluctuations has the same general shape as the t > 0 transverse
fluctuations (for t < 0 and t > 0; ξl is finite for both regimes, just with a different prefactor. For t > 0 it is
identical to the transverse fluctuations).

What is the interpretation of S(q)? We have some object of interest, which we probe via a scattering
experiment. We have some probe, which could be an electron, neutron, photon etc. It has an incident
wavevector ki and a output wavevector k f , emerging at some angle θ to the incident. If we have elastic
scattering, then the energy of the particle remains unchanged, but there is some changed momenta, i.e.
k f = ki + q. We then study the scattering amplitude:

A(q) ∝ ⟨k f |U|ki⟩ ∝ σ(q)
∫

ddxeiq·xρ(x) ∝ ρq (5.10)

Note that the average over the scattering amplitude vanishes:〈
A(q)

〉
=
〈
ρq
〉
= 0 (5.11)

So to probe the structure we want to study:

S(q) =
〈
|A(q)|2

〉
∝
〈
ρq
〉

(5.12)

5.2 Technical Aside: Gaussian Integrals

Consider the single variable integral:

I1 =
∫ ∞

−∞
dϕe−

1
2 kϕ2+nϕ (5.13)
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We solve via completing the square and then redefinition of the integration variable to ϕ′ =
√

k(ϕ − h
k ).

What is left with just the familiar Gaussian integral, which we should be familiar with the result of:

I1 =
∫ ∞

−∞
dϕe−

1
2 k(ϕ− h

k )
2+ h2

k =

√
2π

k
e

h2
2k (5.14)

Now consider
d I1

dh
, which via differentiating under the integral sign we know is equivalent to

〈
ϕ
〉
.

d I1

dh
=
∫

dϕϕe−(...) =
〈
ϕ
〉
=

h
k

(5.15)

This integral is correct up to a constant factor. We don’t have to care about these constants, as eventually
we take the logarithm of the partition function, and this becomes an additive constant which has no effect
on the physics. We can also look at the second derivative:

d2 I1

dh2 =
〈

ϕ2
〉
=

h
k
+

h2

k2 (5.16)

We can also look at the cumulant: 〈
ϕ2
〉

c
=
〈

ϕ2
〉
−
〈
ϕ
〉2

=
h
k

. (5.17)

In principle we could go to higher order cumulants, but you can verify for yourself that these would all
vanish.

Now, let’s look at the N-dimensional version:

IN =
∫ ∞

−∞

N

∏
i=1

dϕi exp(−1
2 ∑

ij
ϕiKijϕj + ∑

i
niϕi) =

√
(2π)N

det K
exp(∑

ij
hi

K−1
ij

2
hj) (5.18)

How would we obtain this? K is a general, presumably symmetric matrix. We diagonalize K, and suppose
it has eigenvalues Kij q̂j = Kq q̂j. We use the q̂j as the canonical basis, and rotate into this basis by saying
ϕi = ∑q ϕ̃q q̂i. Thus the integral becomes:

IN =
∫ N

∏
q=1

dϕ̃q exp(−Kq

2
ϕ2

q + hqϕ̃q) =
N

∏
q=1

√
2π

Kq
exp(hq

K−1
q

2
hq) (5.19)

where now recognizing the determinant is just the product of the eigenvalues, and rotating back into the
eigenbasis, gives the desired expression.

Remark: This relation is very useful, and it works out for QFTs as well, with some is floating around.

5.3 Back to Physics - Transverse Fluctuations and Coloumb Emergence

Now, we make the remark that all Gaussian theories are solvable - they may be wrong, but they are solvable.
In other words, mean field theory + fluctuations to lowest order (i.e. quadratic) are completely solvable
analytically, and are known as Gaussian theories. They are simple, but already can give us interesting
phenomena.

For example, for the structure factors appearing in Eq. (5.9), we were able to find this just with a
Gaussian theory, and it tells us that the long wavelength/small q is the interesting regime where things
are happening. We can look at the exponent η that tells us how the structure factor scales.

S(q, t = 0) ∼ 1
q2−η

(5.20)
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Let us focus on the tranverse fluctuations, below the critical temperature, so t < 0 with ηt = 0. Then,
we have:

P(Θ(q)) ∝ exp(−κ

2 ∑
q

q2|Θq|2) (5.21)

So with out computed structure factor, let us look at the probability fluctuations in the angles:〈
ΘqΘq′

〉
=

δq+q′

κq2 (5.22)

Going back into real space, this is the statement that:

〈
Θ(x)Θ(x′)

〉
=

1
V ∑

q
eiq(x−x′)κq2 =

∫ ddq
(2π)d

eiq·(x−x′)

q2 (5.23)

This is just the Coloumb potential:

C(x) = −
∫ ddq

(2π)d
eiq·x

q2 (5.24)

Which satisfies ∇2C = δd(x), i.e. just Gauss’ Law for a point charge. Now, we can ask what happens to
the potential as x → ∞?

lim
x→∞

C(x) ∝


Const d > 0
x2−d d < 2
ln(x) d = 2

(5.25)

This behaviour can be obtained by looking at ddq ∼ qd−1dq (plus various angular integrals which we don’t
care about).

Thus, in low dimensions the correlations fall off like a power law, so no long range order. For d > 2
we maybe have LRO. At d = 2, we have the critical/marginal dimension. We have a pesky logarithm, and
we need more work (which we will study in future lectures).

Earlier on, we explained how there were models (AFM Heisenberg) that did not order at low dimen-
sions due to the presence of soft modes. This is a souped up version of that. So, when generally looking
at a theory, if I look at a theory with Goldstone modes, I should look at the phase fluctuations and see
if I get LRO. Even though in principle the length scales can get very large, we can still say that at very
large scales that the correlations fall off. Also, its worth noting that the LRO is temperature dependent;
we dropped the βs through the calculations here, but it is relevant.

6 Scaling Theory

6.1 Recap

To recap; we are studying Gaussian theory, in particular ϕ4 theory of a magnet. This is mean field theory
+ quadratic fluctuations, which is exactly solvable, but can still give us insight.

We looked at correlation length associated to longitudinal and transverse fluctuations. We studied the
effect of the transverse fluctuations/Goldstone mode, and below 2-d the correlations die off and we have
no LRO. This was the lower critical dimension. We will now study an upper critical dimension, which
will turn out to be d = 4.

We look at the logarithm of the partition function:

ln Z =
t
2

m̄2 +
u
4

m̄4 +
∫

ddx
[

1
2

κ(∇ϕl)
2 + ξ−2

l ϕ2
l

]
+
∫

ddx
[

1
2

κ(∇ϕt)
2 + ξ−2

t ϕ2
t

]
(6.1)
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The correlation lengths have the scaling:

ξl =

{
ξ0t−1/2 t > 0
(−2t)−1/2 t < 0

(6.2)

ξt =

{
ξ0t−1/2 t > 0
∞ t < 0

(6.3)

The important observation for the transverse modes is below the phase transition, the ξtϕ
2
t term is absent.

We can do the integral by going into momentum space:

∫
ddx

[
1
2

κ(∇ϕt)
2 + ξ2

t ϕ2
t

]
=
∫ ddq

(2π)d

[
1
2

κ(q2 + ξ−2
t )ϕt(q)2

]
(6.4)

Then the partition function is:
Z = ZMFe− ln det(κ(q2+ξ−2

t )) (6.5)

Where this comes from:
Z =

∫
Dϕqe−

1
2
∫

ddqκ(q2+ξ−2
t )ϕ2

q (6.6)

And then we take the Gaussian integral. Then computing the correlators from this result (dropping ξt as
we are t < 0); 〈

ϕt(q), ϕt(q′)
〉
=

δq+q′

κq2 =⇒
〈

ϕt(x)ϕt(x′)
〉
=
∫ ddq

(2π)d
eiq·x−x′

κq2 (6.7)

from which we saw that:

lim
x→∞

C(x = |x − x′|) ∝


Const d > 0
x2−d d < 2
ln(x) d = 2

(6.8)

and found our lower critical dimension of 2.

6.2 Massive Modes and Upper Critical Dimension

We have the partition function of the longtitudinal modes:

Z = ZMFe− ln det(κ(q2+ξ−2
l )) (6.9)

Let us look at the free energy, by taking the logarithm of Z:

F = FMF +
1
2

∫ ddq
(2π)d ln(κ(q2 + t)) (6.10)

Now looking at the heat capacity:

C = −T
∂2F
∂T2 ∼ −t

∂2F
∂t2 (6.11)

Looking at the contribution from the fluctuations:

C ∼
∫ ddq

(2π)d
1

(κq + t)2
t→0∼

∫ 1/a

0
dq

qd−1

q4 ∼ a4d (6.12)
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Figure 6.1: Plot of heat capacity for Gaussian theory.

we want to see how this integral behaves. For d > 4, we have the integral is well behaved at q = 0 and
evaluates to ∼ a4d as above. For d < 4, we need to keep the correlation length (else the integral does not
converge) so: ∫ 1/a

0
dq

qd−1

(q2 + ξ−2
l )

∼ ξ4−d (6.13)

Plotting the heat capacity, we get:
So, we see that Gaussian theory fails for d < 4. Why? We said MF theory + small fluctuations. If the

effect of small fluctuations is benign, then we are happy. If the effect of small fluctuations is large, then
we aren’t happy; the theory is not self-consistent. Below d < 4, the failure of the integral to converge (and
the rapid change in behaviour of physical quantities due to the fluctuations) tells us that the theory does
not apply.

So below d = 2 we have no LRO, and above d = 4 we know that MFT + Gaussian fluctuations is ok.
The interesting regime left to explore is d = 2 to d = 4.

We also were studying the phase transition at t = 0 we can also ask about the magnitude of the
fluctuations as we go away from the transitions.

In summary, we saw that the heat capacity from the mean field goes as CMF = 1
u and the capacity of

the fluctuations go as CF = ξ4−d

κ2 . The κ is a microscopic parameter that characterizes the stiffness of the
bare mode, with dimensional analysis from κ∇2 telling us that κ has a dimension of length square, i.e.
κ ∼ ξ2

0. Thus:

CF ∼ ξ4−d
0 |t|− 4−d

2

ξ4
0

=
1
ξd

0
t−

4−d
2 (6.14)

so indeed the t piece diverges, but we have the ξ0 piece characterizing the microscopic correlation length.
So, if we have a system with a very long microscopic correlation length, we have to get very close to
the transition t = 0 to see the divergence. This defines a temperature where the fluctuations where the
fluctuations take over and the theory fails. This temperature is typically known as the Ginzburg temperature.

26



There are systems, typically superconductors, where the microscopic correlation length is very long. So,
despite the fact that the correlations diverge, we have to get very close to the transitions to see these
diverging correlations.

6.3 Scaling Theory

Is it going to be the case where I need a theory that calculates a new parameter for each fluctuating
quantity? Or are they all related? Our proposal is the latter. Let us make this statements precise

Scaling theory: Thermodynamic functions (e.g. the thermodynamic free energy F) are homogenous
functions of scaled variables (e.g. T, h).

This hypothesis can be used to simplify the problem such that I may compute simple things. To be
clear, we already had this in mean field theory. There, we looked at some (scaled) free energy which we
viewed as the minimum of a power series expansion:

f (t, h) = min
m

[
t
2

m2 +
u
4

m4 − hm
]

(6.15)

For example, this gave:

f (t, h) =

− t2

4u h = 0, t < 0

− 3
4

h4/3

u1/3 h ̸= 0, t = 0
(6.16)

With a crossover line h ∼ |t|3/2 below which we have the first behaviour, and above which we have the
second.

Figure 6.2: The free energy has a certain behaviour aloing the h = 0 and t = 0 lines. The crossover of these
two behaviours occurs along h ∼ |t|3/2.

Rewriting this in another way, We have:

f (t, h) = |t|2g(h/|t|∆) (6.17)
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where g is a homogenous function of h/|t|∆. The previous calculations constrain g. E.g. at g = 0, we have:

g(0) = − 1
4u

(6.18)

and
g(x → ∞) ∼ x4/3 (6.19)

In the limit where h is large, we also know the answer is independent of t, therefore if we have:

f (t, h) = |t|2
(

h
|t|∆

)4/3

(6.20)

the t-independence constrains ∆ = 3/2.
In MF theory, we know precisely what g is. In general with scaling analysis, we only know the

asymptotic behaviour.
What we will do - we propose that there is a “better theory”, where:

fsing(t, h) = |t|2−αg(h/|t|∆) (6.21)

The singular component to the energy goes as:

Esing ∼ ∂ f
∂t

= (2 − α)|t|1−αg(h/|t|∆)− ∆h|t|1−α−∆g′(h/|t|∆)

= |t|1−α

(
(2 − α)g(h/|t|∆)− ∆(

h
|t|∆ )g′(h/|t|∆)

) (6.22)

where the term in brackets is another homogenous function, gE(h/|t|∆). To get the heat capacity, we take
the derivative again:

Csing ∼ − ∂2 f
∂t2 = |t|−αgc(h/|t|∆) (6.23)

and we have the magnetization:

m(t, h) =
∂ f
∂h

= |t|2−α−∆gm(h/|t|∆) (6.24)

now, as h → 0, we have gm → const, and we identify the critical exponent β = 2 − α − ∆. For large
arguments, we propose gM(x) ∼ xP, then:

m(t = 0, h) ∼ |t|2−α−∆

(
h

|t|∆

)P

(6.25)

so by the t-independence argument, we have:

2 − α − ∆ = P∆ (6.26)

and then:
m(h) ∼ h

2−α−∆
∆ (6.27)

so then we identify the exponent:

δ =
∆

2 − α − ∆
=

∆
β

(6.28)

whose measurement allows us to infer ∆.
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Why might this theory be true? Underlying this theory is a diverging correlation length, which gives
you averaging, and is solely responsible for the singular fluctuations. The last thing we propose is that
there is a correlation length ξ that is hidden behind all of this phenomenology, where:

ξ ∼ |t|−νgξ(
h

|t|∆ ) (6.29)

where the divergence of ξ is responsible for the rest of the behaviour we have analyzed.
This is the hypothesis, and we have to work out this hypothesis in such a way that is self-consistently

well behaved. The process we will go through (known as the renormalizaiton group) will start with a
Ginzburg-Landau theory, suggest there is a diverging length scale that is responsible for the phenomena,
and then average that action on a characteristic length scale. We then scale. Then, supposing that the
correlation length gets scaled, we can average again, and we want to force the averaging procedure to
give us a function which is a homogenous function of the parameters. This is the process/constraint we
put on scaling. We force the algebra to give us a scaling function like this. When we do this, there is a
sequence of operations that will enable us to calculate these exponents. We can then check if the procedure
is consistent, or not. This is what we will explore in future lectures.C

7 Scaling Hypothesis Part II and Renormalization Group

7.1 Recap

We postulate a free energy:
fsing(t, h) = |t|2−αg(h/|t|∆) (7.1)

where the exponents are different from those appearing in mean field theory, and g is a homogenous
function of its argument. From this, we are able to derive for a scaling law for the magnetization m, for
the specific heat C, the susceptibility χ, etc.

If this holds, we have a correlation length:

ξ(t, h) = |t|−νgξ(h/|t|∆). (7.2)

In MF theory, ν = 1/2, but it may be different here. We will find µ > 0 so the correlation length diverges
as T → Tc.

We assume that ln Z is extensive, i.e. ∝ Ld (it is very rare that this would not be the case). More
specifically, ln Z ∝ Ld

ξd plus any nonsingular terms. Then the free energy goes as:

fsing =
ln Z
Ld g(h/|t|∆) ∝ |t|dνg(·) (7.3)

which implies:
2 − α = dν (7.4)

This is known as the hyperscaling, or Josephson relation. It doesn’t work in MF theory, unless d = 4. In
one of the homework problems, we will muse on why this is.

We study the correlation function:

G(γ, 0) =
〈
m(γ)m(0)

〉
− ⟨m⟩2 ∼ 1

|γ|d−2+η
(7.5)

We now study the renormalization group, which allows us to mathematically obtain these exponents.
We start with a conceptual view.
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Figure 7.1: At long distances, the correlation functions die off exponentially. Near the critical point, it is a
power law.

7.2 Renormalization Group: Conceptual View

Step 1: Coarse Graining

We do RG via a process of coarse graining. We take a length scale x, and convert it to bx where b > 1.
Pictorially, we look at a bx× bx block of spins and average them to form an “averaged spin” corresponding
to that whole block. I.e. the magnetization as a function of x becomes:

m(x) =
1
bd

∫
ddx′m(x′) (7.6)

where we integrate over the cell center at x.

Figure 7.2: At the coarse graining step, we integrate over a block of spins and replace it with the average.

Notice that we lose information when we do this. Via course graining, we lose the microscopics.

Step 2: Rescale

We now take xnew = xold
b , rescaling/blowing up the new cell size to be the size of the original unit cell.
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Step 3: Renormalize

We renormalize the magnetization:

mnew(xnew) =
1

ξbd

∫
ddx′m(x′) (7.7)

Where to make the theory look the same as when we started, we introduce a new renormalization param-
eter ξ.

7.3 Getting Exponents out of RG

Having done this, we can construct a new probability distribution:

W[mnew] = e−βHb [mnew] (7.8)

We will assert that at criticality (t = h = 0), the Hamiltonian is statistically similar to the one I had
originally. This means of course that in this theory, we introduce a new effective temperature and field
that must be a function of the old ones. I.e.:

tnew = f (told, hold)

hnew = f ′(told, hold)
(7.9)

but we have some constraints. (0, 0) → (0, 0), and tnew, hnew should grow. Since we rescale the length,
the correlation length should get shorter, so we grow away from the 0 point. We also hope that there is
no singular behaviour in these functions. Finally, we want to preserve the symmetry; as such, we will not
mix t with h. Then:

tb(t, h) = A(b)t + O(t2)

hb(t, h) = B(b)h + O(h2)
(7.10)

We know that:
A(1) = B(1) = 1 (7.11)

(This corresponds to no scaling). There is also the assumption that this could be repeated:

tb1b2(t, h) = A(b1b2)t = A(b1)A(b2)t (7.12)

In other words, scaling once by b1b2 should be the same as scaling by b2 and then b1. This implies that:

A(b) ∼ byt B(b) ∼ byh (7.13)

Notice that this is a semigroup, as we can only go one way. So, this isn’t actually a group (Renormalization
group is a bit of a misnomer). This is how we can see the “loss in information” of this process.

We also assume that yt, yh > 0. So, we go further from the critical point. This might cause us concern
because then the higher order t2, h2 terms in the scaling may become relevant. But indeed we take b ∼ 1 in
order to stay within a neighbourhood of the critical point, as this is the only regime in which this analysis
is actually valid. Then, looking at the the scaling of the general functions:

X(t, h) = byx X(byt t, byh h) (7.14)

and the new configuration becomes:

Z =
∫

DmW[m] (7.15)
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but the weights of the old configuration should be the same as the old one, so:

Z =
∫

DmW[m] =
∫

Dm′W[m′] = Z′ (7.16)

Which then leads us to conclude that:
V f (t, h) = V′ f (t′, h′) (7.17)

So then looking at the scaling of the free energy:

f (t, h) ∼ 1
bd f (byt t, byh h) (7.18)

We now have to propose a trajectory to scale such that we eventually get to the form |t|2−αg(h/|t|∆). We
take byt t ∼ 1 so b ∼ t−1/yt . Then:

f (t, h) =
1
bd f (1, h/tyh/yt) (7.19)

So, we are taking the free energy, positing a scaling form, and we get out something that looks like Eq.
(7.3) as we desired.

From this, we obtain:

2 − α =
d
yt

(7.20)

∆ =
yh
yt

(7.21)

What we will do is find a scaling path and determine the scaling exponents yh, yt, and then this tells us
about the critical exponents of our interest. Let’s look at the others.

There will now be a new correlation length:

χ′ = χ/b (7.22)

Looking at the general form of the scaling of the correlation length:

χ(t, h) = bχ(byt t, byh h) = t−1/yt ξ(1, h/tyh/yt) (7.23)

and thus:
ν = − 1

yt
=

2 − α

d
(7.24)

which is the Josephson scaling relation.
Let us look at the magnetization as well”

m(t, h) =
1
V

∂ ln Z
∂h

= byh−dm(1, h/tyh/yt) (7.25)

so then:
β =

d
yt

− yh
yt

= 2 − α − ∆ (7.26)

7.4 RG Fixed Points and Flows

To start, we write down the most general Hamiltonian allowed by symmetry. For example here:

βH =
∫

ddx
[

1
2

tm2 +
1
4

um4 +
1
6

vm6 +
1
2

K(∇m)2 +
1
2

L(∇2m)2 + . . .
]

(7.27)

I now have a parameter space S(t, u, v, K, L, . . .) in which the parameters define a point.
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Then, we’ll go through the RG process. We course grain by averaging over block size b, rescale x → x/b,
then normalize by ξ. We then have the magnetization:

m′(x′) =
1

ξbd

∫
ddxm(x) (7.28)

We then construct P[m′] from P[m] (nontrivial process!). We then get a rescaled Hamiltonian H′(t′, u′, v′, K′, L′, . . .).
This process is the same as saying that:

S′ = RbS (7.29)

i.e. we have applied a map to our parameter space.
We consider a deviation:

S∗
α + δS′

α = S∗
α + (Rb)αβδS′

β (7.30)

where S∗ is the fixed point of the RG theory (imagine we have done the calculation and found this
point/the critical point), i.e.:

RbS∗ = S∗ (7.31)

and ξ(S∗) = bξ(RbS∗) i.e. ξ → ∞. We can write the renormalization group map (the L denoting the
linearized version of the map, which we assume we can do in the vicinity of the critical point) as:

(RL
b )αβ =

∂S′
α

∂Sβ

(7.32)

i.e. the RG takes us from Sα to S′
α. Now, consider this map to have eigenvectors Θi and eigenvalues λ(b)i.

Then:
RL

b RL
b′Θi = λi(n)λi(b′) = λi(b′b′). (7.33)

thus:
λi(b) ∼ byi (7.34)

Therein, the Θi correspond to scaling directions and the yi correspond to anomalous dimensions (in MF
theory they are all 1 - not anomalous). We now expand S around the fixed point based on these scaling
directions:

S = S∗ + ∑
i

giΘi (7.35)

After we scale:
S′ = S∗ + ∑

i
gibyi [Θ] (7.36)

Pictorally, we have the flows in Fig. 7.3.
The vectors define a basin of attraction. Relevant means the eigenvectors go away from the fixed

point, so the fluctuations grow and become important. Irrelevant mean the eigenvectors go towards the
fixed point, so the fluctuations vanish (hence irrelevant). Finally, we have yi = 0 and then we call the
flows “marginal”. These directions correspond to some linear combinations to linear combinations of the
parameters t, u, v, K, L, . . . of the theory. The main takeaway is that this flow analysis tells us what variables
are the important ones.

Next Wednesday, we will go through this process for the Gaussian theory, and identify the Wilson-
Fisher fixed point.

8 Renormalization Group Part II

Today, we will go through the RG procedure on a model which is exactly solvable.
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Figure 7.3: Different eigenvectors have different flow properties. Irrelevant eigenvectors go towards the
fixed point, relevant eigenvectors flow away, and marginal eigenvectors are stationary.

8.1 Exact Solution of Gaussian Model

Consider the following partition function for a Gaussian model:

Z =
∫

Dm(x) exp

(
−
∫

ddx
(

1
2

tm2 +
1
2

k(∇m)2 +
1
2

L(∇2m)2 − mh
))

(8.1)

We go into momentum space:

m(q) =
∫

ddxeiq·xm(x) (8.2)

Then:

m(x) = ∑
q

e−iq·x

V
m(q) =

∫ ddq
(2π)d m(q) (8.3)

Note the factor of volume to ensure the average magnetization does not scale with the size of the system.
We then have:

βH = ∑
q

[ t + kq2 + Lq4

V

]
m(q)2 − hm(q)δq0

 (8.4)

Then:

Z = ∏
q

(
1√
V

)n ∫
dmq exp

−
(

t + kq2 + Lq4

V

)
|m(q)|2 + hm(q)δq0

 (8.5)

with n the number of components. Then, factoring out the q = 0 term:

Z0 =

(
2π

t

)n/2
exp(

Vh2

2t
) (8.6)

And the rest of the partition function is:

Zrest = ∏
q ̸=0

(
2π

t + kq2 + Lq4

)n/2

(8.7)
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Z is then:

Z = exp(
Vh2

2t
) ∏

q ̸=0

(
2π

t + kq2 + Lq4

)n/2

(8.8)

Thus:

F = − ln Z
V

= −h2

t
+ n

∫ ddq
(2π)q ln(t + kq2 + Lq4) (8.9)

What is the range of this integral? In general, we have a lattice, and we would integrate over a Brouillin
zone. We approximate this region of integration as over a hypersphere with radius Λ ∼ π/a:

F = −h2

2t
+

nΩd
2

∫ Λ

0
dqqd−1 ln(t + kq2 + Lq4)Ωd (8.10)

where Ωd = Sd
1

(2π)d is the solid angle of a d-dimensional hypersphere.

We rescale the integral by defining x = q/sqrtt/k which gives:

F = −h2

2t
+

nΩd
2

(
t
k

)d/2 ∫ Λ/
√

t/k

0
dxxd−1

(
ln t + ln(1 + x2 +

Ltx4

k2 )

)
(8.11)

Note that if t ≪ 1 the upper limit of the integral goes to infinity. Then we study the integral, and although
it looks a little scary, it does turn out to converge. Note that in this limit, L does not matter. It’s a bit easier
to compute the specific heat than the free energy directly. So, we can take two derivatives of F and find C:

C = − ∂2F
∂T2 = −n

Ωd
2

(
t
k

)d/2 ∫ ∞

0
dx

xd−1

t2(1 + x2 + Lx4t
k2 )2

(8.12)

For d > 4 this is finite.

8.2 RG approach to Gaussian model

We return back to the partition function:

Z =
∫

Dm(q) exp(−
∫ Λ

0

ddq
(2π)d

( t + kq2 + Lq4

2

)
|m|2 + hm(q)δ(q)

) (8.13)
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Coarse Grain

We consider a < x < ba and then consider splitting the momentum space region into 0 < q < Λ/b and
Λ/b < q < Λ, this latter region we call σ(q).

We then split the integral into two parts:

Z = exp(−nV
2

∫ Λ

Λ/b
ddq ln(t+ kq2 + Lq4)) ·

∫
Dm<(q) exp(−

∫ Λ/b

0

ddq
(2π)d

(
t + kq2 + Lq4

)
|m<|2 + hm<(q)δ(q))

(8.14)
where the first term corresponds to the result of doing the Gaussian integral over σ(q). Note we have
called the dummy variable of integration m< to remind ourselves that these are the momenta < Λ/b we
have not yet integrated over.

Rescaling

Call:

δ fb(t) =
n
2

∫ Λ

Λ/b
ddq ln(t + kq2 + Lq4) (8.15)

Now, we rescale q′ = bq, then:

Z = e−Vδ fb(t)
∫

Dm<(q′) exp(−
∫ Λ

0

ddq′

(2π)d b−d

(
t + kb−2q2 + Lb−4q′4

2
|m<(q′)|2 + hm<(q′)δ(q′)

)
)

(8.16)
where the appropriate dimensional quantities have picked up factors from rescaling.

Renormalization

We now renormalize:

m′(q) =
m<(q)

z
(8.17)

After we do this, the partition function now becomes:

Z = e−Vδ fb

∫
Dm(q) exp(−

∫ Λ

0

ddq
(2π)d

b−dz2

(
t + kb−2q2 + Lb−4q4

2

)
|m|2 + zhm(q)δ(q)

) (8.18)
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Nowm we rescale our parameters:

tnew = z2b−2t (8.19a)
hnew = zh (8.19b)

knew = z2b−d−2k (8.19c)

Lnew = z2b−d−4L (8.19d)

The t = 0, h = 0 singular point fortunately remain the same with the new parameters. If things are to be
scale invariant at the singular/critical point, then knew = k (since we want the Hamiltonian to transform
back to itself at the critical point - we take this as the definition) which enforces:

z = b1+d/2 (8.20)

So then:
Lnew = b−2L (8.21)

so L is irrelevant. (Note: We could not enforce Lnew = L and find a consistent set of equations, as if we
did, we would find that k would scale to ∞. We can propose fixed points, but if we propose L as the
leading order variable, then the other variables explode, so it is not a valid fixed point. The trivial scaling
dimension of k is d + 2 and for L it is d + 4). We then find:

tneq = b2t (8.22)

hneq = b1+d/2h (8.23)

So then:
yt = 2 (8.24)

tn = 1 + d/2 (8.25)

Which gives us the critical exponents:
ν = 1/yt = 1/2 (8.26)

∆ = yn/yt =
1
2
+

d
4

(8.27)

α = 2 − dν = 2 − d/2 (8.28)

γ = 1 (8.29)

Our fixed point Hamiltonian (which is scale invariant) is:

H∗ =
k
2

∫
ddx (∇m)2 (8.30)

our results here agree with the exact solution obtained via solving the Gaussian theory. In the future, we
will use the RG to solve problems that are not exactly solvable. But before we go to perturbative RG, a
couple of technical points.

8.3 Scaling dimension

Consider:
un

∫
ddxmn (8.31)

If we now find a fixed point and add a perturbation to the model, we can now power count after doing
the RG:

un

∫
ddxmn → bdzn

∫
ddx′mn (8.32)
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then, un scales as:
u′

n = unbd+n−nd/2 = unbyn (8.33)

and yn = n − d
(

n
2 − 1

)
. For different n:

y1 = 1 + d/2 (8.34a)
y2 = 2 (8.34b)
y4 = 4 − d (8.34c)
y6 = 6 − 2d (8.34d)

From y4, we see that the fourth order coefficient is relevant for d < 4. From y6, we see that the sixth order
term is relevant for d < 3. This is then the framework for what we will next when we think about the
Wilson-Fisher fixed point, where we include the fourth order coupling. This suggests that there might be a
small parameter ϵ which is the difference in dimensions from d = 4; we can’t do perturbations in the fields
in d = 3 (as they grow rapidly); but if we work in dimensions in close to 4 (i.e. d = 4 − ϵ), then things can
be controlled. If we expand in ϵ and the radius of convergence is > 1 then this mathematical trick allows
us to obtain results in d = 3. This is very close to dimensional regularization in QFT. Historically, a lot of
these concepts were already known by Schwinger before they were applied to stat mech, and even before
that known to applied mathematicians looking at badly behaved differential equations.

9 Perturbative Renormalization Group

9.1 Perturbative RG for ϕ4 theory

We have the Hamiltonian:
βH = βH0 + U (9.1)

Where:

βH0 =
∫

ddx
[

1
2

t|m|2 + 1
2

k|∇m|2
]
=

1
V ∑

q

[
t + kq2

2

]
|mq|2 (9.2)

and:

U = u
∫

ddx|m|4 =
u

(2π)4d

∫
ddq1 . . . ddq4δ(q1 + q2 + q3 + q4)

n

∑
αβ

mα(q1)mα(q2)mβ(q3)mβ(q4) (9.3)

We will perturb in U; this theory is not Gaussian and therefore not exactly solvable, but we can look at
perturbative corrections coming from the fourth order term.

Let’s turn the RG crank and see what happens. First, we coarse grain. We have some radius which we
integrate out to, Λ ∼ 1/a. We then chop the magnetization up into two parts:

m =

{
m̃(q) q < Λ/b
σ(q) Λ/b < q < Λ

(9.4)

Then the partition function becomes:

Z =
∫

Dm̃(q)Dσ(q) exp

−
∫ Λ

0

ddq
(2π)d

(
t + kq2

2
(|m̃(q)|2 + |σ(q)|2)

)
− u(m̃, σ)

 (9.5)

Since the shell that involves the σ(q)s are sufficiently faraway from the origin, we are able to assume that
for these momenta that σ(q) is Gaussian:

Zσ =
∫

Dσ(q)e−βHσ(σ(q)) (9.6)
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So, we want to consdier
〈

e−U(m̃,σ)
〉

σ
, the average over the high momenta parts of momentum space.

Looking at an expectation value of an operator:

⟨O⟩σ =
1

Zσ

∫
Dσ(q)Oe−βH0(σ) =

1
Zσ

∫
DσOe

−
∫ Λ
−Λ/b

ddq
(2π)d

t+kq2
2 σ2

(9.7)

If we then carry out this integral over U, this would leave us with:

Z =
∫

Dm̃ exp(
∫ Λ/b

0

ddq
(2π)d

t + kq2

2
m̃2 − ln

〈
e−U

〉
σ
) (9.8)

The integral for us to do is (expanded out in a power series):

ln
〈

e−U
〉
= − ⟨U⟩σ +

1
2

(〈
u2
〉

σ
− ⟨u⟩2

)
+ . . . (9.9)

thus:

⟨U⟩σ = u
∫ ddq1 . . . ddq4

(2π)4d δ(∑
n

qn)
〈
[m̃(q1) + σ(q1)] · [pm̃(q2) + σ(q2)] · [m̃(q3) + σ(q3)] · [pm̃(q4) + σ(q4)]

〉
0

(9.10)
The zeroth order term is: 〈

σ0
〉
= U(m̃) (9.11)

the odd terms vanish, and any terms that do not depend on m̃ we can ignore as this only gives a constant.
Thus, we are left with: 〈

σ(q1) · σ(q2)m̃(q3) · m̃(q4)
〉

σ
× 2 (9.12)〈

σ(q1) · m̃(q2)σ(q3) · m̃(q4)
〉

σ
× 4 (9.13)

Now, the usual Gaussian average we have seen before is:

〈
σ(q1)σ(q2)

〉
=

δ(q1 + q2)

t + kq2
1

(2π)dm (9.14)

The terms of Eq. (9.12) become:

2
〈
σ(q1)σ(q2)m̃(q3)m̃(q4)

〉
σ
= −2nu

∫
δ(q1 + q2 + q3 + q4)δ(q1 + q2)

m̃(q3)m̃(q4)

(t + kq2
1)

= −2nu
∫ Λ/b

0

ddq
(2π)d |m̃(q)|2

∫ Λ

Λ/b

dd p
(2π)d

1
(t + kp2)

(9.15)

where n is the number of components of the spin. Thus:

βH[m̃] = const +
∫ Λ/b

0
ddq

t̃ + kq2

2
|m̃|2 + U[m̃] (9.16)

Where:

t̃ = t + 4u(n + 2)
∫ Λ

Λ/b

dd p
(2π)d

1
t + kp2 (9.17)

We have the contribution of 4un from the Eq. (9.12) term (with the n coming from the dot product over
spin components) and the contribution of 8u from the (9.13) term (doesn’t have an n component as we
pick out a single component in the dot product between m̃ and σ). So the integral over Λ/b to Λ can be
viewed as a shift of the t parameter.
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Now, we rescale q = q′/b and renormalize m̃ = zm′. This yields:

βH[m′] = ut +
∫ Λ

0

ddq′

(2π)d b−dz2(t̃ + kb−2q′2)|m(q′)|2 + uz4b−3d
∫ Λ

0
|m|4 (9.18)

We can now relabel:
t′ = b−dz2 t̃ (9.19)

k′ = b−d−2z2k (9.20)

u′ = b−3dz4u (9.21)

Choosing z such that it scales to keep the k constant:

z = b1+d/2 (9.22)

As an aside (to make life a little easier):

b = eδl = 1 + δl + O((δl)2) (9.23)

Let’s make b small/differential. This allows us to carry out the momentum integrals we avoided doing
earlier:

t + δl
dt
dl

= (1 + 2δl)

(
t + 4u(n + 2)

Sd

(2π)d
Λdδl

(t + kΛ2)

)
(9.24)

where:
dt
dl

= 2t + 4u(n + 2)
Sd

(2π)d
Λd

(t + kΛ2)
(9.25)

and:
du
dl

= (4 − d)u (9.26)

Unfortunately, this is not helpful. Why?:

d
dl

(
t
u

)
=

(
2 (factor)
0 4 − d

)(
t
u

)
(9.27)

As before, we will find that yt = 2 and yu = 4 − d. If we think about what the RG flows look like - for
d > 4, u flows to zero (Gaussian theory, that we might expect) and for d < 4 unfortunately the arrows flip
the other way and u flows to infinity :(.

There are also second order terms - we will not look at these as there are 36 terms and this will be
painful. But we sort of know what to expect. There will be corrections of order u2, so:

dt
dl

= 2 + u(factor)− Au2 (9.28)

du
dl

= u(4 − d)− Bu2 (9.29)

Now, if u starts to flow away from the origin, it will get pushed back! In that case, what happens is we get
a new critical point at u∗, which is equal to:

u∗ =
4 − d

B
(9.30)

which is where u stops flowing. There will be a corresponding critical value t∗:

t∗ ∼ −Cu+(corrections) (9.31)
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Figure 9.1: Flow for linearized RG; for d > 4 u flows towards 0, but for d < 4 u diverges to infinity.

Figure 9.2: Flow for RG to quadratic order; a new fixed point emerges.
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This is a rather laborious calcualtion to show this, but it has been done. But what is important to note
is that in principle the behaviour is controlled by 4 − d, and if we define ϵ = 4 − d, then this is what is
known as the ϵ-expansion, i.e. regularizing the problem by working close to a critical dimension:

u∗ =
ϵ

B
(9.32)

The result of which is:
yt = 2 − n + 2

n + 8
ϵ + O(ϵ2) (9.33)

yu = −ϵ (9.34)

This is a manifestation of universality (I missed why this was...)
One should also check what other kinds of coefficients get generated by this process. If we keep going

on, there will be terms of ϵ2, and we will generate other gradient terms we did not have before. They
will always appear one order higher than the previous. At this level, the new fields are generated and are
irrelevant at this order.

What happens if we try ϵ = 1 do get d = 3? The exponents turn out for Ising model are remarkably
close to numerical estimates, even though there is no reason things should have been. We don’t know
what the radius of convergence of this series is; it is a bit of a punch in the dark.

Note that the fixed point (t∗, u∗) is the known as the Wilson-Fisher fixed point.
Reviewing exactly what we have done today:

• We take a model that has a complicated higher order term, namely the fourth order term.

• What we know is that this term can be made small by going into the vicinity of a critical dimension,
here d = 4. (The scaling dimension of the fourth order term is 4 − d). To the extent that this is a
small number, the expansion can be controlled.

• Then, we know that the scaling law has to be augmented as we go through perturbatively through

terms, with corrections u, u2, . . .. Therefore the
dt
dl

must have the power series functional form that
we found.

• The signs of the term we do not necessarily know, but we can guess that we can find solutions by
postulating that there exist fixed points of the form as we found.

• Then we get a scaling diagram, where in addition to the Gaussian fixed point (unstable in the u
direction) we find the Wilson-Fisher fixed point, which u flows to.

• Rather than the tedious algebra, the takeaway is the structure of the theory that comes out of it, and
what kind of scaling theory it gives us.

Next class, we will look at continuous symmetries, which are slightly easier to deal with. We go away
from spin waves, towards objects with topology. We shall begin this with the nonlinear-σ model (spins of
fixed length that can point in any direction). From there, we will go to the 2-D XY model, and start to
study topology in spin space.

10 Continuous Symmetries - Beyond Spin Waves

We return back to models with Goldstone modes and transverse fluctuations, where:

St(q) ∼
1
q2 (10.1)
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for T < Tc. These are models where the order parameters have a U(1) symmetry - order parameters of
the form:

ψ(r) = |ψ|eiθ (10.2)

and correlation functions look like: 〈
Θ(q)Θ(q′)

〉
=

δ(q + q′)
q2 (10.3)

Where:

〈
Θ(r)Θ(0)

〉
∼


r2−d d < 2
ln r d = 2
C d > 2

(10.4)

The d = 2 case is confusing because its not clear what the ln r means. One route into thinking about this
is thinking about models where we can apply RG.

10.1 Non-linear σ models

We consider the non-linear σ model (kind of a misnomer - Gell-Mann named it because he thought
it would describe σ-mesons, even though it does not, but the name stuck). Here, we consider an n-
component spin of length 1. We can thus write the spin degrees of freedom as:

s = (s1, s2, . . . sn) (10.5)

where:
∑

i
|si|2 = 1 (10.6)

n = 2 would be the XY-model, n = 3 would be the Heisenberg model, and we can be in arbitrary
dimension. Each one of these components should have a transverse mode.

We can write down the partition function for this as follows:

Z =
∫

D
[
s(x), δ(|s|2 − 1)

]
exp(− k

2

∫
Λ
|∇s|2dx) (10.7)

Note that the stiffness k is a function of temperature, namely k ∼ 1
T .

We integrate over all possible parts, maintaining the constraint that the length of the spin is unity. It is
easiest to re-label spins:

s = (π1, π2, . . . , πn−1, σ) (10.8)

i.e. pick out one component of the spins and integrate it out. The σ component is fixed by the constraint,
and so:∫

D[s(x), δ(|s|2 − 1)] =
∫

DπDσδ(|π|2 −σ2 − 1) =
∫

Dπdσ
[
δ(σ −

√
1 − π2)δ(σ +

√
1 − π2)

]
=
∫ 1

2
Dπ√
1 − π2

(10.9)
So then we can write Z as:

Z =
∫ Dπ(x)√

1 − π(x)2
exp(−κ

2

∫
ddx

[
(∇π)2 + (∇(

√
1 − π2))2

]
) (10.10)

The last thing to do is to get rid of the pesky 1√
1−π(x)2

term and exponentiate:

Z =
∫

Dπ exp(−κ

2

∫
ddx

[
(∇π)2 + (∇(

√
1 − π2))2

]
+

ρ

2
ln(1 − π2)) (10.11)
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where ρ = 1. So far this is exact with no approximations. But of course, we will not get much further
without doing an expansion.

To leading order, we find: 〈
π2
〉

0
= T (10.12)

as as T → 0, the occupation of the Goldstone modes goes to zero. By expanding, we have:

βH = βH0 + u1 + u2 + . . . (10.13)

where:
βH0 = i

∫
ddx

1
2

κ(∇π)2 (10.14)

and:

u1 =
∫

ddx

[
1
2

κ(π∇π)2 − ρ
π2

2

]
(10.15)

We now have an opportunity to go through RG, but in a bit of a different way; the (π∇π)2 terms should
get smaller and smaller.

Let’s take this and go into Fourier space:

βH0 =
κ

2

∫ ddq
(2π)d q2|π(q)|2 (10.16)

u1 = −κ

2

∫ ddq1 . . . ddq4

(2π)4d δ(∑
i

qi)(q1 · q3)πα(q1)πα(q2)πβ(q3)πβ(q4)−
ρ

2

∫ ddq
(2π)d |π(q)|2 (10.17)

Now we turn the RG crank.

10.2 RG for Non-linear σ model

We divide up momentum space into a shell σ (corresponding to Λ/b < q < Λ) and the rest (corresponding
to π̃), and integrate out that shell. Each π term appearing above can be broken up into a π̃ part and a
σ part. The only terms which will survive will be the ones where σ come in pairs. For example, we will
have a Gaussian average of the form: 〈

σα(q1)σα(q2)
〉

πβ(q3)πβ(q4) (10.18)

Actually, we will only have two surviving parts:

(A) = −κ

2

∫
ddq1 . . . ddq4(q1 · q3)

〈
σα(q1)σα(q3)

〉
π̃β(q2)π̃β(q4)

= −κ

2

∫
ddq1 . . . ddq4(q1 · q3)δ(q1 − q3)π̃β(q2)π̃β(q4)

=
κ

2

∫ Λ

Λ/b
ddk

k2

κk2

∫ Λ/b

0

ddq
(2π)d |π̃(q)|2

(10.19)

in the last line k = q1 = q3 and q = q2 = q4. We use the known expectation value of the σs from our
previous analysis. There is also a (n − 1) factor coming from the components of the spin, which we don’t
write above. The other surviving part is:

(B) = −κ

2

∫
ddq1 . . . ddq4(q1 · q2)π̃α(q1)π̃β(q3)

〈
σα(q2)σα(q4)

〉
=

κ

2

∫ ddq
(2π)d q2|π̃(q)|2 Id

κ

(10.20)
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where:

Id =
∫ Λ

Λ/b
ddk

1
k2 (10.21)

We have two things that are changing here, κ and ρ, which we renormalize:

κ̃ = κ

[
1 +

Id(b)
κ

]
(10.22)

ρ̃ = ρ[1 − b−d] (10.23)

where:

ρ =
N
V

∫ Λ

0

ddq
(2π)2 (10.24)

Then, the two terms we had before become:

−βH′ = −κ̃
bd−2

2
z2
∫

ddx(∇π)2 (10.25)

u′
1 = −κ

bd−2z4

2

∫
ddx(π∇π)2 +

ρz2

2

∫
ddx|π(x)|2 (10.26)

Looking at the average:

⟨s̃⟩0 =

〈
(π1 + σ1)(π2 + σ2) . . .

√
1 − (π̃ + σ)2

〉
= 1 − 1

2
⟨σ⟩2 + O(T)2 = 1 − n − 1

2
Id(b)

κ
= z (10.27)

This tells us that we have to choose the scaling exponent (that sets the size of the spin, which is fixed!)
such that the above is preserved, hence we set the above to z. Then:

κ = bd−2z2κ̃ = bd−2
[

1 − n − 1
κ

Id

]2
κ

[
1 +

Id
κ

]
= bd−2κ

[
1 − n − 2

κ
Id + O(

1
κ2 )

]
+ . . . (10.28)

So then b ∼ el , and:
∂κ

∂l
= (d − 2)κ − (n − 2)κΛd−2 (10.29)

so temperature scales to zero or infinity here depending on dimension and the number of components.
Say, take d < 2. Then κ → 0 so T → ∞ and no order. But, for d > 2, we have κ → ∞ so T → 0 and we

are ordered. The critical temperature is then:

T∗ =
d − 2
n − 2

1
κ0Λd−2 (10.30)

At n = d = 2 we have the XY-model which is not resolved.

10.3 Vortices

What have we missed in the spin wave theory? Consider d = 2, n = 2. There are objects in the lattice where
there are vortices; faraway it looks like the spin just slowly varies, but close to it there is an observable
“vortex charge” measurable by going around it in a loop. There are charges and anti-charges, and we
measure these via: ∮

S
∇θ · ds = (2π)m (10.31)

for m ∈ Z. Labelling these as charges is well-motivated; they behave like charges. In fact it will look
exactly like EM. Indeed they actually form in pairs.
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Figure 10.1: Cartoon picture of spin vortex charges

We can ask; does it make sense that as we go down to low T we have the spontaneous formation of
these vortices? Normally, one would think that it takes finite energy to place them in the lattice (so they
should go away at low T) but there are so many places to put them and as such there is an entropic gain
as well... What happens is (even at low T) fluctuations create charges out of a vacuum, but they will be
close together and be bound. This is one phase. There is also a second possible phase where the charges
unbind; we go from vortex charge molecules to a plasma; they begin to overlap, and they start screening,
and the system breaks itself up. We can describe this with classical EM. This transition/plasma phase
has no long range order, but the confined phase has a quasi-long range order, where the effective stiffness
stays finite. The transition between these two is the Berezinskii-Kosterlitz-Thouless transition.

11 2-D XY model

11.1 Single Vortices

Let us recap where we ended up last class. What has been missing thus far from our discussion of
continuous systems is the presence of vortices. We were assuming that we could capture everything with
slow variations of spins, but this leaves out configurations like those that appear in Fig. 10.1. We can
define such vortices by looking at: ∮

(∇θ) · dS = 2πn (11.1)

We can make vortices that wind more than once, or those that have negative m (antivortices). Since:

∇θ = −n∇× (ẑ ln r) ∼ 1
r

(11.2)

Let’s compute the energy of a vortex.

βEm = βE0(a) +
1
2

κ
∫ L

a
d2x(∇θ)2 = βE0(a) + πκn2 ln(L/a) (11.3)

which diverges in the system size. This may suggest that we might not have any vortices - but this is not
the case. Let’s look at the partition function:

Z(n) ≈
(

L
a

)2
e−βE0(a)e−πκn2 ln(L/a) (11.4)

The E0(a) is like the chemical potential, and we can call its exponential the fugacity. We have:

Z(n) ≈ y0(a)
(

L
a

)2−πκn2

(11.5)
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Let us also remember that κ ∝ 1
T . So, above Tc ∼ π

2 n2 is where the vortices proliferate (look at the term
in the partition function). Although the energy contribution is infinite, the entropic gain wins out at this
temperature.

11.2 Pairs of Vortices

This was a single vortex; there are also pairs of vortices, which is what we will have to pay attention to.
Consider a vortex anti-vortex pair at distance d. We then find:

(∇θ) ∼ d∇
(

r × z
r

)
∼ 1

r2 (11.6)

These have finite energy, and act like a Coloumb gas.
Consider a flow, which we treat by looking at a sum of a rotational and irrotational part.

u(r) = ∇θ (11.7)

One part is curl free (this is the piece without vortices):

(∇× u0) = 0 =⇒ u0 = ∇ϕ (11.8)

Then:
u = u0 −∇× (zψ) (11.9)

where if we consider the contribution from vortices:∮
u · dS = 2πẑ ∑

i
niδ(r − ri) (11.10)

Then:
∇× u = ẑ∇2ψ (11.11)

We can then see:
∇2ψ = 2π ∑

i
niδ(r − ri) (11.12)

So then:
ψ(r) = ∑

i
ni ln(|r − ri|) (11.13)

Having written the field as this, let us compute the energy:

βH =
1
2

κ
∫

d2r
[
(∇ϕ)2 − 2(∇ϕ) ·∇(ẑψ) + (∇× ẑψ)2

]
(11.14)

The middle term vanishes via integrating by parts. The first term is familiar. The third term looks like:

(∇× ẑψ)2 =

(
− ∂ψ

∂x
,

∂ψ

∂y
, 0

)2

= (∇ψ)2 (11.15)

We then have (through an integration by parts):

βH1 = κ
∫

d2r(∇ψ)2 = −κ

2

∫
d2rψ∇2ψ = −κ

2

∫
d2r(∑

i
ni ln(|r − ri|))(∑

j
2πnjδ(r − rj)) (11.16)

which we can now use to define the correlation function:

βH1 = −κ

2

∫
d2r ∑

i ̸=j
ninjC(ri − rj) (11.17)

where:

C(ri − rj) =
ln(|ri − rj|)

2π
(11.18)

and we exclude a vortex interacting with itself.
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11.3 Transitions

Now, we may go back and write down the full partition function:

Z =
∫

Dϕe−
κ
2
∫
(∇ϕ)2

∑
rk

∫
d2rke−∑i βE0(ri)+4π2κ ∑ij ninjC(ri−rj) (11.19)

The first term corresponds to spin waves, and the second corresponds to vortices, so we can write:

Z = ZSW Zvort (11.20)

We also constrain the configuration to that which where ∑i ni = 0, and restrict to ni = ±1. To make the
connection with charges more clear, we replace ni with qi. We then study:

Zv =
∞

∑
N=0

(y0)
N
∫ N

∏
k=1

d2rk exp(4π2κ ∑
ij

qiqjC(ri − rj)) (11.21)

Suppose the fugacity is small, such as in a metal-insulator. Then, y0/the fugacity is small (y0 can be
thought to be controlling the density), and we should see that the vortices bind in pairs. Here, C(x) →
C(x)/E . There is another limit where y0 is large, and then the bound pairs of charges start to overlap
highly, so much so that the charges become unbound. This is the plasma phase. and we see C(x) ∼ e−x/ξ .

We have:

Z ∼ y0(a)
(

L
a

)2−πκ

→ y0(ba)
(

L
ba

)2−πκ

(11.22)

where we rescale such that the partition function remains invariant. Then if we make b ∼ e−δl :

dy0

dl
= (2 − πκ)y0 (11.23)

The x = 2 − πκ parameter tells us whether vortices are relevant or not.
We then assert:

dx
dl

= Ay2
0 (11.24)

Which gives rise to the flow diagram:
So we have two regimes, one where vortices are irrelevant and another where they proliferate. There is

a separatrix line which is the dividor between whether we flow to no vortices or proliferation. We can say
this defines a physical transition temperature, known as the Berezinskii-Kosterlitz-Thouless temperature.

Lastly, let us think about what the correlation functions look like:

〈
ψ(r)ψ(0)

〉
=

1
r1/2πκ

(11.25)

Notice that this power law varies. When we get to k = 2/π, at that point the correlator goes as ∼ 1
r1/4 .

But, everywhere along the line of x = 0 fixed points there is a (continously varying) power law (i.e. each
point along the line has a different critical exponent), up until r−1/4, at which afterwards it becomes a
short-range correlator e−r/ξ which exponential decay. This means, at the transition temperature, there is a
jump in physical properties.

11.4 Polarizability + Looking ahead

Suppose we add an external field:
H = H0 + E · ∑

R
R · n(R) (11.26)
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Figure 11.1: Flows of fugacity and stiffness in the 2-D XY model, corresponding to 2 different phases with
differing behaviour of vortices.

Suppose now we want to compute the dielectric function:

χij =
∂ f

∂Ei∂Ej
∼ ∑ ∑

R
R2 〈n(R)n(0)

〉
=
∫

dRR3e−2πκ ln(R) =
∫ L

a
dRR3−2πκ L4−2πκ (11.27)

which depending on κ either diverges or vanishes. It diverges when κ = 2/π. This connects back up to
the correlation function above.

Next day, we move to disorder and randomness. Everything we have talked about thus far assumes a
perfect medium and translational invariance. We will now break this. This is both relevant in a practical
sense (every physical system has disorder of some form), and also inherently interesting problems with
disorder, e.g. frustration. We could consider models with sufficient randomness such that the spins have
confusion about their orientation, then we can get systems that act glassy - they freeze into a disorder
state. There is a sharp transition from a slowly-flowing material to something that freezes; this is called a
spin glass, and we will talk about the infinite-range spin-glass, which we will be able to solve exactly (the
Parisi solution - he won a Nobel prize for this)! Interestingly, these kinds of models allow you to store
information/use them as a physical memory, which was John’s Hopfield’s idea. Rapidly coming out of
this was how one “learns” via tuning parameters, the simplest of which is the Boltzmann machine. Of
course, this was the Nobel prize in physics this year.

12 Disorder and Random Systems

12.1 Introduction and Motivation

Disorders and imperfections are unavoidable in real systems; do phase transitions still exist in this setting?
This will be the first point which we will address, and we will be able to answer it quite sharply.

The answer will turn out to be yes, but we then have the follow-up question; how are the transitions
modified? We will find that the (upper and lower) critical dimensions become modified.

Finally, we may ask if there will be new phenomena emerging from disorder; indeed there can be,
and we will look at the example of a glass, where there is an abrupt transition to being frozen/carrying
information.
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12.2 Disorder Type I - Impurities/Vacancies

E.g. we have a ferromagnet, and randomly start removing spins. We could for example write down the
Hamiltonian:

H({s} , {m}) = −1
2 ∑

ij
Jijsisjmimj (12.1)

where randomly, we pick sites mi and set them to zero such that those terms become absent from the sum.
We will need to make a careful distinction about whether the system is quenched or annealed. Suppose
we “freeze in” the spin configuration. Then the partition function looks like:

Z({m}) = TrSe−βH(s,m) (12.2)

which is called “quenched”. This has the odd feature that the answer depends explicitly on the {m}. If we
do the experiment again and put the impurities in different places, we get a different partition function.
We could instead construct the “annealed” partition function, which is:

Z = TrmZ({m}) (12.3)

where we average over all configurations {m} of empty sites. The annealed problem is a tough one and
we won’t address it in this lecture, but we will attack the quenched partition function.

A comment - we lose translational invariance when we do this.
Let us block our system. We can consider an averaged free energy:

F̄ = TrmZ[{m}]F[{m}] (12.4)

where we assume that we can compute (over a given block) F[{m}] governed by P[{m}] (each block will
have a different value, but obeys the same distribution). The F̄ above represents a quenched average.
Looking at the probability distribution, we have:

P[{m}] = ∏
i

[
(1 − x)δmi1 + xδmi0

]
(12.5)

where x is is the concentration of vacancies. The important thing to think about; when we do the trace
over S, we average over spin configurations, but do not minimize over the free energy. It is instead, fixed
here.

We distinguish the thermal average with the spatial average:〈
sisj

〉
̸=
〈

sisj

〉
(12.6)

where the lhs represents the thermal average, the rhs the spatial. The thermal average is dependent on the
spin configuration, but the spatial average only depends on the distance between i, j i.e. |i − j|. Formally,
we can write: 〈

sisj

〉
=

1
N ∑

k

〈
sk+i, sk+j

〉
= M(|i − j|) (12.7)

why might we want to do this? It is relevant for determining magnetic fluctuations in the system.
We can consider some types of impurities/vacancies:

(i) Bond dilution, e.g. Jij = J + small fluctuations.

(ii) Random field; H = ∑ij Jijsisj + ∑i hisi where we make the hi random. Where h̄ = 0 and hh = ∆.

(iii) Spin glass, where we take Jij random with mean zero. In this case, since we pick couplings randomly,
we can have frustrated systems. Note that is similar to bond dilution with J = 0, but allowing
the fluctuations to be not necessarily small. We could call a system with si(0)si(t) ̸= 0 a glass
(correlations get “baked in”).
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12.3 Computing quenched averages - Replica Trick

We want to compute:
F̄ = TrmP[{m}] ln Z[{m}] (12.8)

averaging logarithms is hard, but we can expand ln Z in a power series:

ln Z = lim
n→0

Zn − 1
n

(12.9)

Taking quenched averages of power series of Z are much easier. We interpret this as taking our Hamitonian
and replicatingit:

Zn = TrmTrsa P[{m}]e−∑n
a=1 H[{sa},{m}] (12.10)

Because P[{m}] is random, this will correspond to some SM model with randomness. But the trick is that
we can now do the average over m first, so we end up with:

Zn = Trsa e−∑ab Heff(sa ,sb) (12.11)

where by doing the average over m we get correlations between the different replicas. (Note that in
principle we could have couplings between higher numbers of replicas, but since we started with two-
body couplings, we have at most couplings between pairs of replicas).

12.4 Transition Temperatures and Concentration

Suppose I have some concentration of impurities x ≪ 1, and the transition temperature Tc depends on x.
Therefore, we have:

Tc(x) =⇒ ξ ∼ |T − Tc(x)|−ν(x) (12.12)

Because the system varies spatially, the concentration may be different at different locations. We thus may
consider the deviation:

δTc(r) = Tc(r)− Tc (12.13)

Let us define a correlation function:
W(r − r′) = Tc(r)Tc(r′) (12.14)

We now ask; as we open up the block size of the system, what happens to the correlation function?
We consider an aperture/block size L such that a ≪ L ≪ system size. Then:

(∆Tc)
2 =

∫ L

a

ddr
Ld

∫ r0

a

ddr′

Ld W(r − r′) (12.15)

where we integrate up to a characteristic length scale of the correlation r0:
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We then find;

∆Tc ∼ W1/2
0

(
r0

L

)d/2
∼ ξ−d/2 (12.16)

which has the interpretation; if we average over a large volume, we have the square root number of
microscopic domains in the sample. The sensible L to choose here is the correlation length, because if the
correlation length diverges (uniformly) this average makes sense. Thus, we should have:

∆Tc ≪ |T − Tc(x)| ∼ ξ−
1
ν (12.17)

phrased another way, we want to get a convergent average when we average over the scale of the correla-
tion length.

We thus obtain the criterion:
dν

2
> 1 (12.18)

because only then will ξ−d/2 ≪ ξ−
1
ν . This is the criterion for transitions to exist, and is known as the

Harris criterion. Note that this requires α < 0. If this is not obeyed, the phase transition is destroyed by
randomness.

12.5 Computing with Replicas

Consider:
H = H∗ + ∑

i
miEi (12.19)

where Ei is the local energy density and mi ∈ {0, 1} is the vacancy. We then have:

Z̄n = TrmTrsa P({m})e−∑a H∗
a −∑ia miEa

i

= exp(−∑
a

H∗a − m̄ ∑
ai

Ea
i +

1
2 ∑+ab ∑

ij
(mimj − m̄2)Ea

i Eb
J )

(12.20)

where we have used a Gaussian distribution P(m) ∼ e−m2/∆ to perform the average (if not Gaussian, there
are higher order terms/cumulants).

Looking at the leading off-diagonal term, we study ∑a ̸=b Ea
i Eb

i . Look at the two point function:〈
∑
a ̸=b

Ea
i Eb

i ∑
a′ ̸=b′

Ea′
j Eb′

j

〉
= 2n(n − 1)

〈
Ea

i Ea
j

〉2
= 2n(n − 1)

1
|i − j|4xE

(12.21)

Where xE is the critical exponent from some general operator. AS a reminder:

〈
ϕα(0)ϕα(r)

〉
=

1
|r|2xα

(12.22)

with xα = d − yα with yα the RG eigenvalues. These come from scaling/homogeneity. This is obtained
from the integral

∫
ddr′ϕ(r)ϕ(r + r′). If this is associated with the energy density, then:

xE = d − 1
ν

(12.23)

and:
yE = d − 2xE =

2
ν
− d (12.24)
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This is the answer we get from averaging at the critical point. yE is irrelevant if dν > 2, the same answer
as we got from the Harris criterion. Of course there is the pesky n which if we take n = 1 (the limit of a
simple replica) then everything goes away.

So, the story was; does the phase transition still exist? There was a heuristic argument based on
averaging over a sufficiently large region that gave the Harris criterion. We could also answer this via the
laborious RG procedure, which ended up giving the same answer.

If the variables are relevant the replicas get coupled, if the variables are irrelevant then the replicas
remain uncoupled, and we get a trivial answer.

13 Random Fields and Spin Glasses

13.1 Setting up the Random Field Problem

We consider the Hamiltonian:

H =
∫

ddx
(

1
2

κ(∇s)2 +
1
2

ts2 +
1
4

us4 − h(x) · s
)

(13.1)

where:
hi(x)hj(x′) = δij∆δ(x − x′) (13.2)

i.e. we have a random uncorrelated field. Although it is written down as a magnet, it is a kind of model
that emerges very frequently in random media. For example, an elastic medium sitting on a surface which
is random, causing the elastic to stretch in some ways.

Consider random fields hi. If we RMS average over a length scale L:√√√√ L

∑
i=1

h2
i = h0

√
cLd (13.3)

where h0 is a strength and c a concentration. This ∼
√

N comes from a random walk.
If we average and get some nonzero up spin, and average in a neighbouring region and get a nonzero

down spin, then we get an energy penalty. We have a gain of the form h0Ld/2 (from the spins within a
domain aligning with the local field, from the hi · Si term) and a loss of the form JLd−1 (coming from the
penalty of interacting neighbouring domains, the Si · Si+1 term). When do each of the terms win out?
When d

2 > d − 1, i.e. when d < 2, the energy gain wins.

13.2 Solving the model

To attack this model, we consider the replica trick:

Zn =
∫

Dh(x)P(h(x))
n

∏
a=1

∫
dSae−βH[Sa ,h] (13.4)
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We take the distribution of the fields to be Gaussian:

P(h) ∼ e−
h2
∆ (13.5)

This allows us to write:
Zn = ∏

a

∫
dSae−βHeff[Sa ,Sb ] (13.6)

with:

Heff =
∫

ddx

[
n

∑
a=1

1
2

κ(∇sa)
2 +

1
2

ts2
a ++

1
4

us4
a

]
− 1

2
β ∑

a,b
∆sa · sb (13.7)

(Rio note: This expression doesn’t looks like it makes sense with the sum over a, bs, but so be it.) Going to
momentum space:

Heff =
1
2

∫ ddk
(2π)d

∑
a,b
(κk2 + t)δab − β∆Jab

 sa(k)sb(−k) +
u
4

s4 (13.8)

with Jab just a matrix of 1s everywhere. If we had no fourth order term, we can view this as a Green’s
function: 〈

si
a(k)s

j
b(k

′)
〉
= G0

abδ(k + k′) (13.9)

with:

G0
ab(k) = δij

[
T

κk2 + t
δab +

∆
(κk2 + t)2 Jab

]
(13.10)

If we study the scaling:
κ → κbd−2+2ζ (13.11)

t → tbd+2ζ (13.12)

u → ubd+4ζ (13.13)

∆
T

→ bd+2ζ ∆
T

= b2∆ (13.14)

with ζ = 2−d
2 where we recall that we have the RG scaling parameters from s → bζ s. We see that ∆ has

a positive eigenvalue and is therefore a relevant exponent. There is a new relevant field in the vicinity of
the fixed point, and we flow away.
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The fixed point Hamiltonian is:

H∗ =
∫

ddx
[

1
2

κ(∇s)2
]

(13.15)

If we ask what is
〈

δs2
〉

thermal
, this is something we’ve seen before:

〈
δs2
〉

thermal
=
∫ ∞

1/L

ddk
(2π)d

T
κk2 (13.16)

Now we want to ask how this scales depending on the lower momentum cutoff L. By a scaling argument,
we see: 〈

δs2
〉

thermal
∼ T

κ
L2−d (13.17)

If I look at the random field Hamiltonian we have the ∆
(κk2+t)2 term. Then we have:

〈
δs2
〉

RF
∼
∫ ∞

1/L

ddk
(2π)d

∆
κ2k4 =

∆
κ2 L4−d (13.18)

We then get the length scale over which one term wins:

ξ =

(
κ

∆

) 1
4−d

(13.19)

In D > 4, this is minimized as L → ∞, as D < 4 the length scale is finite.
Remark: Formal theory arguments gave D = 3 for a long time, in contrast with the quick argument

we have here. It turns out the reason is that high-dimensional domain walls are hard. This is a reminder
that back-of-the-envelope intuition is better than formal theory.

If we have an EOM:
∇2ψ + tψ = h (13.20)

with h a source, then:

ψk =
hk

k2 + t
(13.21)

and so: 〈
ψkψk

〉
=

⟨hk⟩
(k2 + t)2 (13.22)

We’ll stop here on random fields, but this is a rather generic problem. There are many scenarios where
we get this type of equation of motion.

13.3 Ergodicity

Every system we’ve thought about so far has been ergodic. Namely, Z has been the average over all
possible configuration, and the system is assumed to explore all of them. It turns out that the heart of
exploring glasses is the breaking of this ergodicity.

Fundamentally, what this means is that if we go down to low temperature, the system gets trapped in
a region of phase space, and cannot explore the rest of it. Notably, if we heat up the glass and cool it back
down, it will go to a different region.

We define broken ergodicity as:
⟨·⟩ = ∑

α

ωα ⟨·⟩α (13.23)
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with α a pure state. For example in the FM Ising model:

⟨σ⟩ = 1
2
⟨σ⟩+

1
2
⟨σ⟩− = 0 (13.24)

There is a tendency for pure states to cluster; for example:〈
σiσj

〉
→ ⟨σi⟩

〈
σj

〉
for |i − j| → ∞ (13.25)

which means that the connected correlation function goes to zero.
Suppose we have some internal state α and a state β outside.

We can define a length scale r of the α droplet, and compute the free energy difference of the two
terms:

∆F = σrd−1 − (δ f )rd (13.26)

where δ f is Fα − Fβ. This defines a rmax where the free energy difference is maximized:

rmax =
σ(d − 1)

dδ f
(13.27)

Looking at the maximum difference in the free energy (the barrier):

∆Fmax = σ

(
σ

δ f

)d−1((
d − 1

d

)d−1
−
(

d − 1
d

)d
)

(13.28)

Either d → ∞ or δ f → 0 means we have large barriers between states. The latter case is find because we
have two states with the same energy. d → ∞ is also interesting as then the large dimension provides a
big penalty/barrier.
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Next day, we look at a infinite range glass model, which is exactly solvable. At infinite tempera-
ture, despite not having any order, it has many ground states whose energies are the same, related by
hierarchies.

13.4 Order parameters

Previously, we looked at the magnetization:

m =
1
N

N

∑
i=1

⟨σi⟩ (13.29)

now we are interested in states that freeze, but do not order. This gives rise to an order parameter proposed
by Edwards and Anderson, wich looks like:

qEA =
1
N

N

∑
i=1

⟨σi⟩2 (13.30)

where we look at the square of the average. The spin could in principle point in any direction, which I
don’t care about; I care about whether the thermal average could persist forever. This is something that
one in principle could atempt to measure, and would distinguish between a paramagnetic state, and a
frozen but disordered state. We can generealize this to overlaps:

qστ =
1
N

N

∑
i=1

σiτi (13.31)

which taking averages:

Qαβ =
1
N

N

∑
i=1

⟨σi⟩α ⟨τi⟩β (13.32)

These overlaps allow us to probe the structure in phase space. In low temperature FM, Qαα = 1 while
Qαβ = 0. Conversely, for the paramagnetic states everything is zero. More concretely, q++ = q−− = m2

and q+− = q−+ = −m2.
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14 Spin Glass

14.1 Order parameters

Last class we introduced the Edwards-Anderson order parameter:

QEA =
1
N

N

∑
i=1

⟨σi⟩2 (14.1)

we then had the order parameter quantifying overlap:

qστ =
1
N

N

∑
i=1

σiτi (14.2)

and the average:

Qαβ =
1
N

N

∑
i=1

⟨σi⟩α ⟨σi⟩β (14.3)

where the ⟨·⟩α denotes an average over a pure state α.
In a glass, there is no spatial order. But, if we think about something that is frozen, if I look at a single

spin and watch it for a very long time, it doesn’t flip. So, order in a glass is really a statement about
temporal order. The way to measure this would be to take the thermal average of a single spin i. If at this
point I average over spins, I get zero (as there is no spatial order). But if I square it and then average, I get
a finite value.

Generalizing QEA, we consider that our system may break ergodicity. It doesn’t explore all of phase
space; it gets stuck. There can be multiple states that survive for long times and are different. That said,
they could potentially overlap. Thus there is an overlap matrix Qαβ. If we take the configuration and
break it up, there may be multiple pure states α, β and then there is some overlap between these states.
We do the thermal average over a single site for two pure states, multiply and then take the sum.

To be more precise, when we take this thermal average, we consider:

Qαβ =
1
N ∑

i

1
Zα

∫
σ∈α

Dσσie−H(σ) 1
Zβ

∫
τ∈β

Dττie−H(τ) =
1

ZαZβ

∫
α
Dσ

∫
β
Dτqστe−H(σ)e−H(τ) (14.4)

For a paramagnet we get Qαα = 0, and for a frozen state we get Qαα = 1. We now consider the overlap
distribution:

P(q) =
1

Z2

∫
DσDτe−H(σ)−H(τ)δ(q − qατ) (14.5)

For a ferromagnet, we have two equal delta peaks when q = ±m2.

But note that there is generically no reason that this distribution would just be delta functions. Gener-
ically, we have delta functions + continuum part. When we find this, we have replica symmetry breaking.
The two ferromagnet states have a replica symmetry, but with a continuum no such symmetry is present.
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14.2 Sherrington-Kirepatrick model

We consider the Hamiltonian:

H =
N

∑
i,j=1

Jijσiσj (14.6)

where the Jij are independent random variables:

Jij = ± J√
N

. (14.7)

This is a mostly solvable model, coming from the infinite range coupling. Note that even in a model as
simple as this one, we have hidden broken symmetries and interesting phenomenology. While we are on
the topic of Nobel prizes, this model was also used by Hopfield. He thought about the fact that we could
use this model as a memory; if we chose Jij = ξiξ j with ξ a vector. Then, notice that our Hamiltonian
would be minimized with this choice when σ = ξ (just a ferromagnet that’s been rotated).

14.3 p-spin spherical model

The model we will actually discuss looks more complicated, but is actually easier:

H = − ∑
1≤i2<i2<...<ip≤N

Ji1,...,ip σi1 σi2 , . . . σip (14.8)

where we consider p ≥ 3. This is a p-spin spherical model (think about the entire set of spins as a vector),
with 1

N ∑i σ2
i = 1. Each site i has a real-valued spin. The Js are drawn from the Gaussian probability

distribution:

P(J) = exp(−1
2

J2 2Np−1

p!
) (14.9)

where we note that
√

J̄2 ∼ 1

N
p−1

2
. Looking at the averaged Z (for p = 3):

Z =
∫

Dσ
∫

∏
i<j<k

dJijk exp(−
(

J2
ijk

Np−1

p!
+ βJijkσiσjσk

)
) =

∫
Dσ exp(

β2

4Np−1 p! ∑
i

σ2
i ∑

j
σ2

j ∑
k

σ2
k ) (14.10)

Each of these sums now just gives 1, so with the identity p! ∑i>j>k = ∑ijk, we just get the surface area of
the surface:

Z = exp(
Nβ2

4
)Ω (14.11)

where Ω is the solid angle. Now consider n replica version:

Zn =
∫

Dσα
i ∏

ijk

∫
dJijk exp(− J2Np−1

p!
+ Jijkβ

n

∑
α

σα
i σα

j σα
k ) =

∫
Dσ exp(

β2

4Np−1

n

∑
α,β=1

(
∑

i
σα

i σ
β
i

)p

) (14.12)

Now we have an overlap matrix! Let us call it:

Qαβ =
1
N ∑

i
σα

i σ
β
i (14.13)

with Qαα = 1. How do we deal with this integral? We’ve seen this a few things, and now what we will do
is to introduce an auxilary field. We introduce the trivial statement:

1 =
∫

dQαβδ(NQαβ − ∑
i

σα
i σ

β
i ) =

∫
Dλabe−λ(NQαβ−σα

i σ
β
j ) (14.14)
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But now doing the trick:

δ(x) =
∫

dkeikx (14.15)

So by exponentiating the 1, we can introduce the auxilary field Q:

Zn =
∫

DQαβDλαβDσ exp(
β2N

4 ∑
αβ

Qp
αβ + N ∑

αβ

λαβQαβ − ∑
i

∑
αβ

σα
i λαβσ

β
i ) (14.16)

So then:
Zn =

∫
DQαβDλαβ exp(−NS(Q, λ)) (14.17)

where:
S(Q, λ) = − β

4 ∑
αβ

Qp
αβ − ∑

αβ

λαβQαβ −
1
2

log det(2λαβ) (14.18)

there are no longer fluctuations of spins, but now have two fields. We have an important factor of N; this
tells us the solution of this problem should be the saddle point of S, for everything away from the saddle
point becomes exponentially suppressed. We need to consider the limits n → 0 (we are interested in this
because F = log Z = limn→0

Zn−1
n ), N → ∞ (we want a large number of spins/system size, and want

N → ∞ so the saddle point is the solution). Then:

−βF = lim
N→∞

lim
n→0

1
nN

∫
DQDλe−NS (14.19)

The number of independent elements in Qαβ are n(n−1)
2 , which as n → 0 becomes negative. This is strange,

but we press on - we will do this by interchanging the order of limits. We consider (to obtain the saddle
point):

∂

∂λαβ

[
−λαβQαβ +

1
2

log det(2λ)

]
= 0 =⇒ −Qαβ +

1
2
(λ−1)αβ = 0 =⇒ Q−1 = 2λ (14.20)

Thus replacing the N → ∞ limit integral with the saddle point value:

F = lim
n→∞

− 1
2βn

 β2

2 ∑
αβ

Qp
αβ + log det Q

 (14.21)

If we now minimize w.r.t Q:

0 =
∂F
∂Q

=
β2 p

2
Qp−1

αβ + Q−1
αβ (14.22)

What do we know? We know Qαα = 1. Since there is nothing to distinguish the replicas (i.e. if the model
is replica-symmetric) then we would say that all the off-diagonal entries of Q are the same, and equal to
some value q0. Then, writing:

Qab = q0 + (1 − q0)δab (14.23)

it is clear that:
Q−1

ab =
1

1 − q0
δab −

q0

(1 − q0)[1 + (n − 1)q0]
(14.24)

here, it’s a bit interesting that the n shows up, and I can begin to compute this in the n → 0 limit:

lim
n→0

∂F
∂Q

=
β2 p

2
qp−1

0 − q0

(1 − q0)2 = 0 (14.25)
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This has two solutions. q0 = 0, which is the paramagnetic, and the pair of solutions:

qp−2
0 (1 − q0)

2 =
2

pβ2 (14.26)

This is a replica-symmetric solution. It has the unfortunate problem of not being stable. While it is a
solution, it we look perturbatively about this solution, e.g. break the system into many pieces, we see that
the energy is decreased. Another way to see the instability; it has to not just be a saddle point/extremum,
but also a minimum. This requires the eigenvalues to be positive definite.

What does this mean? We still know that everything is dominated by a saddle pont, and just need to
find what it is. Let’s think about the average/first moment:

q(1) = ¯Qαβ = lim
n→0

∫
DQαβQαβe−NS(Qαβ) (14.27)

what happens when we average over saddle points? When we look at the α, βs, we have to think about
which ones we take. Eventually, this turns into:

¯Qαβ = lim
n→0

2
n(n − 1) ∑

α>β

Qαβ (14.28)

This average is the first moment, and of course we can generate the kth moment, which gives:

q(k) = lim
n→0

2
n(n − 1) ∑

αβ

Qk
αβ (14.29)

the higher moments are more and more sensitive to the broken symmetry. We then get the distribution:

P̄(q) = lim
n→0

2
n(n − 1) ∑

a>b
δ(q − Qab) (14.30)

The distribution is governed by the fact that the likely overlap is is given by a value of q. Working with
this probability distribution, we cab rewrite it as:

P(q) = (1 − m)δ(q − q1)− mδ(q − q0) (14.31)

with 0 < m < 1. We then have the distribution:

it is recommended to look at the homework problem before Friday - we’ll come back to this last part,
which we rushed a bit. What is the takehome message? The reason to writing down the odd model is
that it is a mean field theory, and in MF models we are able to compute things easily from the saddle
point. We are used to saddle points being very simple, but actually there is more complex structure to the
saddle points than we are used to. But, if we look at finite n, we can visualize these solutions. We had a
replica-symmetric solution, but the replica symmetry gets broken, leading to a fractal-like structure in the
Q matrix.
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15 Replica Symmetry Breaking, Neural Nets, Boltzmann Machines

I was absent for this lecture, and these lecture notes are obtained from Kalpak Duddella’s notes - many thanks to him!
In this lecture, we wrap up the discussion of spin glasses and replica symmetry breaking, before

moving onto the last topic of discussion for this course - Neural networks and Boltzmann machines.

15.1 Replica Symmetry Breaking, Concluded

We consider the replica matrix ansatz Qab, as you will study in HW3. Its structure “naturally clusters”
due to off-diagonal (correlation) elements, forming a block structure about the diagonal. We obtain this
by guessing the block form as the solution to the non-linear EoM and minimizing the free energy. But, we
also have to check the stability of the solutions.

In more detail, we have 1s on the diagonal, q1 in m × m blocks around the diagonal, and q0 elsewhere,
with 1 > q1 > q0. We have the probability distribution:

P(q) =
m − 1
n − 1

δ(q − q1) +
n − m
n − 1

δ(q − q0) (15.1)

which as n → 0 becomes the two delta peaks:

p(q) = (1 − m)δ(q − q1) + mδ(q − q0) (15.2)

Graphically, we have the distribution as sketched last class. In this limit, we have 1-step symmetry breaking
in the exact solution of the p-spin spherical model.

For T < Ts, we have a continuous solution where P(a) varies smoothly between the two peaks at q0, q1,
with peaks getting closer together as T → Ts.

For T > Tc, we have “ultrametricity”; full replica symmetry breaking.
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This is related to lines connecting points on the
∂F
∂Q

curve.

15.2 Neural Nets

John Hopfield considered the following model for associative memory - consider the vector χ. We then
store this memory by flipping spins in an (Ising) array, with system Hamiltonian:

H = − ∑
⟨ij⟩

JijSiSj (15.3)

where the couplings are:
Jij = Jξiξ j (15.4)

Thus:
H = −J ∑

i
ξiSi ∑

j
ξ jSj (15.5)

If we now generalize to store a set of bit strings {χa}a. Then for an associative memory, we take:

Jij = ∑
a

χa
i χa

j (15.6)

with a indexing over different bitstrings and i indexing the position in a given bitstring. This is a “one-layer
neural network” (we take 1 =↑, 0 =↓). Hopfield won a Nobel for a (insert choice word) ferromagnet!

For a N × N neural network, we can store about ∼ 0.15N memories.
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15.3 Boltzmann Machines

Two step phases for using Boltzmann machines:

1. We first run a training phase to obtain the ξi.

2. We then run a readout phase to allow the system to evolve on a fixed array of Js constructed from
the learned ξs.

We consider the probability weights for a given spin configuration s

P(s) = exp(−E(s))/Z (15.7)

where the energy function is:
E(s) = ∑

ij
Uijsisj − ∑

i
bisi (15.8)

with Uij the weights and bi the biases. We need to learn the Us and bs to have the model P(s) fit the data,
i.e.:

P(s)
∣∣
model ≈ P(s)

∣∣
data . (15.9)

Comparing neural networks with spin models, a layered neural network corresponds to an auxiliary
field model.

For simplicity, we consider a 2-layer network, composed of a hidden layer of nodes (vector of spins) h
and a visible layers of nodes v. We have a bias b on the hidden nodes and c on the visible nodes. We also
have a weight-matrix W between the two layers which computes “scores” as a linear transformation.

The energy of a neuron configuration specified by v, h is:

E(v, h) = −b · v − c · h − viWij jhj (15.10)

We then have the conditional probabilities:

P(h|v) = ∏
i

P(hi|v) (15.11)

P(v|h) = ∏
i

P(vi|h) (15.12)

Which we can also write as:

P(h|v) = P(h, v)
P(v)

=
1

P(v)Z
eb·v+c·h+viWijhj =

1
Z′ e

c·h+viWijhj (15.13)

With 1
Z′ =

1
P(v)Z eb·v.

Now, we have some data probability ditribution Pdata(x). We have a model probability distribution
Pmodel(x; θ) with model parameters θ. The goal is to find the optimal model parameters, obtained from:

θmodel = argmaxθ

m

∏
i=1

Pmodel(xi, θ) =
m

∑
i=1

log Pmodel(xi, θ) (15.14)
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16 Non-equilibrium Dynamics

Today we will discuss the Fokker-Planck equation and how to derive Field theories. We won’t have time to
discuss anomalous diffusion; how to start with a differential equation that looks like it should scale in an
obvious way and then get interesting critical exponents. There’s also interesting discussion of analyzing a
laser through a statistical field theory lens, which we will not quite get to.

16.1 Diffusion Equation (V = 0)

Our basic starting point is an equation of motion of the form:

mẍ = − ẋ
µ
− ∂V

∂x
+ fnoise(t) (16.1)

i.e. a particle moving deterministically in a potential under the influence of drag and stochastic noise. The
potential term leads to ballistic motion, while the noise term leads to diffusive motion. We consider the
limit of small ẍ where we can neglect the acceleration term, thus:

ẋ = v(x) + η(t) (16.2)

with:
v(x) = −µ

∂V
∂x

(16.3)

and: 〈
η
〉
= 0 (16.4)〈

η(t)η(t′)
〉
= 2Dδ(t − t′) (16.5)

i.e. Markovian white noise.
In the V = 0 case, we have the solution:

x(t) = x(0) +
∫ t

0
dt′η(t′) (16.6)

where: 〈
(x(t)− x(0))2

〉
=
∫ t

0
dτ1

∫ t

0
dτ2

〈
η(τ1)η(τ2)

〉
= 2Dt. (16.7)

We then obtain the propagator of the diffusion equation:

P(x, t) = G(x, t, 0, 0) =
1

(4πDt)3/2 e−
x2
4D t (16.8)

With P the solution of:
∂P
∂t

= −D∇2P (16.9)

this is the familiar diffusion equation.

16.2 Fokker-Planck Equation (V ̸= 0)

Let’s now look at advancing time by some small time ϵ:

P(x, t + ϵ) =
∫

d3x′P(x′, t)⟨x|Tϵ|x′⟩ (16.10)

where ⟨x|Tϵ|x′⟩ represents a transition amplitude.
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Splitting up the two parts of the motion:

x = x′ + v(x)ϵ + ηϵ (16.11)

where:

ηϵ =
∫ t+ϵ

t
dtη(t) (16.12)

which has the properties: 〈
ηϵ

〉
= 0 (16.13)〈

η2
ϵ

〉
= 6Dϵ. (16.14)

With this, we can define the transition matrix amplitude:

⟨x|Tϵ|x′⟩ =
1

(4πDϵ)3/2 exp(
−(x − x′ − ϵv(x′))2

4Dϵ
) (16.15)

Let us explain this. If we had a potential, the particle would have rolled to a specific place deterministically
from x′. If the particle instead reaches x, we need the noise to be precisely the correct magnitude for the
particle to get to the position we want it to be, which gives us the above expression. Then:

P(x, t) =
∫

d3x′
1

(4πDϵ)3/2 P(x′, t) exp(
−(x − x′ − ϵv(x′))2

4Dϵ
) (16.16)

for |x − x′| small we can then replace P(x′, t) in the integral with P(x, t), and linearize:

∂P
∂t

+∇ · J = 0 =⇒ J = vP − D∇P (16.17)

The interpretation of this is intuitive. We have a drift current (from the potential) and a diffusion current
(from the noise).

The stationary/equilibrium station is:

Peq(x) = e−V(x)/kBT (16.18)

with:
∇Peq =

v
µkBT

Peq =⇒ D = µkBT (16.19)

So we identify what the parameter D must be. This is usually called the “fluctuation-dissipation” theorem.

16.3 Generalizing to a field - Model A

We write down the Hamiltonian as a function of a field m:

H[m] =
∫

ddx
(

1
2

rm2 +
1
4

um4 +
1
2

κ(∇m)2 + . . .
)

(16.20)

The analogous EoM is:

∂m
∂t

= −µ
δH
δm

+ η(t) = −µrm − µum3 + µκ(∇2m) + η (16.21)

In the Gaussian theory (taking u = 0) we have:

∂m(q, t)
∂t

= −µ(r + κq2)m + η (16.22)
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where: 〈
η
〉
= 0 (16.23)〈

ηqηq′
〉
= 2Dδ(t − t′)δ(q − q′)(2π)d (16.24)

There is then a q-mode decay time:
1

τ(q)
= µ(r + κq2) (16.25)

from this we can determine what happens to the fluctuations:〈
m(q, t)m(q′, t)

〉
=

Dδ(q + q′)
µ(v + κq2)

(16.26)

where there is no time-dependence for we have performed an ensemble average. At very long times the
distribution approaches the Lorentzian. Note that D

µ = kBT. This is what is known as “critical slowing
down”.

In some sense we pulled the EoM out of a hat, and its not the most general EoM we could have written
down. In particular we notice the order parameter is not conserved. This specific model is known as
model A. There are models A-F, check out the review article by Honenberg in reviews of modern physics
if interested. But for now, we only study A/B.

16.4 Model B

Now consider a model where we do want the order parameter to be conserved:

d
dt

∫
ddxm(x, t) = 0 (16.27)

so we now have the equation of motion:

∂m
∂t

= −∇j +∇σ (16.28)

with j = µv and σ ∼ η. This new model has the constraint that the magnetization is fixed, and this gets
rid of low-order derivatives. We thus end up with:

∂m
∂t

= µv∇2m − µκ∇4m + η (16.29)

Thus we have different dynamics associated with the conservation of the order parameter.

16.5 Noise and Optimal Trajectories

The above was all pretty heuristic. Let’s explore something that’s less heuristic, with a similar starting
point:

Ẋ = A(X) + Bξ (16.30)

with ⟨ξξ⟩ = 2Dδ(t − t′).
We solve this via the identity:

1 = Z[ξ] =
∫

DX(t) J(X)δ[∂tX − A(X)− Bξ] (16.31)

where we have stuck in the EoM as a delta function.

67



We then generate an auxilary field Xq using an identity:

Z[ξ] =
∫

DX(t)
∫

DXq(t) exp(−2i
∫

dtXq(t)(∂tX − A − Bξ)) (16.32)

Why we set this up is so that we can integrate over the noise (also let’s set B = 1):

Z =
∫

Dξe−
1
4
∫

dtξ2
Z[ξ] =

∫
DXDXq exp(

∫
dt
[
−2iXq(∂tX − A(X))− 4(Xq)2

]
) (16.33)

We now have an action that is a function of two fields. Faced with something like this, we look at the
saddle point equations (here of two variables). This yields two equations:

Ẋ = A(X) + 4iXqD(X) (16.34)

iẊq = −iXq A′(X) + 2(Xq)2D′ (16.35)

with ′ =
∂

∂X
. Xq must be imaginary since X is real. Let us do a change of variables P = 2iXq. In this case,

it turns out that we can write the equations of motion we saw above as:

Ẋ = ∂PH[P, X] (16.36)

Ṗ = −∂X H[P, X] (16.37)

with:
H = PA(X) + P2D(X). (16.38)

These look exactly like Hamilton’s equations! Xq “looks like” a conjugate momentum. We can then
identify an action:

iS[X, P] = −
∫

dt[PẊ − H] (16.39)

and think about optimal trajectories. The simplest one to think about would be to take A(X) = − ∂V
∂X

,

Since D(X) ∼ T, we have two stable trajectories where H is zero; when P = 0, or when P = − A
D . Sketching

the flows in phase space:
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In equilibrium of this problem, what is P(X0)? Let us write the action:

iS[X0] = −
∫

dtPẊ = −
∫ X0

0
P(X) (16.40)

Then taking P(X) = − A
D = −V′

D :

iS[X0] = − 1
T

∫ X0

0
dxV′(X) =

1
T
(V − V0) (16.41)

which is just the Boltzmann distribution!
A last point. Suppose the potential has a metastable minimum:

Then, what I am interested in is the probability of escape, given by the shaded region:

which gives:

S[XS] = −V(XS)− V(0)
T

(16.42)

which is just WKB.
Here, we find an optimal trajectory, which gives us where we want to be. This is of course an approxi-

mation. We can go back and add more terms to our theory, making it a dynamical field theory.
Note: The best review of this material comes from Kamenev.

16.6 Where have we come?

There are generic and universal properties of theories. They are made most evident at the point where
these theories are hardest to solve. The underlying principle behind this universality is scaling and em-
bodied by the renormalization group. The definition of the interesting point/phase transition is associated
with the scale invariant quantities. This doesn’t always happen, and almost any real system deviates from
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this, but such deviation can itself lead to interesting phenomenology, e.g. in the case of disorder and spin
glasses.

If you have the time, next week we’ll discuss quantum critical points (adding back the non-linear terms
and seeing their effects). We will also study the laser and fluids/porous media, which gives us anomalous
scaling/stretched power laws.
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