
CPSC 536W (Topics in Quantum Computation) Notes
Rio Weil

This document was typeset on April 16, 2024

Introduction:
This is a set of lecture notes taken from UBC’s CPSC 536W (Topics in Quantum Computation - Quantum
Algorithms) course, taught by Dr. Daochen Wang. The course covers algorithms by Simon/Shor/Grover,

quantum walks, polynomial/adversary/polynomial methods, quantum query complexity, quantum
signal processing, quantum communication complexity, non-local games, and dequantization of

quantum algorithms. The primary course reference is Quantum Algorithms (lecture notes) by Andrew
Childs. If any errors are found in the notes, feel free to email me at ryoheiweil@phas.ubc.ca.

Contents

1 Classical Query Complexity 3

2 OR, Dirac Notation 6

3 Quantum query complexity 11

4 Basic Design Principles for Quantum Algorithms 14

5 Time Complexity 18

6 Complexity continued 21

7 Analysis of the hypercube and Simon’s problem 24

8 Simon’s Problem continued 25

9 Randomized Query Complexity of Simon’s Problem 28

10 Period Finding 30

11 Period Finding Continued, Factoring 32

12 Time Complexity of Shor’s Algorithm 34

13 Finishing Up Shor, The Hidden Subgroup Problem 36

14 The Hidden Subgroup Problem Continued 38

15 Dihedral HSP 41

16 Time Complexity of DHSP, Intro to Element Distinctness Problem 43

17 Amplitude Amplification in Element Distinctness, Quantum Walk 46

18 Quantum Walk Continued 47

1

https://www.cs.umd.edu/~amchilds/qa/
mailto:ryoheiweil@phas.ubc.ca

19 Quantum Walk Conclusion, Quantum Phase Estimation 48

20 Quantum Walk for OR and ED 53

21 Adversary Method 55

22 Adversary methods continued, Divide and Conquer 59

23 Hamiltonian Simulation 62

24 Quantum Signal Processing 66

2

1 Classical Query Complexity

Course Logistics

The instructor for the course is Daochen Wang. The TA for the course is Xingyu Zhou. Drop deadline for
the course is Jan2̇2nd. Assessment is based on 4 homework assignments (the first of which is due on the
drop deadline). Office hours are Friday 2-3pm in ICICS X553.

Motivation

Quantum computing - using quantum mechanics to solve computational problems.
Wrong popsci explanation - n qubits can be in 2n different states of the classical bits (e.g. the 8 states

000, 001, 010, 100, 011, 101, 110, 111 for n = 3) at the same time. A quantum computer can “try all these at
the same time”.

Why is this wrong? One way to see it is if I have n randombits/rbits, then the possible states of such
bits are also one of the 2n states. We will see later on that randomized computing is a subset of QC and in
some computational models that QC is more powerful.

In particular, in this course (or a majority of it) we will be looking at the query model of quantum
computation. This is not the same as the usual computation model considered, namely the Turing model.
In some sense, the Turing model is a real-world model while the query model is an idealized model.

Why the query model? There are two reasons:

1. It is possible to (mathematically rigorously) prove quantum speedups in this model, i.e. that a
quantum computation takes less resources compared to a classical computation.

2. In the Turing model, proving classical lower bounds is notoriously difficult, but this is necessary for
proving quantum speedup. In fact in the Turing model there is no proof of QC speedup. However -
in the query model has translated (historically) to “apparent” speedups in the Turing model; that is,
it beats any known classical algorithm (Example: Shor’s factoring algorithm for factoring an n-digit
number in time O(n2) vs. best known classical algorithm - generalized number sieve - which takes
O(2n1/3

). Historical note that Shor devised this algorithm under the context of thinking about a
problem in the query model, namely Simon’s problem).

Introduction to the Query model

Denote by N the set of positive integers. “Alphabet” is defined to be a finite nonempty set.
Let n, m ∈N and Σ = {0, 1, . . . , m− 1} (often m = 2, i.e. bits) and Γ be an alphabet. The main character

of query complexity if a function f : D ⊆ Σn → Γ, where Γ is WLOG often taken to be Γ = {0, 1}.
The main question of query complexity is as follows; given x ∈ D, how many positions of x do we

need to read to compute f (x)? To be concrete, let’s consider an example. Take:

f : {0, 1}3 −→ {0, 1}
(x1, x2, x3) 7−→ (x1 ∧ x2) ∨ (¬x1 ∧ x3)

(1.1)

How many bits do we need to read to compute this function? We only need to read two bits; if we read
x1, its either 0 or 1. If x1 = 0, x1 ∧ x2 = 0 and ¬x1 ∧ x3 = x3 so we read x3. If x1 = 1, then ¬x1 ∧ x3 = 0
and x1 ∧ x2 = x2 so we read x2.

There are two types of classical query complexity; deterministic D(f) and randomized R(f). Here we
have shown that D(f) ≤ 2 (and in fact it is exactly equal). There is also a quantum complexity Q(f). A
quantum speedup in the query model is defined as R(f) > Q(f).

Another example is the function:

ORn : {0, 1}n −→ {0, 1}
(x1, x2, . . . , xn) 7−→ x1 ∨ x2 ∨ . . . ∨ xn

(1.2)

3

Some facts about this function:

1. D(ORn) ≥ n

2. R(ORn) ≥ Ω(n)

3. Q(ORn) ≤ O(
√

n) (a la Grover).

A review of asymptotic notation below:

Definition: Asymptotic notation

1. Take g : N → R, h : N → R. Then g(n) = O(h(n)) if ∃x > 0, n0 ∈ N such that ∀n ≥ n0
g(n) ≤ ch(n).

2. g(n) = Ω(h(n)) is the same, with ≥ instead.

3. g(n) = Θ(h(n)) if g(n) = O(h(n)) and g(n) = Ω(h(n)).

Definition: Deterministic decision tree/query algorithm

A deterministic decision tree (DDT) is an m-ary tree T with a unique vertex labelled as “root” with
additional data:

1. Each leaf of T is labelled by an element in Γ.

2. Each non-leaf (internal) vertex of T is labelled by an element in [n] = {1, 2, . . . , n}.

3. For all non-leaf (internal) vertices v, the m edges between v and its children are each labelled
by a unique element in {0, 1, . . . , m− 1}.

This is the mathematical object we work with. How does it do computation? In the way you expect;
start at the root and follow the edges based on the labels. Mathematically:

Definition: Deterministic query computation

Let T be a DDT and x ∈ D. We define T(x) ∈ Γ by the following procedure:

1. Set vcurrent to be the root vertex.

2. Repeat the following until the label of a leaf is output:

(i) If vcurrent is a leaf, then output its label.

(ii) Otherwise, let i ∈ [n] be the label of vcurrent, and let v be the child of vcurrent such that
the edge (v, vcurrent) is labelled by xi. Set vcurrent = v.

We say that T computes f if and only if ∀x ∈ D, T(x) = f (x).

Note: the ∀ in the above definition is very important! We are working in the “worst case”. It has to
work for all possible inputs.

Let’s work through the above example with f (x) = (x1 ∧ x2) ∨ (¬x1 ∧ x3).

4

Figure 1.1: m-ary tree T

Figure 1.2: Minimal depth decision tree that computes f

5

Definition: Deterministic query complexity

Given a DDT T, its depth, denote depth(T) as the maximum length of a root-to-leaf path. Then:

D(f) := min
DDT T computing f

depth(T) (1.3)

Definition: Randomized decision tree/query algorithm

A randomized decision tree (RDT) is a probability distribution over DDTs τ ={
(p1, T1), . . . (pn, Tk)

}
with pi ∈ [0, 1] wiht ∑i pi = 1.

Definition: Randomized query computation

Given x ∈ D and an RDT T , with τ(x) for the random variable on Γ defined by ∀i ∈ Γ Pr[τ(x) =
i] = Pr[T(x) = i|T ← τ] = ∑j∈[k,Tj(x)=i] pj. Let ϵ ∈ (0, 1/2). We say that τ computes f with
bounded error ϵ if the following holds:

∀x ∈ D, Pr[τ(x) = f (x)] ≥ 1− ϵ = ∑
j∈[k],Tj(x)= f (x)

pj (1.4)

Definition: Randomixed query complexity

Given a RDT τ, its depth depth(τ) = maxj∈[k],pj>0(depth(Tj)). Then, let ϵ ∈ (0, 1/2). Then:

Rϵ(f) = min
τ computes f with bounded error ϵ

depth(τ) (1.5)

It is standard to write R(f) = R1/3(f).

2 OR, Dirac Notation

Classical Query complexity of OR

Proposition

D(ORn) = n.

Proof. n ≥ D(ORn) is obvious (in fact is obvious for any function on n-bits that n is an upper bound).
Since D(f) is a minimum over decision trees computing f , simply take the tree which checks every bit in
the input, outputting 1 if any of the bits are 1, and outputting 0 if all of the bits are 0 (the worst case/depth
of the tree is checking all of the bits and finding all are zero).

n ≤ D(ORn) is not quite as simple. We develop an “adversary argument” for this purpose.
In general, we imagine a two-player game between the Algorithm and an Adversary based on a Boolean

function f . The game is played as follows:

1. The Adversary maintains a bag of strings S containing the domain, usually {0, 1}n.

6

2. At each round, the Algorithm is allowed to query a new bit, say, the ith, and te Adversary answers
wit xi ∈

{
yi, ∃y ∈ S

}
, i.e. the Adversary chooses an output that describes an element in S. The set S

is updated to remove all y such that yi ̸= xi.

3. The game ends if f (y) takes the same value for all y ∈ S

The length of any such game is a lower bound on D(f). Informally - if we fix a decision tree for f , the
Algorithm in the game asks the Adversaries queries following the decision tree, using the responses to
navigate down the tree. S corresponds to all strings that would have lead the algorithm to the current node,
and the game ends if all leaf nodes under the current node have the same level (because the Algorithm
can output the value of f and does not need to query any new bits).The game proceeding to k rounds
therefore implies the depth of the decision tree is at least k.

Having discussed the technique, we describe the procedure for ORn. Fix an algorithm/decision tree.
Consider the adversary that returns every query with 0. After any n − 1 queries, there is some index
i ∈ [n] not queried yet (suppose WLOG i = 1). At this point, the Adversary’s bag contains at least 2
strings evaluating to different values, namely 0n and 10n−1. Thus, the game proceeds to the nth round,
giving D(ORn) ≥ n.

Proposition

Rϵ(ORn) ≥ (1− 2ϵ)n

Proof. Suppose ∃ RDT τ of depth k ∈ {1, 2, . . . , n} that computes ORn with bounded error ϵ. Then,
∀x ∈ {0, 1}n, we have:

PrT
T←τ [T(x) = ORn(x)] ≥ 1− ϵ (2.1)

Then the LHS is equivalent to:

∑
TDDT

1[T(x) = ORn(x)]Pr[T ← τ] ≥ 1− ϵ (2.2)

Consider a probability distribution on {0, 1}n, then take Ex←µ[(∗)]. Using the linearity of expectation and
hitting the indicator function with the expectyation, we get:

∑
TDDT

Prx←µ[T(x) = ORn(x)]Pr[T ← τ] ≥ 1− ϵ (2.3)

Now, there exists T∗ a DDT such that:

Prx←µ[T∗(x) = ORn(x)] ≥ 1− ϵ (2.4)

There are many ways to see this. One way; suppose for every T∗ did not hold. Then, the Prx←µ[T(x) =
ORn(x)] is less than 1− ϵ, which violates the equality in Eq. (2.3) because Pr[T ← τ] < 1 (And sums to one
taken over the entire TDDT). This is a fairly standard technique when proving bounds with randomized
algorithms.

Now, lets define µ as follows:

µ(x) =

1

2n if x is of Hamming weight 1.
1
2 if x = 0n

0 otherwise
(2.5)

Note the Hamming weight is just the number of ones in the bit string, i.e. for x ∈ {0, 1}n we have
|x| = ∑n

i=1 xi.

7

Suppose that when the decision tree sees all zeroes, i.e. x is the all zero string, it does the reasonable
thing and outputs 0 (Checking the other case where it outputs 1 will be your homework!). This has
probability Prx←µ[T∗(x) = ORn(x)] = 1

2 · 1 = 1
2 . Next, how many bit strings are of Hamming weight 1

such that its i1 . . . ik are all zero. This happens to be k bit strings (ik+1 to in could be 1). So we have n− k
paths where the DDT spits out the wrong thing (i.e. spits out 0) while the ORn is 1, and k where it gives
the correct answer. The probability of a Hamming weight 1 bitstring is 1

2n . So, we get:

Prx←µ[T∗(x) = ORn(x)] =
1
2
· 1 + k

2n
≥ 1− ϵ (2.6)

Then:
k

2n
≥ 1

2
− ϵ =⇒ k ≥ (1− 2ϵ)n (2.7)

which proves the claim.

Figure 2.1: Visualization of above argument

Two notes:

1. This seemingly magical approach where we fix a decision tree and then choosing a distribution
usually works for proving lower bounds. The answer actually turns out to be yes. The steps at the

8

beginning of this proof can always be used to give the optimal lower bound on randomized query
complexy - this is Yao’s principle.

2. The ORn : {0, 1}n → {0, 1} function has been considered. We can consider a restriction of the
domain OR0,1

n : {0n} ∪
{

Hamming weight|
{

strings
}}
→ {0, 1} - note that Rϵ(OR0,1

n) ≥ (1− 2ϵ)n
still holds.

Dirac notation

For n ∈ N, an d-dimensional quantum state is a unit vector v ∈ Cd, written as |v⟩ (“ket v”), where unit
refers to the vector having an l2-norm of 1, i.e. ∑d

i=1|vi|2 = 1.
We can then define ⟨v| (“bra v”) as the complex conjugate transpose of v.
⟨u|v⟩ is just the inner product of u and v, ⟨u|v⟩ = ∑d

i=1 u∗i vi = ⟨u, v⟩. This is the “bracket”!
We can also put things together as |u⟩⟨v|, which is a matrix/outer product:

|v⟩⟨u| =

v1
v2
v3

(u∗1 u∗2 u∗3
)
=

v1u∗1 v1u∗2 v1u∗3
v2u∗1 v2u∗2 v2u∗3
v3u∗1 v3u∗2 v3u∗3

 (2.8)

Given |v1⟩ ∈ Cd1 , |v2⟩ ∈ Cd2 , we denote |v1⟩|v2⟩ := |v1⟩ ⊗ |vn⟩ ∈ Cd1·d2 . This is known as the tensor, or
Kronecker product. Explicitly:

|v⟩ ⊗ |u⟩ =
(

v1
v2

)
⊗

u1
u2
u3

 =

v1u1
v1u2
v1u3
v2u1
v2u2
v2u3

. (2.9)

The “computational basis” of Cd is the basis (shown below for d = 4, but easily generalizes):

|0⟩ =

1
0
0
0

 , |1⟩ =

0
1
0
0

 , |2⟩ =

0
0
1
0

 , |3⟩ =

0
0
0
1

 (2.10)

so |v⟩ = ∑d
i=1 vi|i⟩.

An n-qubit quantum state v is a vector in C2n. Then, any such |v⟩ can be expanded as follows:

|v⟩ = ∑
x∈{0,1}n

αx|x1⟩|x2⟩|x3⟩ . . . |xn⟩ (2.11)

where αx ∈ C. E.g. for n = 3, we have:

|0⟩|1⟩|1⟩ =
(

1
0

)
⊗
(

0
1

)
⊗
(

0
1

)
=

0
0
0
1
0
0
0
0

(2.12)

9

We can also take tensor products of matrices:(
u11 u12
u21 u22

)
⊗V =

(
u11V u12V
u21V u22V

)
. (2.13)

Definition: Projective measurement

Let Γ be an alphabet. An Γ-outcome projective measurement on Cd is a set of |Γ| matrices
Π1, Π2, . . . Π|Γ| ∈ Cd×d such that the {Πi}i are a set of orthogonal projectors, i.e. ∀i, j we have

ΠiΠj = δijΠi and ∑
|Γ|
i=1 Πi = Id.

Definition: Performing a measurement

Let M be a Γ-outcome projective measurement on Cd, i.e. M =
{

Π1, . . . , Π|Γ|
}

and let |ψ⟩ ∈ Cd.
Then to measureM produces the following:

1. Output i ∈ [|Γ|] with probability:

p(i) =
∥∥Πi|ψ⟩

∥∥2
= ⟨ψ|Πi|ψ⟩ (2.14)

2. The state becomes:

|ψ⟩ = Πi|ψ⟩∥∥Πi|ψ⟩
∥∥ (2.15)

where the denominator appears so it remains normalized.

Definition: Computational Basis measurement

The computational basis measurement on Cd is defined by the following [d]-outcome measurement
|0⟩⟨0|, |1⟩⟨1|, . . . |d− 1⟩⟨d− 1|.

An example of projecting into a subspace

Consider the Hilbert space C2 ⊗C2 ∼= C4 of two qubits. Suppose we want to measure the first qubit, but
not the second qubit. The projectors corresponding to this measurement are:

Π0 = |0⟩⟨0| ⊗ I2, Π1 = |1⟩⟨1| ⊗ I2. (2.16)

which have the action of projecting the first qubit onto one of the two computational basis states, and doing
nothing to the second qubit. We can verify that they obey the conditions for being a set of orthogonal
projectors:

Π2
0 = (|0⟩⟨0|)2 ⊗ (I2)

2 = |0⟩⟨0| ⊗ I2 = Π0 (2.17)

Π2
1 = (|1⟩⟨1|)2 ⊗ (I2)

2 = |1⟩⟨1| ⊗ I2 = Π1 (2.18)

Π0Π1 = (|0⟩⟨0|1⟩⟨1|)⊗ I2 = 0 (2.19)

Π0 + Π1 = (|0⟩⟨0|+ |1⟩⟨1|)⊗ I2 = I2 ⊗ I2 = I4 (2.20)

but notably, the number of projectors in the set is strictly less than the dimension of the underlying Hilbert
space, i.e. this corresponds to a measurement of a subspace.

10

Quantum Query Algorithm

Definition: Quantum query algorithm

A quantum query algorithm of depth d ∈N is specified by the following data:

1. w ∈N

2. d + 1 unitary matrices U0, U1, . . . Ud acting on Cn ⊗Cm ⊗Cw.

3. A Γ-outcome projective measurement on Cnmw.

Definition: Quantum oracle

For x ∈ {0, 1, . . . , m− 1}n, the “quantum oracle” of x is the unitary matrix Ox ∈ Cnm×nm defined
by Ox|i⟩|j⟩ = |i⟩|j + xi mod m⟩, for all i ∈ {0, . . . , n− 1} and j ∈ {0, 1, . . . m− 1}.
In particular, we often deal with the case where m = 2, where:

Ox|i⟩|b⟩ = |i⟩|b⊕ xi⟩ (2.21)

3 Quantum query complexity

Definition: Quantum query computation

Given x ∈ D and a quantum query algorithm A, we write A(x) for the random variable taking
values in Γ defined by (∀j ∈ Γ):

Pr[A(x) = j] =
∥∥∥ΠjUd(Ox ⊗ Iw)Ud−1(Ox ⊗ Iw) . . . U1(Ox ⊗ Iw)U0|0⟩

∥∥∥2
(3.1)

Note there are d + 1 unitaries Ui and d queries to the quantum oracle.
Let ϵ ∈ (0, 1/2), we say A computes f with bouned error ϵ if ∀x ∈ D, Pr[A(x) = f (x)] ≥ 1− ϵ.

Definition: Quantum query complexity

For ϵ ∈ (0, 1/2), Qϵ(f) is defined to be the minimum depth of any quantum query algorithm that
computes f with bounded error ϵ.

We now move to the (quantum) Grover algorithm. The upper bound on the quantum query complexity
of the Grover algorithm turns out to be O(

√
n), a smaller exponent than the lower bound of the classical

query complexity O(n). For t ∈N, consider ORo,t
n :

{
x ∈ {0, 1}n ||x| = 0 or |x| = t

}
→ {0, 1}.

Proposition: Grover’s Algorithm

For all n ∈N, t ∈N such that t ≤ n
3 , we have Q(OR0,t

n) ≤ π
4

√
n
t .

11

Figure 3.1: Circuit picture of quantum query computation

Definition: Quantum phase oracle

For x ∈ {0, 1}n, the quantum phase oracle of x is the unitary matrix Ux ∈ C2n×2n defined by:

Ux|i⟩|b⟩ = (−1)xi+1b|i⟩|b⟩ (3.2)

where i ∈ {0, 1, . . . , n− 1} and b ∈ {0, 1}.

Lemma: Phase kickback trick

For all x ∈ {0, 1}n:
Ux = (In ⊗ H)Ox(In ⊗ H) (3.3)

where H = 1√
2

(
1 1
1 −1

)
.

Proof. First, notice that for b ∈ {0, 1}, we have:

H|b⟩ = 1√
2
(|0⟩+ (−1)b|1⟩) (3.4)

12

Then, it suffices to show that RHS|i⟩|b⟩ = LHS|i⟩|b⟩. We have:

RHS|i⟩|b⟩ = (In ⊗ H)Ox|i⟩H|b⟩

= (In ⊗ H)Ox|i⟩
1√
2
(|0⟩+ (−1)b|1⟩)

=
1√
2
(In ⊗ H)(|i⟩|xi+1⟩+ |i⟩(−1)b|1⊕ xi+1⟩)

=
1√
2

(
|i⟩ 1√

2
(|0⟩+ (−1)xi+1 |1⟩) + |i⟩ 1√

2
(|0⟩+ (−1)xi+1⊕1|1⟩)(−1)b

)

=
1
2
|i⟩
(
(1 + (−1)b)|0⟩+ ((−1)xi+1 − (−1)b(−1)xi+1)|1⟩

)
=

{
|i⟩|0⟩ b = 0
(−1)xi+1 |1⟩ b = 1

= (−1)bxi+1 |i⟩|b⟩

A quick note - H is unitary, hence invertible - in fact H† = H−1 = H so H2 = I2 and as a result we
find that:

Ox = (In ⊗ H)Ux(In ⊗ H) (3.5)

The quantum query complexity only cares about calls to the oracle Ox. So, the query complexity does
not change if we change the oracle to the phase oracle (the difference can be absorbed into the sequence
U0, . . . Ud).

We now prove the Grover proposition.

Proof. Let |ψ⟩ denote the n-dimensional state:

|ψ⟩ = 1√
n

n−1

∑
i=0
|i⟩. (3.6)

For x ∈ {0, 1}n, let Vx ∈ Cn×n be:

Vx :=
n−1

∑
i=0

(−1)xi+1 |i⟩⟨i| = In − 2 ∑
i|xi+1=1

|i⟩⟨i| (3.7)

Side note; if b = 1 then, Ux|i⟩b = (−1)xi+1b|i⟩|b⟩ = (−1)xi+1 |i⟩|1⟩. Define G ∈ Cn×n as:

G := In − 2|ψ⟩⟨ψ|. (3.8)

Finally, let:
Π0 := |ψ⟩⟨ψ|. (3.9)

Our measurement isM := {Π0, In −Π0}. Then for k ∈N, consider:

px :=
∥∥∥Π0(GUx)

k|ψ⟩
∥∥∥2

(3.10)

This can be thought as the probability that a k-query quantum algorithm outputs zero. In this setting U0
is the unitary such that U0|0⟩n = |ψ⟩, and U1, . . . Uk = G.

There are two cases. We have restricted the domain of the OR to be Hamming weight 0 (i.e. On) and
with Hamming weight t.

13

1. If x = 0n, then Vx = In, G = 1− 2|ψ⟩⟨ψ|. Then:

(GVx)|ψ⟩ = G|ψ⟩(In − 2|ψ⟩⟨ψ|)|ψ⟩ = |ψ⟩ − 2|ψ⟩ = −|ψ⟩ =⇒ (GVx)
k|ψ⟩ = (−1)k|ψ⟩ (3.11)

and so px =
∥∥∥|ψ⟩⟨ψ|(−1)k|ψ⟩

∥∥∥2
= 1.

2. If x has Hamming weight t, then define:

|ψ0⟩ =
1√

n− t ∑
i|xi+1=0

|i⟩, |ψ1⟩ =
1√

t ∑
i|xi+1=1

|i⟩ (3.12)

Then, by inspection:

|ψ⟩ =
√

1− t
n
|ψ0⟩+

√
t
n
|ψ1⟩ = cos ϑ|ψ0⟩+ sin ϑ|ψ1⟩ (3.13)

where ϑ := arcsin(
√

t/n) ∈ [0, π/2]. We have:

GVx|ψ0⟩ = G|ψ0⟩ = |ψ0⟩ − 2|ψ⟩⟨ψ|ψ0⟩ = |ψ0⟩ − 2 cos ϑ|ψ⟩ = − cos 2ϑ|ψ0⟩ − sin 2ϑ|ψ1⟩ (3.14)

GVx|ψ1⟩ = −G|ψ1⟩ = − sin(2ϑ)|ψ0⟩ − cos(2ϑ)|ψ1⟩ (3.15)

So - we can analyze the entire algorithm in the 2-dimensional subspace spanned by |ψ0⟩, |ψ1⟩ (which
we note are orthogonal). Within the subspace span

{
|ψ0⟩, |ψ1⟩

}
, we can write GVx as:

−GVx ∼=
(

cos(2ϑ) − sin(2ϑ)
sin(2ϑ) cos(2ϑ)

)
(3.16)

We then have (informally by composition of rotations - formally via diagonalization):

(−GVx)
k =

(
cos(2kϑ) − sin(2kϑ)
sin(2kϑ) cos(2kϑ)

)
(3.17)

Therefore:
(GVx)

k|ψ⟩ = (−1)k (cos((2k + 1)ϑ)|ψ0⟩+ sin((2k + 1)ϑ)|ψ1⟩
)

(3.18)

and so:
px =

∥∥∥Π0(GVx)
k|ψ⟩

∥∥∥2
= cos2(2kϑ) (3.19)

k is the number of queries, so what do we choose? We choose it such that we can distinguish it from

the all 0 case. I.e. that px = 0 and so k = π
4ϑ . ϑ = arcsin(

√
t/n) ∼

√
t/n so we choose k = π

4

√
n
t .

4 Basic Design Principles for Quantum Algorithms

We have now shown that R(OR0,1
n) ≥ n/3 but Q(OR0,1

n) ≤ π
4
√

n + 1
2 - our first rigorous proof of a

(quadratic) quantum speedup in terms of n within the query model.
In this lecture, we explore two very useful principles of quantum algorithm design given as two items

in Fact 4 below. We apply these principles to show how the quantum query complexity of ORn (without
any domain restrictions on domain) is also O(

√
n). In later lectures, we will take these principles for

granted.

14

Fact: Quantum query algorithms to simulate randomized query algorithms

Quantum (query) algorithms can efficiently simulate randomized (query) algorithms. In particular,
Q(f) ≤ R(f) for any f . See Section 2.3.3 of de Wolf’s PhD Thesis for details.

Proof. (Sketch) We will see how a quantum query algorithm can simulate a DDT first by way of an exam-
ple: consider the obvious depth-2 DDT T that computes (¬x1 ∧ x2) ∨ (x1 ∧ ¬x3) with 1 labelling the root.
For this example, use the following fact:

Fact: Permutation unitary

Suppose g : {0, 1, . . . , a− 1} → {0, 1, . . . , b− 1}, then there exists a unitary Ug (in fact a permutation
matrix) acting on the space Ca ⊗Cb = Cab(Ug ∈ Cab×ab) such that:

Ug|i⟩|0⟩ = |i⟩|g(i)⟩ (4.1)

for all i ∈ {0, 1, . . . , a− 1}.

Armed with this, we proceed as follows; let I : {0, 1} → {2, 3} be defined by I(0) = 2 and I(1) = 3. I
maps the bit value of x1 to the index that is queried next. Let I − 1 denote the function that first applies I
and then subtracts 1. Let h : {0, 1} × {0, 1, 2} × {0, 1} → {0, 1} by:

h(0, 2− 1, 0) = 0, h(0, 2− 1, 1) = 1h(1, 3− 1, 0) = 1, h(1, 3− 1, 1) = 0. (4.2)

We have defined h such that h(a, I − 1, b) is defined to be the value that T outputs if x1 = a, I is the index
of the variable queried next, and xI = b.

Our register has dimensions C3 ⊗C2 ⊗C3 ⊗C2 ⊗C2. Where in |0⟩|0⟩|0⟩|0⟩|0⟩ the first two are query
registers and the last three are workspace registers.

|0⟩|0⟩|0⟩|0⟩|0⟩
7→Ox |0⟩|x1⟩|0⟩|0⟩|0⟩
7→UI−1 |0⟩|x1⟩|I(x1)− 1⟩|0⟩|0⟩
7→Ox |0⟩|x1⟩|I(x1)− 1⟩|xI(x1)

⟩|0⟩

7→Uh |0⟩|x1⟩|I(x1)− 1⟩|xI(x1)
|h(x1, I(x1)− 1mxI(x1)

)⟩⟩
= |0⟩|x1⟩|I(x1)− 1⟩|xI(x1)

⟩|T(x)⟩

Where 7→A denotes the application of A (tensored appropriately with identities) and the last line uses the
definition of h. Then, measuring using

{
Π0 := I36 ⊗ |0⟩⟨0|, Π1 := I36 ⊗ |1⟩⟨1|

}
gives outcome T(x) with

probability 1. This concludes the example for DDTs.
What about RDTs? Recall an RDT is a distribution

{
(pi, Ti)

}K−1
i=0 over DDTs. We have seen how

Ti can be simulated by a quantum query algorithm Ai for each i. Suppose Ai is specified by unitaries{
Ui

j

}
j=0,...,d

. Then the RDT can be simulated by a quantum query algorithm A that starts with the state:

|ψ0⟩ :=
K−1

∑
i=0

Ui
0|0⟩ ⊗

√
pi|i⟩. (4.3)

(More precisely, we can define the U0 of A such that U0|0⟩ = |ψ0⟩). Then for j ∈ {1, . . . , d}, Uj of A is
defined to be:

Uj :=
K−1

∑
i=0

U1
j ⊗ |i⟩⟨i|. (4.4)

15

https://homepages.cwi.nl/~rdewolf/publ/qc/phd.pdf

The measurement of A is still
{

Π0 := |0⟩⟨0|, Π1 := |1⟩⟨1|
}

(appropriately tensored with identities) so
the Πs only act non-trivially on the Ti(x) register.

In our definition of quantum query complexity, there is one measurement coming at the end. But in
fact, could have also allowed “intermediate measurements”. The principle of deferred measurement says
that such measurements can always be simulated by a measurement at the end.

Fact: Principle of Deferred Measurement

Suppose we make a measurement M := {Π1, . . . , Πk} on a state |ψ⟩ and if the measurement
outcome is i ∈ [k], we apply unitary Ui to another state |ψ′⟩ (Comment: In Simon’s problem, we
need |ψ′⟩ to be the post-measurement state of |ψ⟩, but the proof is the same.) Then the effect of
this procedure is that with probability

∥∥Πi|ψ⟩
∥∥2, we end up with the final state Ui|ψ′⟩.

Now, consider the following simulation; we apply the unitary:

U :=
n

∑
i=1

Πi ⊗Ui (4.5)

to the state |ψ⟩|ψ′⟩ and then measure the first register using M. (Note that it is unitary by virtue
of the orthogonality and completeness of the projectors, and the unitary of U).
Then, the probability of observing outcome i ∈ [k] is:∥∥∥(Πi ⊗ I)U|ψ⟩|ψ′⟩

∥∥∥2
=
∥∥∥Πi|ψ⟩ ⊗Ui|ψ′⟩

∥∥∥2
=
∥∥Πi|ψ⟩

∥∥2 . (4.6)

where the second last equality uses the fact that∥u⊗ v∥ =∥u∥∥v∥ and that∥Vu∥ =∥u∥ for unitary
V. And the state on the second register becomes Ui|ψ′⟩. This is precisely the same effect as the
original procedure where the measurement comes first.

Using these two design principles, we can show the following:

Proposition: General quadratic upper bound on Q(ORn)

∃c > 0 such that for all n ∈N we have Q(ORn) ≤ c
√

n.

Proof. First, we may assume that |x| ≤ 0.01n. Else, if we randomly query 10000 indices of x, we’ll not find
a 1 (i.e. fail to distinguish the input from 0n) with probability at most(

1− 0.01n
n

)10000
≤ e−100 (4.7)

which is negligeble compared to the bounded error 1/3 we care about (formally we would need to consider
all failure probabilities and then use Boole’s inequality). The inequality uses that 1− x ≤ e−x for all x ≥ 0.

From the previous analysis, we see that, on input x ∈ {0, 1}n using k queries we can get the probability
of outputting 0 to be:

px(k) = cos2(2θxk) =
1 + cos(4θxk)

2
. (4.8)

where θx = arcsin(
√
|x|/n). Plot the graph of px(k) as a function of k; note that its period Tx satisfies:

15 ≤ π

2 arcsin
√

0.01
≤ Tx :=

π

2θx
≤ π

2
√

n, (4.9)

16

where the first inequality uses the fact that |x| ≤ 0.01n and the last inequality uses |x| ≥ 1 (together with
the monotonicity of arcsin(a) for a ∈ [0, 1] and arcsin(a) ≥ a for a ∈ [0, 1]).

Therefore, in the interval [1, ⌈π
2
√

n⌉], px(k) runs over at least one period and each period must span
over at least 15 positive integers (by the first inequality of Eq. (4.9)).

The last step of the algorithm is:

• Repeat the following 10000 times:

1. Choose k ∈N uniformly at random between 1 and 2
√

n

2. Run Grover’s quantum query algorithm which has pk(x) probability of outputting 0 (i.e. the
measurement outcome being 0).

3. If the output is 1, return 1. If all repeats give output 0, return 0.

the intuition for why this works is that if we choose an integer k uniformly at random from [1, ⌈π
2
√

n⌉]
then Eq. (4.9) shows that px(k) is a constant away from 1 with constant probability (over the randomness
of the choice of k) (think pictorially).

This means that the quantum query algorithm will output 1 with constant probability. (Recall px(k) is
the probability of the quantum algorithm outputting 0.) Since we would never see 1 when x = 0n, we can
just repeat this a large number of times and output 1 if and only if the quantum query algorithm outputs
a 1 in any of those repeats. This allows us to suppress the error probability to be negligible.

Some remarks:

1. To see that the query algorithm described in the proof is a bonafide quantum query algorithm
according to our definition, we need to use both facts that we established earlier, i.e., quantum can
simulate randomized and principle of deferred measurement. The first fact allows us to convert
the randomized query algorithm doing the preprocessing to a quantum query algorithm. But this
quantum query algorithm could continue running if its output is not 1, and recall a quantum query
algorithm’s output always arises from a measurement. However, by the second fact, we can defer
this measurement to the end. The second fact also allows us to defer the measurements made in
each of the repeat loops to the end.

2. The exposition here expands a little on Scott Aaronson’s lecture notes on Grover search (top of page
8).

3. A somewhat different algorithm, along the lines of what Nick suggested in class of exponentially
increasing k from 1 to O(n), is analyzed in detail in Section 4 of this paper.

4. In fact, there’s yet another algorithm for computing ORn using a “fully quantum strategy” (i.e.,
very unlike the two algorithms mentioned above that are essentially Grover + classical ideas) called
“fixed-point amplitude amplification”. See this paper. Maybe we’ll have time to discuss this when
we talk about quantum signal processing.

Proposition: Error suppression/Chernoff bound

Let ϵ ∈ (0, 1/3). Let f : D ⊆ {0, 1, . . . , m− 1}n → Γ. Then Rϵ(f) ≤ R(f)⌈18 ln(1/ϵ)⌉ and
Qϵ(f) ≤ Q(f)⌈18 ln(1/ϵ)⌉.

Proof. Will prove the randomized case. Same idea also works in the quantum case via the principle of
deferred measurement.

Suppose T is a RDT that computes f with bounded error 1/3. Take k ∈N copies of T and output the
modal output of the k copies. For a given x ∈ D, let X denote the number of copies that ouput the correct
answer on x, the probability that each copy outputs the correct answer p = 1

2 + δ, where δ ≥ 1/6 and the

17

https://www.scottaaronson.com/qclec/22.pdf
https://arxiv.org/pdf/quant-ph/9605034.pdf
https://arxiv.org/abs/1409.3305

probability that each copy outputs the incorrect answer is q = 1− p = 1
2 − δ ≤ 1

3 . Then, we are correct if
and only if X > k/2, So, the probability that we are incorrect is:

Pr[X ≤ k/2] =
k/2

∑
i=0

Pr[X = i] =
k

∑
i=0

/2
(

k
i

)
piqk−i

≤
k/2

∑
i=0

(
k
i

)
pk/2qk/2

≤ 2k(pq)k/2

= 2k
(

1
2
+ δ

)k/2 (1
2
− δ

)k/2

= 2k
(

1
4
− δ2

)k/2

= (1− 4δ2)k/2

≤ e−2kδ2

So if we pick k ≥ ln(1/ϵ)/(2δ2), we have pr[X ≤ k/2] ≤ ϵ. Since δ ≥ 1/6, it suffices to pick k ≥ 18 ln(1/ϵ).
Hence the proposition.

Remark: We have shown that given k i.i.d. random variables X1, . . . , Xk taking variables in {0, 1} such
that ∃δ ∈ [0, 1/2], ∀i, Pr[Xi = 1] = 1

2 + δ. Then, Pr[∑k
i=1 Xi ≤ k/2] ≤ e−2kδ2

. This type of bound is
known as a Chernoff bound, there are more sophisticated variants with more sophisticated proofs. The
rough-and-ready proof given here is taken from Nielsen and Chuang, Box 3.4.

5 Time Complexity

We introduce machinery to define time complexity of decision problems.

Definition: Decision Problem

A decision problem is a set of functions P =
{

Pn : {0, 1}n → {0, 1} , n ∈N
}

.

Two remarks:

1. This intuitively defines the problem of an input of x ∈ {0, 1}n and the desired output is Pn(x).

2. Given a language L = {0, 1}∗ :=
⋃

n∈N {0, 1}n, we note the correspondence P ↔ L :=
⋃

n∈N P−1
n (1).

Defining quantum time complexity in terms of Turing machines is difficult, but in the picture of circuits it
is intuitive.

18

https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview

Definition: Classical and Quantum Circuits

A classical (Boolean/cit) circuit is a directed acyclic graph, with a ∈ N vertices uniquely labelled
as 1, . . . , a with no incoming edges (a “input bits”), b ∈ N vertices uniquely labelled by 1′, . . . , b
with no outgoing edges (b “output bits”) with all other vertices labelled by:

cGATES := {FANOUT, AND, OR, NOT} (5.1)

where AND, OR have 2 incoming edges and 1 outgoing edge, FANOUT has 1 incoming edge and
2 outgoing edges, and NOT has 1 incoming edge and 1 outgoing edge.
A quantum (Boolean/qubit) circuit is a directed acyclic graph with a input bits and b output bits,
where the other vertices are labelled by:

qGATES :=
{

H, T, To f f oli
}

(5.2)

where T, H have 1 incoming edge and 1 outgoing edge, and the To f f oli has 3 incoming edges and
3 outgoing edges.

Note that you could have non-directed cycles in a circuit, e.g. FANOUT going into an AND. There are
also other universal gate sets we could choose, e.g. cGATES = {NAND}, or all qGATES as all 1-qubit
gates and any 2-qubit entangling gate.

19

Definition: Computation using classical and quantum circuits

In the classical case, we consider an input {0, 1}a. We put each of x1, . . . , xa into the input vertices.
When we see AND we compute the AND of the bits, when we see OR we compute OR of the bits,
when we see NOT we compute the NOT of the bit, and when we see FANOUT we clone the bit.
In the quantum case, we note that the input and outputs of each gate are the same and so a = b.
We identify the input x1x2 . . . xa as |x1x2 . . . xa⟩. The gates are:

H =
1√
2

(
1 1
1 −1

)
(5.3)

T =

(
1 0
0 eiπ/4

)
(5.4)

To f f oli =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

(5.5)

with identies tensored appropriately on the qubits on which the gates do not act.
Finally, we make the measurement of:{

Πz := |z⟩⟨z| : z ∈ {0, 1}b
}

(5.6)

A classical circuit can be “described” by a string y ∈ cGATES∗ where cGATES = cGATES ∪
{0, 1, Blank}. Similarly for quantum circuits with y ∈ qGATES∗. This is analogous to how we can
encode a Turing machine as a string.

20

Definition: Deterministic/Randomized/Quantum time cmplexity of decision problems

1. We say P can be solved in deterministic time T (“solved by a deterministic algorithm in time
T”) if ∃ a Turing machine A that for all N ∈N satisfies the following. ∀y ∈ {0, 1}N , A runs in
O(T(n)) steps and outputs the description of a classical circuit Cy such that Cy(0a) = PN(y).

2. We say that P can be solved in randomized time T (“solved by a randomized algorithm in
time T”) if ∃ a Turing machine that for all N ∈N satisdies the following. For all y ∈ {0, 1}N ,
A outputs the description of a classical circuit Cy on a input bits and 1 output bit such that:

Pr[Cy(r) = PN(y)|r ← {0, 1}a] ≥ 2
3

(5.7)

3. We say that P can be solved in quantum time T (“solved by a quantum algorithm in time
T”) if ∃ a Turing machine A that for all N ∈ N satisfies the following. For all y ∈ {0, 1}N , A
outputs the description of a quantum circuit Cy on a input bits and 1 output bit such that:

Pr[z1 = PN(y)|z← meas. outcome of Cy(|0⟩a)] ≥
2
3

(5.8)

Definition: P/BPP/BQP

P is defined as the set:

P :=
{
P|∃c ∈N and T : N→N with T(n) = O(nc) s.t. P can be solved in deterministic time T.

}
(5.9)

The definitions of BPP, BQP are analogous, replacing deterministic with randomized/quantum.

The key point between the query model and the circuit model is the following motto. In the query
model we have f : {0, 1}n → {0, 1}. The x ∈ {0, 1}n corresponds to x : [n] → {0, 1} where x(i) = xi. The

query model has relevance to time complexity if given the input y ∈ {0, 1}N to PN can be used to compute
a circuit for x efficiently.

As an example; y = (u1 ∧ ¬u2 ∧ u3) ∨ . . . for u1, . . . , ul (3-SAT) can be used to efficiently construct a
classical circuit for x : {0, 1}l → {0, 1} such that x(u) = y evaluated at u. It is then a fact that there is a
Turing machine which can efficiently construct a classical circuit Ox.

Note in the case of the SAT problem, it is equivalent to finding OR(x).
Recall in Grover’s algorithm that we also had unitaries in addition to oracles. The unitaries can also be

efficiently generated from the gate set.

6 Complexity continued

Correction: We defined a quantum circuit using acylic graphs and the Toffoli gate. But the Toffoli gate is
asymmetric, so if the graph is acylic then we do not have data about the ordering. So the definition needs
to be refined slightly.

The motto that we wrote last time was that if in the Query model we try to compute f : {0, 1}n → {0, 1}
and the input to f is an n-bit string, this relates to the time complexity if

1. x : [n]→ {0, 1} has an “efficiently describable” circuit.

2. The unitary operations for the quantum query algorithm have an “efficiently describable” quantum
circuit.

21

A query algorithm has a representation in terms of a circuit diagram of interleaving oracles U0 and Ox.
As an example, we have the k-SAT problem - the problem of does there exist a choice of u1, . . . un {0, 1}

such that y evaluated on the formula is equal to 1.
On the classical side, it is known that k-SAT problem (where l is the number of variables, c is the

number of clauses, k is the number of terms per clause) has:

1. For k = 2, the deterministic time is ≤ poly(l, c)

2. For k > 2, the randomized time is ≤ 2l(1−1/k)poly(l, c).

Although there is no proof (as proving lower bounds in the Turing model is hard), there is a conjecture
known as the (Classical) Strong exponential time hypothesis. For every ϵ > 0, there exists k ∈ N such that
no O(2(1−ϵ)lpoly(l, c)) randomized algorithm can solve k-SAT. This has been a long-standing conjecture
in classical complexity theory. This is violated in the quantum setting due to Grover search.

We described the query version of Grover search, but we should describe it in terms of bona fide

quantum gates. Consider our input formula y. We have x : {0, 1}l → {0, 1} (where x ∈ {0, 1}2l
) where

x(u1, . . . , ul) is whatever y evaluates to on u1, . . . , ul .
Important fact: Given the description of a classical circuit for x of size s, it outputs the classical de-

scription of a quantum circuit for Ox in time O(s). Left as an exercise to prove. It remains to see how we
efficiently construct the unitaries, but that will be a homework exercise.

Collision problem: Collisionn : D0 ∪ D1 ⊆ {0, 1, . . . , n− 1}n → {0, 1} where:

D0 =
{

x ∈ {0, 1, . . . , n− 1}n |∀i, j ∈ [n], i ̸= j =⇒ xi ̸= xj

}
(6.1)

D1 =
{

x ∈ {0, 1, . . . , n− 1}n |∀i ∈ [n]∃!j ∈ [n], j ̸= i s. t. xi = xj

}
(6.2)

Where D0 are n-digit strings with no repeats (x is 1-1), and D1 are n-digit strings where each character is
repeated once (x is 2-1). The definition of collision is Collisionn(D0) = {0} and Collisionn(D1) = {1}.

Proposition: Randomized complexity of Collisionn

R(Collisionn) = O(
√

n).

Proof. Follows by a birthday paradox argument. Choose a random size-k subset of [n] uniformly at ran-
dom. Output 1 iff you see a collision.

Case 1. x ∈ D1. Then, we can pair up the xi and xj. There are (n
k) size k subsets. What is the probability

of a bad situation? In general, let’s think about the number of k-size subsets that don’t contain a collision.
For the first point, we randomly choose a single point, so there is no chance of a collision, so we have n
possible choices. For the second point we have n− 1 choices left of which n− 2 cause no collision. For the
third we have n− 4 viable choices, and so on until:

n(n− 2)(n− 4) . . . (n− 2(k− 1))
k!

(6.3)

where we divide out by k! to remove the redundancy from the ordering of the subsets. So the probability
of not seeing a collision is going to be:

n(n− 2)(n− 4) . . . (n− 2(k− 1))/k!
n(n− 1)(n− 2) . . . (n− k + 1)/k!

= 1
(

1− 1
n− 1

)(
1− 2

n− 2

)
. . .
(

1− k
n− k

)
(6.4)

we can upper bound 1− x ≤ e−x so:

Pr[Failure] ≤ 1 · e−
1

n−1 e−
2

n−2 = e−∑k−1
i=1

i
n−i (6.5)

22

Let’s say k ≤ n
2 . Then, n− i ≥ n

2 so:

k−1

∑
i=1

i
n− i

≥ ∑k−1
i=1 i
n

=
k(k− 1)

2n
≥ (k− 1)2

2n
(6.6)

So then:

Pr[Failure] ≤ e−
(k−1)2

2n ≤ ϵ =
1
3

(6.7)

so it suffices to choose k = O(
√

n log(1/ϵ)).

Proposition: Quantum complexity of Collisionn

Q(Collisionn) = O(n1/3).

Proof. We input x1, . . . xk. First, we classically query x1, . . . , xk.

1. If we query the above and we already find a collision, then we are done.

2. If no collisions, then quantumly Grover search for the k distinct symbols among xk+1, . . . , xn. For
how many of these symbols will we get a hit for what we queried? Among the remaining symbols,
there will be exactly k that match with the already queried symbols. On the n− k symbols, we are not
just trying to compute the OR function, but rather OR with a promise that there are no hits, or that
there are k hits with th remaining symbols, i.e. OR0,k

n−k(x̃k+1, . . . , x̃n), which has complexity O(
√

n/k).
The overall query complexity is k + O(

√
n/k) which is minimized at k =

√
n/k so k = n1/3 wherein

the overall complexity is O(k1/3).

There is an extra step in pre-processing the xk+1, . . . xn. For query complexity, this extra step of con-
verting into bit strings cost only 2 oracle calls, O(1). But there is also the function we need to apply that
uses what we already queried. This doesn’t use any queries, but may create some time issue complexities.
There are more examples attached to this be relevant time-complexity wise; we need to assume something
called QRAM which is outside the Turing model. But this is very controversial.

In the remaining 15 minutes, Daocheng will give an open question: Directed st-connectivity in hyper-
cube problem. See Ambainis et al, SODA ’18.

When n = 3, the hypercube graph looks like a cube with each with vertex a 3-bit string, and each
edge has a bitstring xk which indicates whether the edge exists or not in the hypercube. Does there exist
a directed path from s to t that goes through edges that are available? (in the direction of increasing
Hamming weight)?

Each vertex in the hypercube has n edges corresponding to the n bit flips. There are 2n vertices, but
avoiding the double counting we have a total of n2n−1 edges. So the maximal query complexity is n2n−1

(because if we query all the edges, we know there to be a directed path for sure). The question is can we
do better.

Things that don’t work:

1. Look at all the directed paths from 0n and 1n and Grover search over them. But, there are nn directed
paths, so Grover gives

√
nn = nn/2 which is much larger than the trivial upper bound.

2. Look at the “column” in the middle which are bit strings with Hamming weight n/2. Look at a
specific vertex x on that column, and look at the subcube between 0n and x, i.e

{
y ∈ {0, 1}n |y ≤ x

}
.

The number of edges in the subcube is ∼ 2n/2. In the subcube, we can naively query all of them to
decide if 0n is connected to x, taking O(2n/2) queries. Can we then take all x in the middle, of which
there are 2n/

√
n. If we Grover search over all of them, we have

√
2n/
√

n2n/2 = 2n/n1/4. But the
actual algorithm in the paper gives the upper bound 20.8n... the best known lower bound is

√
2n.

23

7 Analysis of the hypercube and Simon’s problem

The hypercube problem continued

The hypercube problem continued. To review, if we consider the n! paths (n choices of which bit to flip
in the first step, then n − 1, and so on) from 0n to 1n, and then consider OR(p̃1 . . . p̃n!) where p̃i = 1
if the path is present and 0 otherwise. If we do a Grover search over all directed paths, then we have
O(
√

n!n) ∼ O(nn/2) complexity (via the Sterling approximation) which is worse than the trivial upper
bound. Better method:

1. We now consider if we go from 0n to 1n (and arrange a pictoral diagram going from left to right in
order of increasing Hamming weight), we can classically all edges in the shaded areas i.e. from 0
up to a certain Hamming weight αn, and then from Hamming weight n− αn line to 1n. The lines
are the sets of points

{
z ∈ {0, 1}n ||z| = αn

}
. Then we can classically query all edges in the shaded

areas, which takes 2 ∑αn
k=0 (

n
k) ·

n
2 queries.

2. Now if we try to decide whether z(1) is connected to z(2) via a directed path. We then have a
sub-hypercube

{
z ∈ {0, 1}n |z(1) ≤ z ≤ z(2)

}
. The dimension of this hypercube is n/2 − αn. So

the number of edges inside of it is (n/2− α/n)2n/2−αn/2. So by investing O(2n/2−αn) (hiding the
polynomial in the ∗) his number of (classical) queries we can decide if z(1) is connected to z(2)

3. Now we ask how z(2) could possibly connected to 0n. We want to OR over the points on the |z| = αn

line, so we Grover search over
√
(n

αn)O
∗(2n/2−αn) possibilities.

4. So then in total we have
√
(n

n/2)
√
(n

αn)O
∗(2n/2−αn) so the overall cost is:

O∗(
αn

∑
k=0

(
n
k

)
+

√(
n

n/2

)√(
n

αn

)
2n/2−αn) (7.1)

then we choose α optimally. For this we use a Lemma:

Lemma: Binomial Coefficient Bounds

Let n ∈N. Then: {
∀k ∈N, 1 ≤ k ≤ n

2 , (n
≤k) := ∑k

i=0 (
n
i) ≤ 2h(k/n)n

∀l ∈N, 1 ≤ l ≤ n, (n
l) ≤ 2h(l/n)n (7.2)

where h : [0, 1]→ [0, 1] is the binary entropy defined by:

h(p) := −p log2(p)− (1− p) log2(1− p) (7.3)

upper bounding using the Lemma:

αn

∑
k=0

(
n
k

)
+

√(
n

n/2

)√(
n

αn

)
2n/2−αn ≤ 2nh(αn/n) +

√
2nh(1/2)

√
2nh(2α)2n/2−αn (7.4)

= 2n ln(α) + 2n(1+ 1
2 h(2α)−α) (7.5)

so we optimize by setting the exponents to being the same. We can do this using our favourite
software device to find α = 0.397. This implies the quantum query complexity is 2nh(0.397) = 20.969n.
Mo

24

Can we push this to extremes with more layers/recusive averaging? Currently we have O∗(20.8615n.
The best known quantum lower bound is Ω∗(20.5n) and there has been a 5 year open question to
close the gap. Another question si whether we can remove the assumption of QRAM.

Simon’s problem

Consider Simonn : D := D0 ∪ D1 ⊆ {0, 1, . . . , n− 1}n → {0, 1}. The setting is similar to the collision
problem. Here the disjoint sets D0, D1 are defined as:

D0 :=
{

x ∈ {0, 1, . . . , n− 1}n |∀s ̸= t, x(s) ̸= x(t)
}

(7.6)

D1 :=
{

x : {0, 1}k → {0, 1, . . . , n− 1} |∃a ∈ {0, 1}k −
{

0k
}
∀s, t ∈ {0, 1}k , x(s) = x(t) ⇐⇒ s = t⊕ a

}
(7.7)

where Simonn(D0) = {0} and Simonn(D1) = {1}.

Proposition: Quantum/randomized complexities of Simon’s problem

Q(Simonn) = O(log n) and R(Simonn) = Ω({n}).

Lemma: Hadamard identity

Let x ∈ {0, 1}k and the corresponding state |x⟩ = |x1⟩|x2⟩ . . . |xk⟩ ∈ C2k
. let H⊗k be the Hadamard

tensored with itself k times where H = 1√
2

(
1 1
1 −1

)
. Then:

H|x⟩ = 1√
2k ∑

y∈{0,1}k

(−1)x·y|y⟩ (7.8)

Proof. Left to the reader - we already did k = 1 when proving the phase kickback trick.

Lemma

Let k, K ∈ N. Suppose z1, z2, . . . , zK ← Fk
2 (where F2 is the field of two elements, i.e {0, 1} with

XOR addition). Then, the probability that the dimension of the span of the zis, i.e. the dimension
of:

V :=
{

a1z1 + . . . + aKzK|∀iai ∈ F2
}
⊆ Fk

2 (7.9)

is k at least 1− 2k−K.

Sanity check: when K ≤ k, 1− 2k−K is non-positive and the bound yields no information. Special case;
if K = K + 1 then the probability is at least 1/2

8 Simon’s Problem continued

D = D0 ∪ D1 ⊆ {0, 1, . . . , n− 1}n (disjoint union) where n = 2k. x ∈ D0 ⇐⇒ x is a permutation of

{0, 1, . . . , n− 1} while x ∈ D1 ⇐⇒ ∃a ∈ {0, 1}k \
{

0k
}

such that x(t) = x(s) ⇐⇒ t = s⊕ a. We’ve

identified [n] = {0, 1}k. In the k = 3 case, we can identify 0, . . . , 7 by their binary representation, and then
(example, which I missed TODO)

25

Let us return to the proof of the Lemma from last class.

Proof. Let A ∈ FK×k
2 defined by:

A =

−z1−
−z2−

...
−zK−

 (8.1)

the dimension of the span of z1, . . . zk is (by definition) equal to the row-rank of A. But row-rank is equal
to column rank. Then, by the rank-nullity theorem, column rank of A = k implies that ker(A) =

{
0k
}

(where we recall that the kernel is defined as
{

z ∈ Fk
2|Az = 0

}
). So the question reduces to “what is the

probability that the kernel of A is trivial?”:

Pr[ker(A) =
{

0k
}
] = Pr[∃z ̸= 0k|Az = 0] ≤ ∑

z∈Fk
2\{0k}

Pr[Az = 0] (8.2)

where we have applied the union bound Pr(
⋃

i Ai) ≤ ∑i P(Ai). Now, WLOG suppose zk = 1. Then,
Az = (z1a1 + z2a2 + . . .) + zkak where now in the brackets is just a uniformly random vector in Fk

2, i.e.:

Pr[ker(A) =
{

0k
}
] ≤ (2k − 1)

1
2K ≤

2k

2K (8.3)

so Pr[ker(A) =
{

0k
}
] ≥ 1− 2k−K.

Lemma

Let K ∈ N and 0 ̸= a ∈ Fk
2. Let z1, . . . , zK ∈ Fk

2 be arbitrary such that ∀i ∈ [K], a · zi = 0. Then,
dim spanF2

{z1, . . . , zk} ≤ k− 1.

Proposition: Quantum query complexity of Simon’s algorithm

Q(Simonn) = O(log n)

Proof. Create the following state using 1 query to x:

1√
2k ∑

s∈{0,1}k

|s⟩|0⟩ 7→Ox
1√
2k ∑

s∈{0,1}k

|s⟩|x(s)⟩ (8.4)

where |x(s)⟩ ∈ Cn. Let us measure the second register in the computational basis.
Case 1; x ∈ D0: Say the outcome is i ∈ {0, . . . , n− 1}, then the resulting state is by definition:

I⊗ |i⟩⟨i|

 1√
2k ∑

s∈{0,1}k

|s⟩|x(s)⟩

 =
1√
2k ∑

s∈{0,1}k

|s⟩|i⟩δi,x(s) ∝ |x(s0)⟩ (8.5)

for some s0 such that x(s0) = i.

26

Case 2; x ∈ D1: Say the outcome is i ∈ {0, 1, . . . , n− 1}. Then the resulting state (as before) is:

1√
2k ∑

s∈{0,1}k

|s⟩|i⟩δi,x(s) ∝ (|s0⟩+ |s0 ⊕ a⟩)|i⟩ (8.6)

where x(s0) = i.
Now apply H⊗k to the first register.
Case 1; x ∈ D0: we have |s0⟩|x(s0)⟩ and applying the Hadamard lemma from last class we get:

1√
2k ∑

y∈{0,1}k

(−1)s0·y|y⟩|x(s0)⟩ (8.7)

Case 2; x ∈ D1: we have 1√
2
(|s0⟩+ |s0 ⊕ a⟩)|x(s0)⟩ so applying the Hadamard lemma we get:

1√
2

 1√
2k

∑
y
(−1)s0·y|y⟩+ ∑

y
(−1)(s0+a)·y|y⟩

 |x(s0)⟩ (8.8)

=
1√

2k+1 ∑
y
(−1)s0·y(1 + (−1)a·y)|y⟩ (8.9)

Now, measure the first register in the computational basis.
Case 1; x ∈ D0: Consider

{
|z⟩⟨z||z ∈ {0, 1}k

}
, which just picks out one term from the sum, so:

∥∥∥∥∥∥∥|z⟩⟨z|
1√
2k ∑

y∈{0,1}k

(−1)s0·y|y⟩

∥∥∥∥∥∥∥
2

=
1
2k (8.10)

where the post-measurement state is z.
Case 2; x ∈ D1: We have: ∥∥∥∥∥∥|z⟩⟨z| 1√

2k+1 ∑
y
(−1)s0·y(1 + (−1)a·y)|y⟩

∥∥∥∥∥∥
2

(8.11)

=
1

2k+1

∥∥∥∥∥∥∑y
(−1)s0·y(1 + (−1)a·y)δyz

∥∥∥∥∥∥
2

(8.12)

=
1

2k+1

∥∥(1 + (−1)a·z)
∥∥2 (8.13)

=

{
1

2k+1 · 4 = 1
2k−1 z · a = 0

0 z · a = 1
(8.14)

The first Lemma we have the measurement outcome uniformly random in z ∈ Fk
2. In the second lemma

we have the measurement outcome is uniformly random z ∈ Fk
2 such that z · a = 0.

We now repeat the process K ∈ N times (K-query algorithm). We choose K = k + 1000. In the first
case, we have the probability:

Pr[dim span(z1, . . . , zk) = k] ≥ 1− 2k−K = 1− 2−1000 (8.15)

In the second case the probability is zero, and we are done.

27

Some remarks:

1. A slight modification of the algorithm allows you to retrieve the a in the case of x ∈ D1, by using the
equation z · a = 0 and solving the linear system of Aa = 0.

2. We consider the modification Simon′n : D′ ⊆ (Fk
2)

Fk
2 → Fk

2. In fact this generalizes widely to algebraic

groups (which leads to Shor, as we will discuss next time). Where x ∈ F′ iff ∃a ∈ Fk
2 \
{

0k
}

such

that ∀s, t ∈ Fk
2, x(s) = x(t) ⇐⇒ s = t and Simon′n(x) = the “a” associated with x. By the remark

above, Q(Simon′n) = O(k).

Proposition: Randomized query complexity of Simon’s problem

R(Simonn) ≥ Ω(
√

n).

Lemma

Suppose f : D = D0 ∪ D1 ⊆ Γn → {0, 1} such that f (D0) = {0} and f (D1) = {1}. Suppose µ0 is
a (probability) distribution supported on D0, and µ1 a distribution supported on D1. Let µ denote
the distribution:

1. b← {0, 1}

2. x ← µb.

Let P ⊆ D1. Suppose that for all b ∈ {0, 1}:

Pr[T(x) = b|x ← µ0] = Pr[T(x) = b|x ∈ P, x ← µ1] (8.16)

then
Pr[T(x) = f (x)|x ← µ] ≤ 1

2
+

1
2

Pr[x /∈ P|x ← µ1]. (8.17)

Case to consider for intuition; if P is the entirety of D1, T cannot distinguish between µ0 and µ1, so
has a hard time computing f .

9 Randomized Query Complexity of Simon’s Problem

Proof.

Pr[T(x) = f (x)|x ← µ] =
1
2

Pr[T(x) = f (x)|x ← µ0] +
1
2

Pr[T(x) = f (x)|x ← µ1]

=
1
2

Pr[T(x)|x ← µ0] +
1
2
(Pr[T(x) = 1|x ∈ P1, x ← µ1)Pr[x ∈ P1|x ← µ1]

+ Pr[T(x) = 1|x /∈ P1, x ← µ1)Pr[x /∈ P1|x ← µ1])

≤ 1
2

Pr[T(x) = 0|x ← µ0] +
1
2

Pr[T(x) = 1|x ← µ0] +
1
2

Pr[x /∈ P1|x ← µ1]

=
1
2
+

1
2

Pr[x /∈ P1|x ← µ1]

We now move to the proof of the proposition.

28

Proof. By averaging argument (Yao’s principle), Suppose there’s an RDT τ of depth d, then ∀µ distribution
on D, ∃ DDT T such that:

Pr[T(x) = f (x)|x ← µ] ≥ 1− ϵ (9.1)

where ϵ = 1
3 .

Define µ0, µ1 where µb is supported on Db and define µ as in the Lemma. µ0 is uniformly randomly
choosing a permutation on {0, 1, . . . , n− 1} and µ1 is uniformly randomly choosing a← {0, 1}k \ {0}.

Now, choose a uniformly random element for each pair {x, x⊕ a} from {0, 1, . . . , n− 1}.
WLOG, assume that T never queries the same variable twice, and that it is abalanced tree of depth D.
Let’s consider the sequence of d responses that T gives, i.e. the labels of the edges of the decision tree.

If x ← µ0, then we obtain uniformly random sequence of d distinct elements in {0, 1, . . . , n− 1}.
If instead x ← µ1: Let t ∈ {1, . . . , d}, and v1, . . . vt−1 ∈ {0, 1, . . . , n− 1} distinct. Let s1, . . . st denote

the sequence of indices that T queries on x, given x(si) = vi for i ∈ {1, . . . , n− 1}. We will say tha the
sequence x(s1), x(s2), . . . x(st) is good if all values are distinct.

Pr[x(s1), . . . , x(st) is good|x(s1) = v1, x(s2) = vs, x(st−1) = vt−1] (9.2)

= Pr[x(st) /∈
{

x(s1), . . . , x(st)
}
|”] (9.3)

= Pr[a(x) /∈ {s1 ⊕ s2, s1 ⊕ s3, . . . , s1 ⊕ st−1, s2 ⊕ s3, . . . , st−2 ⊕ st−1} |”] (9.4)

How many elements in the above set? It is at most (t−1
2). We choose randomly from {0, 1}k \ {0} and want

to avoid a set of size (t−1
2), so the probability is:

Pr[x(s1), . . . , x(st) is good|x(s1) = v1, x(s2) = vs, x(st−1) = vt−1] (9.5)

≥ 1− t− 1

2k − 1− (t−1
2)

(9.6)

which can be obtained by looking at the complement event and bounding it via the union bound. Since
the above analysis holds for any choice of distinct v1, . . . vt−1, for 1 ≤ k ≤ d we have:

Pr[x is t good|x is t− 1 good] ≥ 1− t− 1

2k − 1− (t−1
2)

(9.7)

Therefore:

Pr[x is d-good]
= Pr[x is d-good|x is (d− 1) good]Pr[x is (d− 1) good] + Pr[x is d-good|x is not (d− 1) good]Pr[x is not (d− 1) good]
= Pr[x is d-good|x is (d− 1) good]Pr[x is (d− 1) good]
= Pr[x is d-good|x is (d− 1) good]Pr[x is (d− 1) good]Pr[x is d− 1-good|x is (d− 2) good]Pr[x is (d− 2) good]
= . . .

≥
(

1− d− 1
2

2k − 1−
(

d− 1
2

))(
1− d− 2

2k − 1− (d−2
2)

)
. . .

1− d− (d− 2)

2k − 1− (d−(d−2)
2)

 · 1
≥ 1−

d

∑
j=1

j− 1

2k − 1− (j−1
2)

Now assume WLOG that 1 + (d−1
2) ≤ 2k

2 or else we’re done. Then:

Pr[x is d-good] ≥ 1− 1

2k − 1− (d−1
2)

d

∑
j=1

(j− 1) ≥ 1− 2
2k

1
2

d(d− 1) ≥ 1− d2

2k
(9.8)

29

Conditioned on x being d-good, the sequence of d responses to the d queries that T makes is a uniformly
random sequence of d distinct elements. Therefore, if we let P1 :=

{
x ∈ D1|x is d-good

}
then:

Pr[T(x) = b|x ← µ0] = Pr[T(x) = b|x ← µ1, x ∈ P1]. (9.9)

So by our Lemma:

Pr[T(x) = Simonn(x)] ≤ 1
2
+

1
2

d2

2k
(9.10)

in order to be ≤ 1− ϵ we have that d ≥
√

2k

3 = Ω(
√

n) and we are (finally) done.

Remark: Simon’s problem is in some sense very similar to the collision problem. A research question
of interest to Daochen; can we define intermediate problems between Simon’s problem and the colli-
sion problem? More precisely, DCollision

0 = DSimon
0 and DCollision

1 ⊇ DSimon
1 . We’ve seen that Q(Collision) =

O(n1/3) and R(Collision) = Ω(
√

n) (It turns out Q(Collision) = Ω(n1/3)). We also showed that Q(Simonn) ≤
O(log n) and R(Simonn) ≥ Ω(

√
n). Question; in QC we often have quadratic or superpolynomial

speedups. Can we go in between by defining particular subsets for intermediate speedups?

10 Period Finding

Definition: Period Finding Problem

Let N ∈N. Then, we define the period finding problem as:

PeriodN : D ⊆ ZZ
N → {1, 2, . . . , N} (10.1)

such that x ∈ D if and only if there exists r ∈N such that x(s + r) = x(s) for all s ∈ Z.

Note the similarity with Simon’s problem; we’ve replaced FN
2 with ZN . Note that ZN are the integers

modulo N, and we must have r ≤ N.

Lemma

For r ∈ N such that r > 100, the number of elements in the set {0, 1, . . . , r− 1} that are coprime to
r is at least r

5 ln(ln(r)) . Two numbers are coprime if the only common factors of the two numbers are
1.

Definition: Quantum Fourier Transform

Let M ∈N. Th quantum fourier transform QFTM on CM is the unitary defined by:

|j⟩ = 1√
M

M

∑
k=0

ωk
M|k⟩ (10.2)

where ωM := e2πi/M.

Question where did the complex numbers come from? We didn’t need it in Simon’s. The short answer
is that it’s not necessarily the complex numbers that is important, but rather it is the minus sign that is
important. {H, Toffoli} is universal as a gate set, for example.

30

Proposition

Q(PeriodN) ≤ O(ln ln N).

Proof. Let n := ⌈2 log N⌉ + 1 so that 2n ≥ N2. Write 2N − 1 = Br + b, where B ∈ {0, 1, 2, . . .} with
0 ≤ b ≤ r− 1. Now, create teh state:

1√
2N

2n−1

∑
s=0
|s⟩|x(s)⟩ (10.3)

using one query (in the same way as we do for Simon’s algorithm). Now, we measure the second register
in the computational basis via Πi = I2N ⊗ |i⟩⟨i| where i ∈ {0, 1, . . . , N − 1}.

We are promises that x is periodic with period r. So, suppose that the outcome is k ∈ ZN . Suppose
the outcome is k ∈ ZN , let s0 ∈ {0, 1, . . . , r− 1} be such that x(s0) = k. Then, the state of the first register
after the measurement becomes 1√

A+1 ∑A
k=0|s0 + kr⟩ where A = B if s0 = b and A = B− 1 if s0 > b (this

is just a technicality in case s0 falls into not the last full period).
Pictorially, if we look at the amplitudes of the state, we have positive amplitudes at s0 + nr, i.e. the

quantum state has period of length r. If we now apply QFT2n , we get:

1√
2n(A + 1)

2n−1

∑
y=0

ωs0·y
A

∑
k=0

ωkry|y⟩ (10.4)

where we shorthand ω = ω2n = exp(2πi/2n).
We then have:

A

∑
k=0

ωkry = 1 + ωry + ω2ry + . . . ωAry (10.5)

As y goes from 0, 1, . . . , 2n− 1, ry/2n goes from 0, . . . , r, 2n−1
2n ∈ (r− 1, r). Now, for each j ∈ {0, 1, . . . , r− 1},

let yj ∈ {0, 1, . . . , 2n − 1} be such that ryj/2n is closest to j. Then we have:

|
ryj

2n − j| ≤ 1
2

r
2n (10.6)

Side comment: Generally in textbooks the Kitaev version of the period finding algorithm is discussed.
This is the Shor version, and we discuss it this way because its similar to Simon’s problem.

And now we can write: ryj

2n = j + ηj (10.7)

where |ηj| ≤ r
2n+1 ≤

N
2N2 = 1

2N where we use that r ≤ N and 2n > N2 (the intuition is more peaks = easier
to extract period).

Then:

Sj =
A

∑
k=0

ωkryj =
A

∑
k=0

ωk2n(j+ηj) =
A

∑
k=0

ωkj2n
·ωk2nηj =

A

∑
k=0

ωk2nηj =
A

∑
k=0

exp(2πikηj) (10.8)

Two cases:

1. ηj = 0. Then Sj = A + 1.

2. ηj ̸= 0. Then |Sj|2 = | 1−exp(2πi(A+1)ηj)

1−exp(2πiηj)
|2 =

sin2(π(A+1)ηj)

sin2(πηj)
≥ sin2(π(A+1)ηj)

π2η2
j

31

Now, |π(A + 1)ηj| = π(A + 1)ηj ≤ π(B + 1) r
2n+1 ≤ π

2 + πr
2n+1 < π

2 + πN
2N2 = π

2 + π
2N .

If we now assume N > 100, |π(A + 1)ηj| ≤ 0.505π, but sin2 θ ≥ θ2/3 for θ ∈ [−0.505π, 0.505π] and so:

|Sj|2 ≥
π2(A + 1)2η2

j

π2η2
j

1
3
=

(A + 1)2

3
. (10.9)

so in both cases |Sj|2 ≥ (A+1)2

3 . Therefore, if we measure the state:

1√
2n(A + 1)

2n−1

∑
j=0

ωx0y
A

∑
k=0

ωkry|y⟩ (10.10)

in the computational basis, the probability of the outcome being yj for some j such that j ∈ {0, 1, . . . , r− 1}
and j is coprime for r is at least:

r
5 ln ln r

1
2n(A + 1)

(A + 1)2

3
≥ 1

ln ln r
· 0.05 (10.11)

The final step of this algorithm is as follows; let z ∈ {0, 1, . . . , 2n − 1} be the outcome of the measurement.
We compute r′ ∈N, r′ ≤ N and j′ ∈

{
0, 1, . . . , r′ − 1

}
that is coprime to r′ such that:

| z
2n −

j′

r′
| ≤ 1

2
· 1

2n (10.12)

intuition; if j′, r′ coprime then we have a unique fractional form. Two cases:

1. If no such r′, j′ exist, repeat the entire procedure

2. If they do exist, verify r′ is in fact the period. Rand rcandidate to be r′ if r′ ≤ rcandidate.

Repeat this 10000 ln ln r times and output rcandidate. With probability ≥ 0.99, one of the outputs will
correspond to the j that is coprime to r. (the probability of j being coprime to r is at most 0.05 1

ln ln r) ≥

0.05 1
ln ln N so the probability of all outputs j not coprime to r is ≤

(
1− 0.05 1

ln ln r

)10000 ln ln N
≤ e−500 ≤ 1

3).

Claim: If j coprime to r, then the procedure described above will output an r′ such that r′ = r.

11 Period Finding Continued, Factoring

Review/Finishing the period finding problem

Consider N ∈N, a nd a function x : Z→ ZN . There exists r ∈N such that x(s) = x(t) ⇐⇒ s = t + r.

1. n = ⌈2 log2⌉+ 1 so 2n > N2.

2. Consider 1√
2n ∑2n−1

s=0 |s⟩.

3. Apply Ox to this to get 1√
2n ∑2n−1

s=0 |s⟩|x(s)⟩.

4. Measure the 2nd register in the computational basis. Let the outcome be xD ∈ ZN :

I2n ⊗ |x0⟩⟨x0|
1√
2n

2n−1

∑
s=0
|s⟩|x(s)⟩ = 1√

2n

2n−1

∑
s=0
|s⟩|x0⟩δx0,x(s) (11.1)

32

Pictorially we have peaks at s0 + nr. Last time, a lot of the detail was that we did not assume r|2n.
But if we did, the analysis would become much simpler, and we get:

1√
B

B−1

∑
k=0
|s0 + kr⟩ (11.2)

where 2n − 1 = Br− 1 and B ∈ {0, 1, 2, . . .}.

5. Now, to recover r we take the QFT2n of the first register. This yields:

→ 1√
r

r−1

∑
j=0
|j 2n

r
⟩ (11.3)

note that the above expression only makes sense if r|2n, but for this simplified analysis we do assume
it (the analysis from the previous lecture is more sophisticated, but also more general). There is also
technically a complex phase factor on each of the terms in the sum above, but when we measure it
in the computational basis (in the next step) since these have unit absolute value these will not factor
into the analysis.
Note the QFT is necessary because before we apply it, the state depends on s0 (which depends the
measurement outcome x0) so when we repeat this procedure generically we get different results and
cannot extract the r. But the QFT removes this dependence.

6. Measure this state in the computational basis. If we do so, our outcome will be of the form j
r 2n.

7. Continuing from last time (with the more generic analysis); the probability that we measure some yj
such that:

(a) |yj −
2n j
r | ≤

1
2

1
2n

(b) j is coprime to r

is at least 0.05 1
ln ln r ≥ 0.05 1

ln ln N . Of course in the simplified case we have that the first condition is
trivially satisfied because the yjs are literally j

r 2n.

8. Repeat the above steps 10000 ln ln N times. Each time, let z be the measurement outcome. Compute
some r′ ≤ N (r′ ∈ N) and j′ ∈

{
0, 1, . . . , r′ − 1

}
such that |z − 2n j′

r′ | ≤
1
2

1
2n . If r′, j′ exist, and

r′ ≤ rcandidate, set rcandidate = r′ (Note we should initialize rcandidate = N + 1). At the end, output
rcandidate.
Claim: Suppose the measurement outcome z = yj where j ∈ {0, 1, . . . , r− 1} is coprime to r. Then,
the r′ we output will be exactly equal to r.

Proof. We have |z − 2n j
r | ≤

1
2

1
2n . Now suppose j′ ∈

{
0, 1, . . . , r′ − 1

}
or r′ ∈ N, r′ ≤ N such that

|z− 2n j′
r′ | ≤

1
2

1
2n . We make a uniqueness argument. We have by the triangle inequality:

|2
n j
r
− 2n j′

r′
| ≤ 1

2n (11.4)

Then:

| jr
′ − j′r
rr′

| ≤ 1
2

1
2n <

1
2N2 (11.5)

But rr′ ≤ N2, so if jr′ ̸= j′r, then the LHS is greater than 1
N2 , a contradiction. So, jr′ = j′r. So r|jr′

and r′|j′r, but the first implies r|r′ as j and r are coprime, and the second implies that r′|r as r′ is
coprime to j′ by how it was computed. So then r = r′.

The probability that one of the repeats catches the correct r is high, and so we are done.

33

Order Finding and Factoring

So the above period finding algorithm is O(ln ln N), and it is a key component of Shor’s factoring algo-
rithm. Note that we did a query model analysis, and to actually do the quantum algorithm we would
need to find the corresponding quantum gates to actually perform it. That is to say, we need to describe a
circuit for the unitaries Uj and the operator Ox.

One concrete problem we can establish these for is the order finding problem. Here, the input is
a, N ∈ N with a ≤ N and a coprime to N. The desired output is the minimal r ∈ N such that ar = 1
mod N.

Note such an r exists because we have a1, a2, . . . , aN+1 mod N that take on at most N values, so two
must be the same, hence ai = aj mod N for some i, j. Then using a coprime to N, aj−i = 1 mod N.

Proposition

∃ a quantum algorithm that solves this problem in time O((log N)3poly(log log N)).

How does this relate to factoring? Let us input the N we are trying to factor. We choose some a
uniformly at random from {0, 1, . . . , N − 1}.

1. If a not coprime to N, we are done - just can do the Euclidean algorithm.

2. If a coprime to N, then run the order finding algorithm to find r such that ar = 1 mod N. Let’s
assume r is even so ar/2 + 1 ̸= 0 mod N. Then ar − 1 = 0 mod N so (ar/2 − 1)(ar/2 + 1) = 0
mod N. So then N|(ar/2 − 1)(ar/2 + 1), and there should be nontrivial factors of N in the two parts.
Then we can take the GCD.

Note that the probability that the assumption in the last step is satisfied is some constant, by number
theoretic arguments.

This is why we care about the order finding problem - because there is a fully classical reduction from
it to factoring.

Proof. (Sketch) Consider x : Z → ZN defined by x(k) = ak mod N. Then x(s) = x(t) ⇐⇒ s =
t + ordN(s). If correct, as = at mod N so then as−t = 1 mod N tso then ordN(a)|s− t.

How does this relate to period finding? Consider the function x : Z→ ZN defined by

12 Time Complexity of Shor’s Algorithm

A remark; a quantum state is denoted as |v⟩ ∈ Cd. When we think about this, we shouldn’t think about
this vector as written down on a piece of paper, but rather as a complex probability distribution. If we
think about the probabilistic setting - if we have n fair coins, then the state of the system can be described
as a (uniform) vector on R2n.

In Shor’s algorithm for example, we deal with states ∈ C2n where n ∼ 2 log N where N is the factor
we are trying to factor. The proof of Shoir’s algorithm is that it scales polyn.

As a reminder - in the order finding problem, given a, N ∈ N with a < N coprime to N the order of a
mod N is the least r ∈N such that ar = 1 mod N. The goal is to find r.

Proposition: Time Complexity of order finding

∃ a quantum algorithm that solves the order finding problem in time O(log3 N log log N).

34

Proof. 1. Consider the function x : Z → ZN defined by x(s) = as mod N. This x satisfies x(s) =
x(t) ⇐⇒ s− t ∈ rZ.

⇐= s = t + rk, k ∈ Z. So, x(s) = at+rk = at(ar)k mod N = at mod N = x(t).

=⇒ Write s− t = qr + c where q ∈ Z and c ∈ {0, 1, . . . , r− 1}. Then:

x(s) = x(t)

=⇒ as = at mod N

=⇒ as−t = 1 mod N

=⇒ aqr+c = 1 mod N
=⇒ ac = 1 mod N
=⇒ c = 0 by minimality of period r
=⇒ s− t ∈ r ∈ Z

The cost of computing x(s) - the maximum s is 2n where n = ⌈2 log2 N⌉ + 1. Consider repeated
squaring to compute ak:

a mod N → a2 mod N → (a2)2 mod N → a8 → . . .→ ak (12.1)

We then have (log N)2 log k ≤ (log N)2n ≤ O((log N)3). So, we have the time complexity of com-
puting x, which corresponds exactly to the time complexity of instantiating the quantum oracle for
x - i.e. the Ox part of the algorithm.

2. Now, we need to account for the non-Ox part of the query algorithm.

(a) We need to consider the Hadamard transform that takes us from |0⟩⊗n to 1√
2n ∑2n−1

s=0 |s⟩ where
the number of steps is n (we apply n Hadamard transforms).

(b) QFT: There exists a turing machine that on input n ∈ N outputs the description of quantum
circuit that implements a unitary approximating QFT2n to error ϵ in operator norm distance (i.e.
∥U −QFT2n∥ ≤ ϵ) in order O(n2poly(log(n/ϵ))) steps. Reference: Wikipedia + Solovay-Kitaev
theorem (wikipedia uses non-standard gates, and SK theorem allows for approximation of said
non-standard gates with logarithmic cost in terms of ϵ). Apply with ϵ = 10−10

log log N = O(1
log n). So

total number of steps to describe the QFTS is O(n2poly(log n)).

(c) There is a final step; generate z ∈ {0, 1}n such that with probability 0.01 1
log log N we have

| z
2n − j

r | <
1

2·2n where j coprime to r. Then extract r by unmerating r′ ∈ N, r ≤ N, j′ ∈{
0, 1, . . . , r′ − 1

}
coprime to r′. But this costs N. So naively we can do no better than the classi-

cal algorithm. But we can do better! Consider the continued fractions algorithm: There exists
a Turing machine that on input b1 . . . bn ∈ {0, 1}n ̸= 0n outputs all of the convergents(?) (pi, qi)
of ϕ = 0b1b2 . . . bn ∈ (0, 1) in O(n3) steps, where pi, qi ∈N, pi/qi ≤ 1 and pi is coprime to qi for
all i. Moreoever, suppose there exists coprime p < q ∈N usch that:

|ϕ− p
q
| ≤ 1

2q2 (12.2)

then there exists a ∈ [k] such that p = pa and q = qa. Recall | z
2n − j

r | ≤
1

2·2n < 1
2N2 ≤ 1

2r2 . As an
example, cosnider 0.10010→ 1

2 + 1
16 = 9

16 . The convergents are:

9
16

=
1
16
9

=
1

1 + 7
9
=

1
1 + 1

9
7

=
1

1 + 1
1+ 2

7

=
1

1 + 1
1+ 1

3+ 1
2

(12.3)

35

To get the convergents, we just draw circles; we have 1
1 = p1

q1
in the first step, then 1

1+ 1
1
= 1

2 = p2
q2

in the second step, and 1
1+ 1

1+ 1
3

= 4
7 = p3

p4
in the third step, and so on. Then in the last step we

have p4
q4

= 9
16 . This is the algorithm for computing the pi, qis. The guarantee is that in the good

case of the zs, the p/q = r.
So, the cost of each repeat is:

n + (log N)2 + 1 + n2poly(log n) + n3 (12.4)

where the first term is the Hadamard, the second term is the oracle, the third term is the
computational basis measurement, the fourth term is the QFT, and the last term is the continued
fractions. The total number of repeats is log log(N), so then we are dominated by the last term
and have a total cost of O(n3 log n).

Algorithm: Quantum Factoring (Shor)

Input: N ∈N (represented in binary)

1. Check if N is even. If even, output 2.

2. Check if N is a kth power of a natural number 2, . . . , ⌈log N⌉.

3. Choose a ← {1, . . . , N − 1}. Compute b = gcd(a, N) by Euclid’s algorithm. If b > 1, then
output b, else continue

4. Compute r = ordN(a).

5. Compute d = gcd(ar/2 − 1 mod N, N). If d > 1. If d > 1, output d, else output “don’t
know”. We are guaranteed that the algorithm doesn’t output “don’t know’ with probability
at least 1/2, in which case it is constant.

Anecdote - Daochen thought he had broken Shor when he tried to code this up without the mod N.
Important to have! Though left out by many experts. . .

13 Finishing Up Shor, The Hidden Subgroup Problem

Final Remarks on Shor’s Algorithm

We looked at the order finding algorithm last time. The runtime was Õ((log N)2) for the classical part and
Õ((log N)3) for the quantum part (naively). This came from the repeated squaring of x(s) = as mod N.
But we can actually do this in (log N)2 time if we do a Fourier transform instead of doing the “schoolboy”
multiplication. Then, the complexity of each squaring is just Õ(log N) and so all of the squarings takes
Õ((log N)2) time.

But last year, Oded Regev actually found a way to do this in Õ((log N)1.5) time. He reduced the
complexity of the quantum part!

Idea: What if instead of choosing a, we chose a, b, c, d. Consider x(s1, s2, s3, . . . sk) = as1
1 as2

2 . . . ask
k

mod N where k is to be optimized. This has a period in a higher dimensional space of Zk. For each
of the si, we don’t have to go as far to find the period; in a higher-dimensional space the period is shorter,
so we can raise the numbers to a smaller power and so this gives us some savings.

36

Basic Group Theory

Definition: Groups

A group G = (S, α) is defined by a set S and a function α : S× S→ S such that:

1. (Identity) ∃e ∈ S such that ∀g ∈ S, α(g, e) = g = α(e, g)

2. (Inverses) ∀g ∈ S, ∃h ∈ S such that gh = e = hg.

3. (Associativity) ∀g, h, k ∈ S such that α(α(g, h), k) = α(g, α(h, k)).

We didn’t include it in the axiom, but the inverse is unique. The order of the group is |S|. Sometimes
the notation is abused and we write |G|. A group G is Abelian if the α operation commutes i.e.
∀g, h ∈ S we have α(g, h) = α(h, g).

Some examples:

1. G = Fn
2 , with α = componentwise addition.

2. G = Z, with α = addition.

3. G = GLn(C) the set of invertible n× n matrices with entries in C (with α = matrix multiplication.)

4. G = D2n, the set of symmetries of a regular n-gon. A regular 3-gon is a triangle, a regular 4-gon is
a square, a regular 5-gon is a pentagon, and so on. Let’s take the square/4-gon as an example. The
symmetries are the rotations and reflections

{
0◦ = e, 90◦ = σ, 180◦ = σ2, 270◦ = σ3, τ, τσ, τσ2, τσ3

}
.

The group operation is composition of the symmetries. D2n can be thus written as
{

σsτa|s ∈ Zn, a ∈ Z2
}

.
It will later be convenient to use the slightly different representation of the element. We can write
the elements as (s, a) where (s, a) · (t, b) = (s + (−1)at, a + b).

1, 2 are examples of Abelian groups, while 3,4 are not.

Definition: Subgroups

Let G = (S, α) be a group. We say T ⊆ S form s a subgroup of G if:

1. T contiains the e of G

2. T is closed under α, that is ∀g, h ∈ T we have α(g, h) ∈ T.

3. T is inverse closed, i.e. ∀g ∈ T we have g−1 ∈ T.

This definition defines a group (T, α|T) (where α|T denotes the restriction of the α operation onto
T × T (rather than S× S)).

Examples:

1. Any group G has the trivial subgroups {e} , G.

2. Suppose G = Fn
2 . Then,

{
a, (0, . . . , 0)

}
where 0n ̸= a ∈ Fn

2 . This follows from the fact that a0n = a,
0n0n = 0n, aa = 0n and so the group is closed, has the identity element, and contains all inverses, as
required.

3. Take G = Z. Then, rZ =
{

r · z|z ∈ Z
}

for 0 ̸= r ∈ Z is a subgroup.

4. For y ∈ Zn, Ty :=
{
(0, 0), (y, 1)

}
is a subgroup of D2n, as (y, 1) · (y, 1) = (0, 0).

37

Definition: Hidden Subgroup Problem

Let G be a group and H denote a set of subgroups of G. Let Σ be an alphabet with |Σ| ≥ |G|. The
HSP(G,H, Σ) problem is to compute the function f : D ⊆ ΣG → H where x ∈ D if and only if
there exists H ∈ H with x(g) = x(h) ⇐⇒ gH = hH where gH =:=

{
gh|h ∈ H

}
Proposition: Quantum query complexity of HSP

Let G be a finite group. Let H be the set of all subgroups of G and let be Σ be an alphabet such
that |Σ| ≥ |G|. Then, Q(HSP(G,H, Σ)) = O((log|G|)2).

Example: Simon’s problem, with G = Fn
2 → O(n2).

Interlude: Mixed Quantum States

So far:

1. A quantum state is a vector |ψ⟩ ∈ Cd

2. A Γ-outcome measurement on Cd applied to |ψ⟩ results in i ∈ Γ according to some probability pi.
The state becomes |ψi⟩ if i = measurement outcome.

In Simon’s/Period finding problems:

1. Either we did not care about the measurement outcome (first measurement)

2. Or we did care about the distribution on the measurement outcome, but not the distribution on the
state it ends up in |ψi⟩ (second measurement)

In either case, we didn’t care about the distribution on the post-measurement state. We have post
measurement state |ψi⟩, pi. There are two ways of doing analysis.

1. Naive but hard way: Do a for loop; for each i ∈ Γ, analyze the post-processing effect on the |ψi⟩,
then “average over the effects”.

2. Sophisticated (but easier) way: define a single objkect that captures the distribution on the post-
measurement states, and analyze the effects on the single object.

What is the mystery single object? Is is the density matrix ρ ∈ Cd×d, defined as:

ρ = ∑
i∈Γ

pi|ψi⟩⟨ψi| (13.1)

14 The Hidden Subgroup Problem Continued

Definition: Mixed quantum state

Let d ∈N. A mixed quantum state of dimension d is a matrix ρ ∈ Cd×d such that:

1. H is positive semidefinite

2. Tr(ρ) = 1.

E.g. ρ = ∑i pi|ψi⟩⟨ψi| where |ψi⟩ are pure states. Tr(ρ) = ∑i pi = 1 and ∑i pi|⟨ψi|ψi⟩|2 ≥ 0.

38

Definition: Effect of measurement on mixed quantum state

Let d ∈ N, ρ be a mixed quantum state andM =
{

Πi|i ∈ Γ
}

a measurement on Cd. To measure ρ
withM refers to a process that:

1. Outputs i ∈ Γ wit probability Tr(Πiρ)

2. The resulting state becomes ΠiρΠi
Tr(Πiρ)

.

Definition: Schatten p-norm

Let p ∈ [1, ∞) and d ∈N. The Schatten p-norm of a matrix A ∈ Cd×d is defined to be:

∥A∥p := Tr((A† A)p/2)1/p (14.1)

(Recall the definition of functions of matrices, where if A = ∑i λi|i⟩⟨i| then f (A) = ∑i f (λi)|i⟩⟨i|.)
Also, when p = ∞,∥A∥∞ is the spectral norm of A.

Definition: Fidelity of quantum states

Let ρ, σ ∈ Cd×d be mixed quantum states. The fidelity between ρ, σ is defined as:

F(ρ, σ) :=
∥∥∥√ρ
√

σ
∥∥∥

1
(14.2)

We observe that F(ρ, σ) = F(σ, ρ) (symmetric) and 0 ≤ F(ρ, σ) ≤ 1.

Lemma: Pretty good measurement

Let N, d ∈ N. Let ρ1, ρ2, . . . , ρN ∈ Cd×d be mixed quantum states. Then there exists an
[N]−outcome measurementM =

{
Πi|i ∈ [N]

}
on Cd ⊗CN such that:

Tr(Πi(ρi ⊗ |0⟩⟨0|)) ≥ 1− N
√

max
i ̸=j

F(ρi, ρj) (14.3)

Lemma: Holder’s inequality for Schatten p-norms

Let p ∈ [1, ∞], d ∈N, A, B ∈ Cd×d. Then:

∥AB∥1 ≤∥A∥p∥B∥p∗ (14.4)

where 1
p + 1

p∗ = 1.

Proof. Combine Von Neumann’s Tracing inequality with the usual Holder’s inequality for Lp norms.

39

Lemma

Let ρ, σ be mixed quantum states and Πρ be the projector onto the support of ρ. Then:

F(ρ, σ) ≤
√

Tr(Πρσ) (14.5)

Proof.

F(ρ, σ) =
∥∥∥√ρ
√

σ
∥∥∥

1

=
∥∥∥Πρ
√

ρΠρ

√
σ
∥∥∥

1

≤
∥∥∥Πρ
√

ρ
∥∥∥

2

∥∥∥Πρ

√
σ
∥∥∥

2

=
√

Tr((Πρ
√

ρ)†(Πρ
√

ρ))
√

Tr((Πρ

√
σ)†(Πρ

√
σ))

=
√

Tr(
√

ρΠρΠρ
√

ρ)
√

Tr(
√

σΠρΠρ

√
σ)

=
√

Tr(ρ)
√

Tr(Πρσ)

Lemma

Let G be a finite group, H, H′ ≤ G. Then:

|gH ∩ g′H′| =
{
|H ∩ H′| if g−1g′ ∈ HH′ =

{
hh′|h ∈ H, h′ ∈ H′

}
0 otherwise

(14.6)

Moreover, |HH′| = |H||H′ |
|H∩H′ | .

Lemma

Let G be a finite group. Let N be the number of subgroups of G. Then, N ≤ (|G|+ 1)log2|G|.

Proof. Consider a subgroup H ≤ G. H can be specified by ≤ log2|H| independent generators. Start with

⟨e⟩, then ⟨e, h2⟩ =
{

e, h2, h2
2, . . .

}
, then continue on and define hi+1 recursively by an element that can’t

be generated as a word of the previous elements. So, the number of subgroups is at most ∑
log2|G|
i=0 (|G|i) ≤

(|G|+ 1)log2|G|

We are now ready to prove the quantum query complexity of HSP proposition from last lecture.

Proof. 1. Create 1√
|G| ∑g∈G|g⟩|x(g)⟩. (1 query)

2. Measure the second register in the computational basis.

40

3. Consider the mixed state:

ρ =
1

|G|/|H|
k

∑
i=1
|gi H⟩⟨gi H| where |gi H⟩ =

1√
|H| ∑

g∈gi H
|g⟩ (14.7)

Suppose we do this l ∈N times. Then, ρ⊗l
H . And we consider:

ρ⊗l
H1

, . . . ρ⊗l
HN

(14.8)

with N = O(log2|G|). Use pretty good measurement lemma to find:

Tr(Πi(ρi ⊗ |0⟩⟨0|)) ≥ 1− N
√

max
i ̸=j

F(ρi, ρj) ≥
2
3

(14.9)

so then:

1− N
√

max
i ̸=j

F(ρ⊗l
Hi

, ρ⊗l
Hj
) ≥ 2

3
⇐⇒ l ≥ Ω(

log2 N
log(maxi ̸=j

1
F(ρHi

,ρHj
)
)
) (14.10)

It now suffices to show:
F(ρHi , ρHj) ≤ Constant (14.11)

(Note: This last part takes place one lecture later) To this end we use the Lemma, and we can instead
bound Tr(ΠρH ρ′H).

Tr(ΠρH ρ′H) = Tr(
1
|H|∑g

∈ G|gH⟩⟨gH| · 1
|G| ∑

g′∈G
|g′H⟩⟨g′H|)

=
1

|H||G| ∑
g,g′∈G

Tr(|gH⟩⟨gH||g′H⟩⟨g′H|)

= | 1√
H

∑
h∈H
⟨gh| 1√

H′
∑

h′∈H
|g′h′⟩|2

=
1

|H||H′| | ∑
h∈H,h′∈H′

⟨gh|g′h′⟩|2

=
1

|H|2|H′||G| ∑
g,g′∈G

|gH ∩ g′H′|2

The sum is equal to |H ∩ H′|2 if g−1g′ ∈ HH′ and 0 otherwise, so:

Tr(ΠρH ρ′H) =
1

|H|2|H′||G| |G||Hh′|

=
|H ∩ H′|
|H|

Now we want to bound this by a half. The fidelity is symmetric and we also have that it is less than
|H∩H′ |
|H′ | , from which we obtain that it must be less than a half (by using Lagrange’s Theorem). The claim

follows.

15 Dihedral HSP

We have thus shown that the Quantum query complexity of HSP is at most O((log|G|)2). However, we
use a sophisticated measurement in the Lemma, and in general has no efficient description in terms of

41

quantum circuits (unlike a computational basis measurement). So now, we will think about the HSP
for the Dihedral group D2n, which we will see that the measurement has a nontrivial construction. The
difficulty boils down to non-Abelian, non-normal subgroups.

We recall D2n =
{

σaτb|a ∈ Zn, b ∈ Z2

}
. Where σ are rotational symmetries and τ are reflection

symmetries of the regular n-gon. For convenience, we wrote this as D2n =
{
(a, b)|a ∈ Zn, b ∈ Z2

}
. As a

concrete example, D8 =
{

e, σ, σ2, σ3, τ, στ, σ2τ, σ3τ
}

. Consider the subgroup:

H =
{〈

(a, 1)
〉
|a ∈ Zn

}
(15.1)

We focus on this particular set of subgroups due to its relevance in breaking lattice cryptography. The
HSP only gets harder as we increase the size of H.

Proposition

Tnon-oracular(HSP(D2n,H, Σ)) = 2O(
√

log n).

Note: there are no complexity theoretic barriers to this (we don’t solve NP problems in polynomial
time, for example). If we got this to poly(log n), then we would break a lot of lattice-based cryptographic
protocols.

Proof. Input is x which hides the subgroup
〈
(s, 1)

〉
.

1. Input 1√
2n ∑a∈Zn ,b∈Z2

|a, b⟩|x(a, b)⟩

2. Measure the second register in the computational basis. Suppose we get x0 ∈ Σ, then the state of the
first register becomes:

1√
2

(
|t′0, a0⟩+ |t′0 + (−1)a0 s, a0 + 1⟩

)
(15.2)

where x(t′0, a0) = x0. This state can be alternatively written as:

1√
2
(|t0, 0⟩+ |t0 + s, 1⟩) (15.3)

for some t0 ∈ Zn. Now, we apply QFTn ⊗ I2 on this state. This gives:

1√
2

 1√
n ∑

y∈Zn

ωt0y|y⟩|0⟩+ 1√
n ∑

y′∈Zn

ω(t0+s)y′ |y′⟩|1⟩

 (15.4)

where ω = exp(2πi/n). Now, by grouping the same ys together we have:

1√
2n

∑
y∈Zn

ωt0·y
(
|0⟩+ ωs·y|1⟩

)
|y⟩ (15.5)

Now measure the second register of the state in the computational basis.

(a) Obtain a y ∈ Zn uniformly at random

(b) Post-measurement state 1√
2

(
|0⟩+ ωs·y|1⟩

)

42

(c) Sketch of how to obtain s, from Kuperberg; Assume for simplicity that n = 2m. y ∈ Zn can be
represented as an n-bit string. If y = |10 . . . 0→ 2m−11⟩, then:

1√
2

(
|0⟩+ exp(

2πi
m

2m−1s)|1⟩
)
=

1√
2
(|0⟩+ exp(πis)|1⟩) = 1√

2
(|0⟩+ (−1)s0 |1⟩) (15.6)

The idea is to press this button a few times, and d some clever post-processing. For a given y, z,
we can combine the two:

|ψy⟩ ⊗ |ψz⟩ =
1√
2
(|0⟩+ ωy·s|1⟩)⊗ 1√

2
(|0⟩+ ωz·s|1⟩) (15.7)

We then use a CNOT gate to entangle the two, which gives:

CNOT(|ψy⟩ ⊗ |ψz⟩) =
1
2
(|00⟩+ ωzs|01⟩+ ωys|10⟩+ ω(y+z)s|11⟩) (15.8)

if we factor:
1
2

(
(|0⟩+ ω(y+z)s|1⟩)|0⟩+ ωzs(|0⟩+ ω(y+z)s|1⟩)|1⟩

)
(15.9)

we can then measure the second register in the computationa basis; we get 0 with p = 1/2 and
get |ψy+z⟩. We get 1 with p = 1/2 and get |ψy−z⟩. The algorithm gives a sieving procedure. We
want y to be 1 with a bunch of trailing zeros. This post-processing allows us to cancel out parts
where y, z are the same. This is more or less a classical ability at this point - we can create a y

with high probability. Note this is a superpolynomial speedup of 2
√

log n.

16 Time Complexity of DHSP, Intro to Element Distinctness Problem

Time Complexity of DHSP

We consider the Dihedral group D2n and a hidden subgroup
{
(0, 0), (s, 1)

}
where s is the secret. We take

n = 2m and consider |ψk⟩ = 1√
2
(|0⟩+ ωks|1⟩) where ω = exp(2πi/n). It is good if k = 000000 . . . 0 →

2m−1 = n/2 ∈ Zk. I.e. the first part of k is all zero. So, then s = sm−1Sm−2sm−3 . . . s0 = 2m−1sm−1 + . . . +
s0 ∈ Zn. Then |ψk⟩ becomes:

|ψk⟩ =
1√
2

(
|0⟩+ exp(

2πi
n

n
2

s)|1⟩
)
=

1√
2

(
|0⟩+ exp(πis0)|1⟩

)
(16.1)

why is it good? Because we can perform a hadamard gate to get |s0⟩, the secret we are trying to find.
Last time, given two states |ψp⟩, |ψq⟩ we discussed a procedure that outputs 0, |ψp−q⟩ and 1, |ψp+q⟩

with probability 1/2 each - the Kuperburg sieve. Let’s review it and see how long it takes.

Proposition: Time Complexity of Kuperberg sieve

The Kuperberg sieve has time complexity 2O(
√

logn).

Proof. Let us review the algorithm.

1. Start off with 2l states of the form |ψp⟩. Preparing these states costs unit time.

43

2. For k = 0, 1, . . . , m
a − 1. Note l, a are to be optimized for later. Pair the states that agree on the next

a least significant bits, and do the combination operation hoping for the − case (i.e. |ψp−q⟩ rather
than |ψp+q⟩).

3. End up with a uniform mixture of |ψ0⟩ and |ψn/2⟩

Analysis: At each stage, how many states do we expect to lose? we expect to retain 1/8 of the states at
each stage provided the number of states at the start of the stage is ≥ 2 · 2a. Why 1/8? 3 factors of a half:

(a) The combining operation takes in two states and outputs one.

(b) The combining operation succeeds with probability 1/2.

(c) There are 2a possible bit string sets we study (we want the next a least significant bits to agree). In
each set, we can have at most one state that we cannot combine. So, if we have 2 · 2a states at the
beginning of the stage, the maximum possible fraction of states that cannot be paired is 1/2.

So we start with l states, and at each stage we lose 1/8 = 1/23 states, so at the last stage j = m
a − 1, we

have 2l

23(m/a−1) states and we require this to be ≥ 2 · 2a for the procedure to succeed. So then:

2l−3(m
a −1) ≥ 2a+1 =⇒ l − 3

m
a
+ 3 ≥ a + 1 =⇒ l ≥ 3

m
a
+ a− 2 (16.2)

Minimizing, we have a =
√

m so l = O(
√

m) and so with 2l states and n = 2m the time complexity is

2O(
√

log n).

Thus concludes the proof. If we are able to come up with an algorithm that is poly(log n) then you
would be the next Peter Shor, because this would break the current “post-quantum” crypto systems.

Another approach

Another possible approach. Consider k ← Zn with |ψk⟩ = 1√
2
(|0⟩ + ωks|1⟩). Consider measuring |ψk⟩

using the following measurement; the Hadamard basis measurement M =
{
|+⟩⟨+|, |−⟩⟨−|

}
where

|±⟩ = |0⟩±|1⟩√
2

. The probability of getting + is:

p(+) =

∥∥∥∥∥|+⟩⟨+| 1√
2
(|0⟩+ ωks|1⟩)

∥∥∥∥∥
2

= |1
2
(1 + exp(

2πiks
n

))|2 = cos2(
πks
m

) (16.3)

So - we have a random variable K chosen randomly from Zn and B ∈ {+,−}. What is then Pr[K =
k|B = +]? By Bayes’ rule, we have:

Pr[K = k|B = +] =
Pr[B = +|K = k]Pr[K = k]

Pr[B = +]
=

cos2(πks
m) 1

n
1
n ∑l cos2(πls

n)
=

{
1
n if s = 0
2
n cos2(πks

n) if s ̸= 0
(16.4)

Probability of getting + is 1
2 . We’ve reduced the problem to the following.

• We have unknown s ∈ Zn.

• Have ability to press a button at unit time cost to generate a sample k ∈ Zn with probability given
in Eq. (16.4). Either a constant or a cosine wave (which oscillates faster with increasing s). These
distributions are sufficiently far apart that with only logarithmic presses to discriminate the two
distributions. However, a time-efficient algorithm to do this is not known (research question to the
classical algorithms students in the crowd). If you use MLE, this requires log n presses of the button
but is not poly(log n) to run.

44

This concludes our discussion of HSP, though we note that it is still an open research area. DHSP
has motivation to break lattice cryptography. For the symmetric group, HSP is relevant as it connects
to solving the graph isomorphism problem. There is also HSP over R, which has relevance to solving
number-theoretic equations.

Element distinctness Problem

We are back in polynomial speedup land!

Definition: Element Distinctness Problem and Amplitude Amplification

Consider n ∈N, and the function

f : [n]n −→ {0, 1}

x 7−→
{

1 if x contains duplicates
0 if x does not contain duplicates

(16.5)

which defines EDn.

Example: Let n = 5. Then if x = 12453 then f (x) = 0 and if x = 11453 then f (x) = 1.
As a quick remark, R(EDn) = Ω(n), which is obtained via the lower bound for ORn. What is the

quantum query complexity of this?

Proposition: Quantum query complexity of EDn

Q(EDn) = O(n2/3).

There is also a weaker result of Q(EDn) = O(n3/4). To get this we use the widely used technique of
amplitude amplification - which morally is glorified Grover search.

Proposition: Amplitude Amplification

Let d ∈ N and θ ∈ [0, π/2]. Let |ψ0⟩, |ψ1⟩ be d-dimensional quantum states such that |ψ⟩ =
cos θ|0⟩|ψ0⟩+ sin θ|1⟩|ψ1⟩. Let G = I2d − 2|ψ⟩⟨ψ| and U = I2d − 2|1⟩⟨1| ⊗ Id. Then for all k ∈ N,
we find:

(GU)k|ψ⟩ = (−1)k (cos((2k + 1)θ)|0⟩|ψ0⟩+ sin((2k + 1)θ)|1⟩|ψ1⟩
)

(16.6)

Proof. Same as the steps leading to the lecture 3 result (with generalized θ).

Morally we have a procedure that succeeds if we measure |1⟩, for which we can amplitude can be
amplified to succeed with a constant probability (and quantum does better at classical at such an amplifi-
cation) - 1√

p as opposed to 1
p in the randomized case.

In particular, writing sin(θ) =
√

p the probability of measuring |ψ⟩ (the initial state) in the computa-
tional basis on the first register is p (think of it as small). If we take k to be:

π

4θ
− 1

2
∈ [

π

4θ
− 1,

π

4θ
]; k ≤ π

4
1

arcsin(
√

p)
≤ π

4
1
√

p
(16.7)

to obtain sin((2k+ 1)θ) ∈ [sin(π
2 − θ), 1] = [

√
1− p, 1] (the probability of success/measuring 1 is sin2((2k+

1)θ), which for small p is a constant).
Typical application: Have a unitary A such that A|0⟩ = |ψ⟩ so G = A(1− 2|0⟩⟨0|)A†. So, (GU)k uses

k applications of A and A−1 = A† (with same/similar costs) If A succeeds with probability p then O(1√
p)

applications of A and A† boosts success to a constant.

45

17 Amplitude Amplification in Element Distinctness, Quantum Walk

Missed this lecture - notes based on provided references.

Grover Method for ED Problem

A classical algorithm takes Ω(n) to solve ED as it is at least as hard as unstructured search, and therefore
the quantum lower bound is Ω(

√
n).

By using Grover recursively, we can improve on the trivial O(n) running time in the quantum case.
Consider the subgroutine - query f in l randomly chosen places, and check whether one of those l belongs
to a piar of inputs belongs to a pair by doing Grover on the remaining n − l. The initial setuip takes l
queries and Grover takes O(

√
n− l) = O(

√
n) queries for a total of l + O(

√
n). This fails mst of the time,

but succeeds with probability at least l/n. To boost it, we can use amplitude amplification (see last lecture)
which takes O(

√
n/l) steps to boost the success probability ot a constant. Overall, we obtain a success

probability of Ω(1) with:
(l +
√

n)
√

n/l =
√

nl + n/
√

l (17.1)

queries. To optimize the query complexity, we set the two terms to be equal, so l =
√

n and so we obtain
the claimed Q(EDn) = O(n3/4).

Note that the time complexity analysis of this algorithm would contain extra logarithmic factors, as
the inner recursive use of Grocer must check an element against l queried function values, which is done
in O(log l) time.

The lower bound is improved to Ω(n2/3) by using the Ω(n1/3) lower bound for collision by Aaronson
and Shi. The quantum walk algorithm will give us an upper bound of O(n2/3), showing that Q(EDn) =
Θ(n2/3). Let us thus move to discussion of the quantum walk.

Discrete-time quantum walks

A simple example of a dicrete-time random walk on a graph G is where we move from any vertex to
each of its neighbours with equal probability. Thus the walk is governed by the |V| × |V| matrix M with
entries:

Mjk =

{
1/deg(k) (j, k) ∈ e
0 otherwise

(17.2)

for j, k ∈ V : an initial probability distribution p over the vertices evolves to p′ = Mp after one step of the
walk.

To define a quantum analog, we want to specify a unitary U such that given an input state |j⟩ corre-
sponding to j ∈ V it evolves into a superposition of the neighbours. We want this to happen the same way
at every vertex, so it is tempting to write:

|j⟩ 7→ |∂j⟩ :=
1√

deg(j) ∑
k:(j,k)∈E

|k⟩ (17.3)

but the above does not define a unitary transformation, since the orthogonal states |j⟩, |k⟩ corresponding
to adjacent j, k with common neighbour l evolve to non-orthogonal states. We could potentially avoid this
using phases, but this sacrifices the idea of having the operator act identically one each site (and for some
graphs it simply is not possible).

We get around this if we enlarge the Hilbert space, an idea proposed by Watrous as part of a logarithmic-
space quantum algorithm for deciding whether two vertices are connected in a graph. Let the Hilbert space
consist of |j, k⟩ where (j, k) ∈ E. We can think of the walk as taking place on the (directed) edges of the
graph; the state |j, k⟩ represents a walker at vertex j that will move towards vertex k. Each step of the
walk consists of two operations. sents a walker at vertex j that will move toward vertex k. Each step of

46

the walk consists of two operations. First, we apply a unitary transformation that operates on the second
register conditional on the first register. This transformation is sometimes referred to as a “coin flip”, as
it modifies the next destination of the walker. A common choice is the Grover diffusion operator over the
neighbors of j, namely:

C := ∑
j∈V
|j⟩⟨j| ⊗ (2|∂j⟩⟨∂j| − I) (17.4)

Next, the walker is moved to the vertex indicated in the second register. Since this must be unitary, we
have to swap the registers using:

S := ∑
(j,k)∈E

|j, k⟩⟨k, j| (17.5)

Overall, one step of the discrete-time quantum walk is described by SC.
In principle this can define a DTQW on any graph, but in practice we use the alternative framework of

Quantum Markov chains.

Quantum Markov Chains

A discrete-time classical random walk on an N-vertex graph can be represented by an N × N matrix P.
the entry Pkj represents the probability of making a transition to k from j, so the initial probability P ∈ Rn

becomes Pp. To preserve normalization we require ∑N
k=1 Pjk = 1 and call these matrices are stochastic.

For any N × N stochastic P, we can define a corresponding discrete-time quantum walk, a unitary
operation on CN ⊗CN . To this end we introduce:

|ψj⟩ := |j⟩ ⊗
N

∑
k=1

√
Pkj|k⟩ =

N

∑
k=1

√
Pkj|j, k⟩ (17.6)

Each state is normalized due to P being stochastic. Let:

Π :=
N

∑
j=1
|ψj⟩⟨ψj| (17.7)

denote the projection onto the span of the |ψj⟩s. Let:

S :=
N

∑
j,k=1
|j, k⟩⟨k, j| (17.8)

be the operator that swaps the two registers. Then, one step is U := S(2Π − 1). Notice that if Pjk =
Ajk/deg(k) then this is the coined quantum walk using the Grover diffusion operator as the coin flip. Two
steps gives:

[S(2Π− 1)]2 = (2SΠS− 1)(2Π− 1) (17.9)

which can be inrepreted as the reflection about span
{
|ψj⟩

}
followed by reflection about span

{
S|ψj⟩

}
(the

states where we condition on the second register to do a coin operation on the first). To understand the
behavior of the walk, we will now compute the spectrum of U; but note that it is also possible to compute
the spectrum of a product of reflections more generally.

18 Quantum Walk Continued

Missed this lecture - notes based on provided references. To understand the behavior of a discrete-time
quantum walk, it will be helpful to compute its spectral decomposition. Let us show the following:

47

Theorem: Spectrum of Quantum Walk

Fix an N × N stochastic matrix P and let
{
|λ⟩
}

denote a complete set of orthonormal eigenvectors

of the N × N matrix D with entries Djk =
√

PjkPkj with eigenvalues {λ}. Then, the eigenvalues

of the discrete-time quantum walk U = S(2Π− 1) corresponding to P are ±1 and λ± i
√

1− λ2 =
exp(±i arccos λ).

Proof. Define an isometry:

T :=
N

∑
j=1
|ψj⟩⟨j| =

N

∑
j,k=1

√
Pkj|j, k⟩⟨j| (18.1)

which maps states in CN to states in CN ⊗CN , and let |λ̃⟩ := T|λ⟩. Notice then that:

TT† =
N

∑
j,k=1
|ψj⟩⟨j|k⟩⟨ψk| =

N

∑
j=1
|ψj⟩⟨ψj| = Π (18.2)

whereas:

T†T =
N

∑
j,k=1
|j⟩⟨ψj|ψk⟩⟨k| =

N

∑
j,k,l,m=1

√
Pl jPmk|j⟩⟨j, l|k, m⟩⟨k| =

N

∑
j,l

Pl,j|j⟩⟨j| = I (18.3)

and:

T†ST =
N

∑
j,k=1
|j⟩⟨ψj|S|ψk⟩⟨k| =

N

∑
j,k,l,m=1

√
PlkPmk|j⟩⟨j, l|S|k, m⟩⟨k| =

N

∑
j,k=1

√
PjkPkj|j⟩⟨k| = D. (18.4)

Applying the walk operator U to |λ̃⟩ gives:

U|λ̃⟩ = S(2Π− 1)|λ̃⟩ = S(2TT† − 1)T|λ⟩ = 2ST|λ⟩ − ST|λ⟩ = S|λ̃⟩ (18.5)

We see tht the subspace span
{
|λ̃⟩, S|λ̃⟩

}
is invariant under U, so we can find eigenvectors of U within

this subspace. Now, let |µ⟩ := |λ̃⟩ − µS|λ̃⟩, and let us choose µ ∈ C so that |µ⟩ is an eigenvector of U. We
then have:

U|µ⟩ = S|λ̃⟩ − µ(2λS|λ̃⟩ − |λ̃⟩) = µ|λ̃⟩+ (1− 2λµ)S|λ̃⟩ (18.6)

Thus µ will be an eigenvalue of U corresponding to |µ⟩ provided that µ2 − 2λµ + 1 = 0, so:

µ = λ± i
√

1− λ2. (18.7)

Finally, note that for any vector in the orthogonal complement of span
{
|λ̃⟩, S|λ̃⟩

}
, U simply acts as −S

(since Π = TT† = ∑λ T|λ⟩⟨λ|T† = ∑λ|λ⟩⟨λ| projects onto span
{
|λ̃⟩
}

). In this subspace, the eigenvalues
are ±1.

19 Quantum Walk Conclusion, Quantum Phase Estimation

Missed this lecture - notes based on provided references.

48

Hitting Time for Random Walk

We can use random walks to formulate a generic search algorithm, and quantizing this algorithm gives
a generic square root speedup. Consider a graph G = (V, E) with some subset M ⊂ V of the vertices
denoted as marked. We will compare classical and quantum walk algorithms for deciding whether any
vertex in G is marked.

Classically, a straightforward aproach to this problem is to take a random walk defined by some
stochastic matrix P, stopping if we encounter a marked vertex. In other words, we modify the original
walk P to give a walk P′ defined as:

P′jk =

1 k ∈ M and j = k
0 k ∈ M and j ̸= k
Pjk k ̸= M

. (19.1)

Let us assume from now on that the original walk P is symmetric, thought he modified walk P′ clearly
is not provided M is non-empty. If we order the vertices so that the marked ones come last, the matrix P′

has the block form:

P′ =

(
PM 0
Q I

)
(19.2)

where PM is obtained by deleting the rows and columns of P corresponding to vertices in M.
Suppose we take t steps of the walk. A simple calculation shows:

(P′)t =

(
Pt

M 0
Q(I + PM + · · ·+ Pt−1

M) I

)
=

(
Pt

M 0

Q Pt
M−I

PM−I I

)
. (19.3)

Now if we start from the uniform distribution over unmarked items (if we start from a marked item we
are done, so we might as well condition on this not happening), then the probability of not reaching a
marked item after t steps is:

1
N − |M| ∑

j,k/∈M
[Pt

M]jk ≤
∥∥∥Pt

M

∥∥∥ =∥PM∥t (19.4)

where the inequality follows because the left hand side is the expectation of Pt
M in the normalized state

|V \M⟩ = 1√
N−|M| ∑j/∈M|j⟩. Now if∥PM∥ = 1− ∆, then the probability of reaching a marked item after t

steps is at least 1−∥PM∥t = 1− (1− ∆)t, which is Ω(1) provided t = O(1/∆) = O(1
1−∥PM∥

).
It turns out we can bound ∥PM∥ away from 1 knowing only the fraction of marked vertices and the

spectrum of the original walk. Thus we can upper bound the hitting time, the time required to reach some
marked vertex with constant probability.

Lemma: Bound on stochastic matrix norm

If the second largest eigenvalue of P (in absolute value) is at most 1 − δ and |M| ≥ ϵN, then
∥PM∥ ≤ 1− δϵ.

Proof. Let |v⟩ ∈ RN−|M| be the principal eigenvector of PM, and let |w⟩ ∈ RN be the vector obtained by
padding |v⟩ with 0s for the marked vertices.

We will decompose |w⟩ in the eigenbasis of P. Since P is symmetric, it is actually doubly stochastic,
and the uniform vector |V⟩ = 1√

N ∑j|j⟩ corresponds to the eigenvalue 1. All other eigenvectors |λ⟩ have

49

eigenvalues 1− δ by assumption. Now:

∥PM∥ = ⟨v|PM|v⟩ = ⟨w|P|w⟩ = |⟨V|w⟩|2 + ∑
λ ̸=1

λ|⟨λ|w⟩|2

≤ |⟨V|w⟩|2 + (1− δ) ∑
λ ̸=1
|⟨λ|w⟩|2 = 1− δ ∑

λ ̸=1
|⟨λ|w⟩|2 = 1− δ(1− |⟨V|w⟩|2)

So applying Cauchy-Shwarz:

|⟨V|w⟩|2 = |⟨V|ΠV\M|w⟩|2 ≤
∥∥∥ΠV\M|V⟩

∥∥∥2∥∥|w⟩∥∥2
=

N − |M|
N

≤ 1− ϵ (19.5)

where ΠV\M = ∑j/∈M|j⟩⟨j|. Thus,∥PM∥ ≤ 1− δϵ as claimed.
Thus, we see the classical hitting time is O(1/δϵ).
Now we turn to the quantum case. Our strategy will be to perform phase estimation with sufficiently

high precision on the operator U, the quantum walk corresponding to P′, with the state:

|ψ⟩ :=
1√

N − |M| ∑
j/∈M
|ψj⟩. (19.6)

This state can be easily prepared by first starting from the state:

T|V⟩ = 1√
N

∑
j
|ψj⟩ (19.7)

nd measuring whether the first register corresponds to a marked vertex. If it does, we’re done, and if does
not, we’ve prepared |ψ⟩.

The matrix D for the walk P′ is: (
PM 0
0 I

)
(19.8)

so according to the spectral theorem, the eigenvalues of the resulting walk operator U are ±1 and
exp(±i arccos λ), where λ runs over eigenvalues of PM. If the marked set M is empty, then P′ = P,
and |ψ⟩ is an eigenvector of U with eigenvalue 1, so phase estimation with U is guaranteed to return 0.
But if M is non-empty, then |ψ⟩ lives entirely within the subspace with eigenvlues exp(±i arccos λ). Thus
if we perform phase estimation on U with precision O(minλ arccos λ), we will see a phase different from
0. Since arccos λ ≥

√
2(1− λ), we see that precision O(

√
1−∥PM∥) suffices. So the quantum algorithm

can decide whether there is a marked vertex in time O(1/
√

1−∥PM∥) = O(1/δϵ).

Quantum Phase Estimation

In the last portion of the proof of the quantum walk hitting time, we used the quantum phase estimation
algorithm - let’s discuss that now! It is an algorithm that unifies various aspects of quantum algorithms
we have seen thus far. It is based on the QFT over ZN , where N = 2n.

Imagien we are given unitary U, a black-box that allows us to apply a controlled U j, and a eigenstate
|ψ⟩ with eigenvalue exp(2πiϕ) for 0 ≤ ϕ < 1. We wish to determine ϕ to n bits of precision.

To this end, prepare an n-qubit register to |ψ⟩ and apply H to each qubit in the first register to get:

1√
N

N−1

∑
x=0
|x⟩|ψ⟩ (19.9)

We then apply the unitary operator:

U′ =
N−1

∑
x=0
|x⟩⟨x| ⊗Ux (19.10)

50

This operator can be thought of as performing the map where if the first register contains x, we can apply
U x times to the second. By expressing x in binary we can implement U2j

gates for different integers j,
controlled on different qubits in the first register. After applying U′, we are left with the state:

1√
N

N−1

∑
x=0

e2πiϕx|x⟩|ψ⟩ (19.11)

note that teh second register is left unchanged. Apply Q−1 to first register and measure, getting outcome
y. Output the binary fraction:

0.y1y2 . . . yn =
y1

2
+

y2

4
+ · · ·+ yn

2n (19.12)

as our guess for ϕ.
Why does this work? When we perform the last measurement, we measure x with probability:

1
N2 |

N−1

∑
y=0

e2πiϕy−2πixy/N |2 =
1

N2 |
N−1

∑
y=0

e2πi(ϕ−x/N)|2 (19.13)

First imagine that the binary expansion of ϕ is at most n bits long, or in other words ϕ = z/N for some
0 ≤ z ≤ N − 1. In this case we have:

1
N2 |

N−1

∑
y=0

e2πiy(ϕ−x/N)|2 =
1

N2 |
N−1

∑
y=0

e2πiy(z−x)/N |2 = δxz (19.14)

by the unitarity of the QFT, so the measurement outcome is guaranteed to be z, implying that the algorithm
outputs ϕ with certainty. If the binary expansion of ϕ is longer than n bits, we now show that we still get
the best possible answer with probability Ω(1), and indeed are very likely to get an answer close to ϕ. The
proof turns out to be very similar to that of the correctness of the periodicity determination algorithm in
the approximate case.

Theorem: Correctness of QPE

The probability that the above algorithm outputs the real niumber with n binary digits which
is closest to ϕ is at least 4/π2. Further, the probability that the algorithm outputs θ such that
|θ − ϕ| ≥ ϵ is at most O(1/(Nϵ)).

Proof. If the binary expansion of ϕ has n binary digits are fewer, we are done by the argument above (it
gives the exact answer). So assuming it does not, let ϕ̃ be the closest approximation to ϕ that has n binary
digits, and write ϕ̃ = a/N for some integer 0 ≤ a ≤ N − 1. For any z, define δ(z) := ϕ− z/N and note
that 0 < |δ(a)| ≤ 1/(2N). For any ϕ, the probability of getting z from the final measurement is:

Pr[z] =
1

N2 |
N−1

∑
y=0

e2πiy(ϕ−x/N)|2 =
1

N2 |
N−1

∑
y=0

e2πiyδ(z)|2 =
1

N2 |
1− e2πiNδ(z)

1− e2πiδ(z)
|2 =

sin2(πNδ(z))
N2 sin2(πδ(z))

(19.15)

where we evaluate the sum using the geometric series formula. This quantity should be familiar from the
proof of correctness of the periodicity determination algorithm.

We first lower bound this expression for z = a to prove the first part of the lemma. As |δ(a)| ≤ 1/(2N),
we have Nπδ(a) ≤ π/2. Then:

Pr[a] =
sin2(πNδ(a))

N2 sin2(πδ(a))
≥ (2Nδ(a))2

N2π(δ(a))2 =
4

π2 (19.16)

51

using trigonometric inequalities for sine.
In order to prove the secone part, we now find an upper bound on Pr[z]. First, it is clear that

sin2(πNδ(z)) ≤ 1 always. For the denominator, by the same arguemtn above we have sin(πδ(z)) ≥ 2δ(z)
and hence for all z:

Pr[z] ≤ 1
N2

(
1

2δ(z)

)2
=

1
4N2δ(z)2 (19.17)

we now sum this expression over all z such that |δ(z)| ≥ ϵ. The sum is symmetric about δ(z) = 0, and as
z is an integer, the terms in this sum corresponding to δ(z) > 0 are δ0, δ0 + 1/N, . . . for some δ0 ≥ ϵ. The
sum will be maximized when δ0 = ϵ, when we obtain:

Pr[z with |δ(z)| ≥ ϵ] ≤ 1
4N2

∞

∑
k=0

1
(ϵ + k/N)2 ≤

1
4

∫ ∞

0

1
(Nϵ + k)2 dk =

1
4

∫ ∞

Nϵ

1
k2 dk = O(

1
Nϵ

) (19.18)

We observe the following properties regarding the behaviour of this algorithm:

1. What happens if we do not know an eigenvector of U? If we input an arbitrary state |φ⟩ to to the
QPE algorithm, we can write it as ∑j αj|ψj⟩ over the eigenvectors

{
|ψj⟩

}
. Therefore, the algorithm

will output an estimate of each corresponding eigenvalue ϕj with probability |αj|2. This may or may
not allow us to infer anything useful, depending on what we know about U in advance.

2. In order to approximate ϕ to n bits of precision, we needed to apply U2m for all 0 ≤ m ≤ n− 1. If
we are given U as a black box, this may be prohibitively expensive as we need to use the black box
exponentially times in n. However, if we have an explicit circuit for U, then we may be able to find
a more efficient way of computing U2m, e.g. as is the case for modular exponentiation.

Applications of QPE to Phase Estimation

An elegant application of QPE is to generalize unstructured (Grover) search. Imagine we have an oracle
f : {0, 1}n → {0, 1} which takes the value 1 on k inputs, for some unknown k, and again set N = 2n. We
would like to estimate k by querying f .

Classically, a natural way to do this is via sampling. Imagine that we query f on q random inputs and
get that f is 1 on l of those inputs. Then as our estimate of k we output k̃ = lN/q. One can show using
properties of the binomial distribution that this achieves:

|k̃− k| = O(

√
k(N − k)

q
) (19.19)

with high probability. We can achieve improved accuracy by using the QPE algorithm. Consider the
“Grover iteration” G = −H⊗nU0H⊗nU f . As G is a rotation through angle 2θ in a 2D plane, where
sin θ =

√
k/N, its eigenvalues are e2iθ and e−2iθ . In order to estimate k, we can apply the QPE to G to

estimate either one of these eigenvalues. As it doesn’t matter which one we estimate, we can input any
state within this 2D plane to the QPE as a claimed eigenvector of G. In particular, 1√

N ∑x∈{0,1}n |x⟩ will
work.

By the previous theorem, if we apply QPE to G, we can find the closest m-difit number to θ, for any m,
with constant probability of sucess using O(2m) queries. For small θ, θ ≈

√
k/N, so we learn

√
k/N up

to additive error O(1/2m) with O(2m) queries. Setting 2m =
√

N/δ for some real δ > 0, we have learned√
k up to additive error O(δ) using O(

√
N/δ) queries; or in other words have learnt k up to additive error

O(δ
√

k) using O(
√

N/δ) queries. In order to achieve a similar level of accuracy classically, we would need
Ω(N/δ2) queries for small k. Note that QPE can also be applied to the order finding problem.

52

20 Quantum Walk for OR and ED

Missed this lecture - notes based on provided references.

Unstructured Search

Now we begin to discuss applications of quantum walks to search algorithms. We start with the most
basic of all search problems, the unstructured search problem (which is solved optimally by Grover’s
algorithm). We discuss how this problem fits into the framework of quantum walk search, and also
describe amplitude amplification and quantum counting in this setting. We also discuss quantum walk
algorithms for the search problem under locality constraints.

In the unstructured search problem, we are given a black box f : S → {0, 1} where S is a finite set
with |S| = N. The inputs x ∈ M where M :=

{
x ∈ S : f (x) = 1

}
are called marked items. In the decision

version of the problem, our goal was to determine whether M was empty or not. Now we are interested
in finding a marked item when it exists.

The decision problem requires Ω(N) classical queries, and N queries suffice, so unstructured search is
classically Θ(N).

We are already familiar with Grover which does this in O(
√

N). We start with |S⟩ = ∑x∈S|x⟩/
√

N and
alternatively apply the reflection about the set of marked items ∑x∈M 2|x⟩⟨x| − 1, and the reflection about
S, 2|S⟩⟨S| − 1. The former is done with two queries to f and the latter none. It is straightforward to show
that there is some t = O(

√
N/|M|) for which t steps of this gives a state with constant overlap on |M⟩ so

a measurement reveals a marked item with constant probability.
It can be shown that unstructured search requires Ω(

√
N/|M|) queries. We discuss this when we

discuss adversary lower bounds.
Consider the discrete-time random walk on the complete graph, which has stochastic matrix:

P =
N

N − 1
|S⟩⟨S| − 1

N − 1
I (20.1)

It has eigenvalues 1 (non-degenerate) and −1/(N − 1) (degeneracy N − 1). Since the graph is highly
connected, its spectral gap is very large, with δ = 1 + 1

N−1 = N
N−1 .

This random walk gives rise to a very simple classical algorithm for unstructured search. In this
algorithm, we start from a uniformly random item and repeatedly choose a new item uniformly at random
from the other N − 1 possibilities, stopping when we reach a marked item. The fraction of marked items
is ϵ = |M|/N , so the hitting time of this walk is

O(
1
δϵ

) =
(N − 1)N

N|M| = O(N/|M|) (20.2)

(this is only an upper bound on the hitting time, but in this case we know it is optimal). Of course, if we
have no a priori lower bound on |M| if it is non-empty, we can only say that ϵ ≥ 1/N so the running time
is O(N).

The corresponding quanrum walk has hitting time:

O(
1√
δϵ

) = O(
√

N/|M|) (20.3)

corresponding to Grover’s running time. To see that we get a total algorithm which is O(
√

N/|M|), we
need to show the quantum walk takes O(1) quantum queries.

We can modify the classical walk matrix to where the first item is marked, and then |ψ1⟩ = |1, 1⟩ and

|ψj⟩ = |j, S \
{

j
}
⟩ =

√
N

N−1 |j, S⟩ − 1√
N−1
|j, j⟩ for j = 2, . . . , N. With a general M, the projector onto the

span of these states is:
Π = ∑

j∈M
|j, j⟩⟨j, j|+ ∑

j/∈M
|j, S \

{
j
}
⟩⟨j, S \

{
j
}
| (20.4)

53

so 2Π− 1 acts as Grover diffusion over the neighbors when when the vertex is unmarked, and as a phase
flip when the vertex is marked. (Note that since we start from the state |ψ⟩ = ∑j/∈M|ψj⟩, we stay in the
subspace of |j, k⟩ with (j, k) edges, and have zero support for |j, j⟩ for j ∈ V so 2Π− 1 acts as −1 when
the first register holds a marked vertex. ach such step can be implemented using two queries of the black
box, one to compute whether we are at a marked vertex and one to uncompute that information; the
subsequent swap operation requires no queries. Thus the query complexity is indeed O(

√
N/|M|).

This is not exactly the same as Grover - it works in CN ⊗ CN instead of CN . But it is very closely
related. In Grover, we can view 2|S⟩⟨s| − 1 as a discrete time quantum walk.

The algorithm we have described so far only solves the decision version of unstructured search. To
find marked item, we could use bisection, but this would introduce a logarithmic overhead. In fact, it can
be shown that the final state of the quantum walk algorithm actually encodes a marked item when one
exists.

Quantum Walk Algorithm

Ambainis’s algorithm is to quantize a walk on the Johnson graph J(n, m) where m is chosen appropri-
ately. The graph has (n

m) vertices corresponding to subsets of {1, 2, . . . , n} of size m, and two vertices are
connected by an edge if the subsets differ in exactly one element.

To simplify, we use the Hamming graph H(n, m) - where the vertices are m-tuples of values from
{1, 2, . . . , n} (so there are nm vertices). Two vertices are connected vy an edge if they differ in exactly
one coordinate. There are two main differences betwen the two graphs; the Hamming graph allows
for repeated elements, and the order matters. This doesn’t impact the performance of the algorithm
significantly.

At each vertex, we store the values of the function at the corresponding inputs, i.e. (x1, x2, . . . , xm) ∈
{1, 2, . . . , n}m is represented by the state

|x1, x2, . . . , xm, f (x1), f (x2), . . . , f (xm)⟩ (20.5)

To prepare such states, we must query the black-box function. In particular, to prepare an initial superpo-
sition over vertices of this graph takes m queries. However, we can move from one vertex to an adjacent
one using two queries; to replace x by y in a particular coordinate, we use one query to erase f (x) and
another to compute f (y).

In the search problem, the marked vertices are those containing some x ̸= y with f (x) = f (y). Notice
that, given the stores function values, we can check whether we are at a marked vertex with no additional
queries. The total number of marked vertices (in this case, where the elements are not all distinct) is at
least (m

2)(n− 2)m−2 , so the fraction of marked vertices is:

ϵ ≥ m(m− 1)(n− 2)m−2

2nm (20.6)

To analyze, we need the eigenvalues of the relevant Markov chain. The adjacency matrix of H(n, m) is
A = ∑m

i=1(J− I)(i), where J denotes the n× n matrix of all 1s, and the superscript indicates that this matrix
acts on the ith coordinate. The eigenvalues of J are n and 0, so the eigenvalues of J − I are n− 1 and −1.
Hence the largest eigenvalue of A is m(n− 1) (the degree of any vertex of H(n, m)) and the second largest
is (m− 1)(n− 1)− 1 = m(n− 1)− n. Normalizing by the degree, we find the spectral gap to be:

δ =
n

m(n− 1)
(20.7)

Finally, how many queries does the algorithm use? Taking into account the initial m queries used to
prepare the starting state and 2 per step of the walk, we have the total number:

m + 2O(
1√
δϵ

) = m + O(
n√
m
) (20.8)

54

We can again set the terms to be equal to optimize the performance - since m3/2 = O(n), we should
take m = Θ(n2/3) and so the total number of queries is O(n2/3) which matches the lower bound (and is
therefore optimal).

Note that for the classical random walk search algorithm that we have quantized, the corresponding
query complexity is m + O(n2/m), optimized by m = n. This gives no improvement over querying every
input (as we knew).

Quantum Walk with Auxiliary Data

Algorithms based on similar ideas turn out to be useful for a wide variety of problems, including deciding
whether a graph contains a triangle (or various other related graph properties), checking matrix multiplica-
tion, and testing whether a group is abelian. In general, as in the element distinctness case, we may need
to store some data at each vertex, and we need to take into account the operations on this data when
analyzing the walk.

Suppose we have setup cost S, cost U to update the state after a step of the walk, and C to check
whether a vertex is marked. In the ED problem, we had S = m to query m positions, U = 2 to remove one
item and add another, and C = 0 since the function values for the subset are stored. In general, there is
an algorithm to solve such a problem with total cost:

S +
1√
δϵ

(U + C). (20.9)

It turns out that for some problems, when C ≫ U, it is advantageous to take many steps on the unmarked
graph before performing a phase flip on the marked sites. Thsi is how Ambainis’ algorithm originally
worked, though for ED its not necessary. Using this idea, one can give a general quantum walk search
algorithm with total cost:

S +
1√
ϵ

(
1√
δ

U + C

)
(20.10)

In fact, it is also possible to modify the general algorithm so it finds a marked item when one exists.

21 Adversary Method

Missed this lecture - notes based on provided references.
The quantum adversary method provides a way to prove quantum query lower bounds. In fact, we

will find that the generalized version is an upper bound on quantum query complexity, up to constant
factors.

Quantum adversaries

Motivation for the quantum adversary method comes from the following construction. Suppose the oracle
is operated by an adversarial party who holds a quantum state determining the oracle string, which is in
some superposition ∑x∈S|ax⟩|x⟩ over the possible oracles. To implement eac query, the adversary performs
the “super-oracle”:

O := ∑
x∈S
|x⟩⟨x| ⊗Ox. (21.1)

An algorithm does not have direct access to the oracle string, and hence can only perform unitary opera-
tions that act as the identity on the adversary’s superposition. After t steps, an algorithm maps the overall
state to:

|ψt⟩ := (I ⊗Ut)O . . . (I ⊗U2)O(I ⊗U1)O

(
∑
x∈S

ax|x⟩ ⊗ |ψ⟩
)

= ∑
x∈S

ax|x⟩ ⊗ |ψt
x⟩. (21.2)

55

The main idea of the approach is that for the algorithm to learn x, this state must become very entangled.
To measure the entanglement of the pure state |ψt⟩, we can consider the reduced density matrix of the
oracle,

ρt := ∑
x,y∈S

a∗xay⟨ψt
x|ψt

y⟩|x⟩⟨y| (21.3)

Initially, the state ρ0 is pure. Our goal is to quantify how mixed it must become (i.e. how entangled the
overall state must be) before we can compute f with error at most ϵ. To do this we could consider, for
example, the entropy of ρt. However, it turns out that other measures are easier to deal with.

In particular, we have the following fact about the distinguishability of quantum states

Fact

Given one of pure states |ψ⟩, |ϕ⟩, we can make a measurement that determines which state we have
with error probability at most ϵ ∈ [0, 1/2] if and only if |⟨ψ|ϕ⟩| ≤ 2

√
ϵ(1− ϵ).

Thus, it is convenient to consider measures that are linear in the inner products ⟨ψt
x|ψt

y⟩.

The adversary method

To obtain an adversary lower bound, we choose a matrix Γ ∈ R|S|×|S| with rows and columns indexed by
the possible black-box inputs. The entry Γx,y is meant to characterize how hard it is to distinguish between
x and y. We say that Γ is an adversary matrix if:

1. Γxy = Γyx

2. If f (x) = f (y) then Γxy = 0.

The second condition reflects that we do not need to distinguish between x and y if f (x) = f (y).
The original adversary method made the additional assumption that Γxy ≥ 0 but it turns out this

condition is not actually unecessary. Sometimes we refer to the negative or generalized adversary method to
distinguish it from the original, positive-weighted method. While it may not be intuitively obvious what it
would mean to give a negative weight to the entry characterizing distinguishability of two inputs, it turns
out that this flexibility can lead to significantly improved lower bounds for some functions..

Given an adversary matrix Γ, we can define a weight function:

W j := ∑
x,y∈S

Γxya∗xay⟨ψj
x|ψ

j
y⟩. (21.4)

Note that this is a simple function of the entries of ρj. The idea of the lower bound is to show that W j

starts out large, must become small to compute f , and cannot change by much if we make a query.
the initial value of the weight function is:

W0 = ∑
x,y∈S

Γxya∗xay⟨ψ0
x|ψ0

y⟩ = ∑
x,y∈S

a∗xΓxyay (21.5)

since |ψ0
x⟩ cannot depend on x. To make this as large as possible, we take a to be a principal eignevector

of Γ, an eigenvector with eigenvalue ±∥Γ∥. Then |W0| =∥Γ∥.
The final value of the weight function is easier to bound if we assume a nonnegative adversary matrix.

The final value is constrained by the fact that we must distinguish x from y with error probability at most
ϵ whenever f (x) ̸= f (y). For this to hold after t queries, we need |⟨ψt

x|ψt
y⟩| ≤ 2

√
ϵ(1− ϵ) for all pairs

x, y ∈ S with f (x) ̸= f (y) (by the above fact). Thus, if Γ has nonnegative entries, we have:

|Wt| ≤∑ x, y ∈ SΓxya∗xay2
√

ϵ(1− ϵ) = 2
√

ϵ(1− ϵ)∥Γ∥ . (21.6)

56

Here we can include the terms where f (x) = f (y) in the sum since Γxy = 0 for such pairs. We also used
the fact that the principal eigenvector of a nonnegative matrix can be taken to have nonnegative entries
(by the Perron-Frobenius theorem).

A similar bound holds if Γ has negative entries, but we need a different argument. In general, one can
only show that |Wt| ≤ (2

√
ϵ(1− ϵ) + 2ϵ)∥Γ∥. But if we assume f : S → {0, 1} has Boolean output, then

we can prove the same bound as in the non-negative cae, and the proof is simpler than for a general output
space. We can use the following simple result, stated in terms of the Frobenius norm∥X∥2

F := ∑a,b|Xab|2:

Proposition

For any X ∈ Cm×n, Y ∈ Cn×n, Z ∈ Cn×m, we have |Tr(XYZ)| ≤∥X∥F∥Y∥∥ZF∥.

Proof. We have:
Tr(XYZ) = ∑

a,b,c
XabYbcZca = ∑

a
(xa)†Yza (21.7)

where (xa)b = X∗ab and (za)c = Zca. Thus:

|Tr(XYZ)| ≤∑
a

∥∥xa∥∥∥∥Yza∥∥
≤∥Y∥∑

a

∥∥xa∥∥∥∥za∥∥
≤∥Y∥

√
∑
a
∥xa∥2 ∑

a′

∥∥∥za′
∥∥∥2

=∥Y∥∥X∥F∥Z∥F

as claimed, where we use Cauchy-Shwarz in the first and third steps.

The upper bound |Wt| for the negative adversary with Boolean output, write Wt = Tr(ΓV) where
Vxy := a∗xay⟨ψt

x|ψt
y⟩δ[f (x) ̸= f (y)]. Now define:

C := ∑
x∈S

axΠ f (x)|ψt
x⟩⟨x| (21.8)

C := ∑
x∈S

axΠ1− f (x)|ψt
x⟩⟨x| (21.9)

with Π0, Π1 projectors onto the f (x) = 0, 1 respectively. Then:

(C†C)xy = a∗xay⟨ψt
x|Π f (x)Π1− f (y)|ψt

y⟩, (21.10)

so:

(C†C + C†C)xy = a∗xay⟨ψt
x|(Π f (x)Π1− f (y) + Π1− f (x)Π f (y))|ψt

y⟩ = a∗xay⟨ψt
x|ψt

y⟩δ[f (x) ̸= f (y)], (21.11)

i.e. V = C†C + C†C. Thus we have:

Wt = Tr(Γ(C†C + C†C)) = Tr(CΓC†) + Tr(CΓC†
). (21.12)

By the proposition, |Wt| ≤ 2∥Γ∥∥C∥F

∥∥∥C
∥∥∥

F
. Finally, we upper bound∥C∥F ,

∥∥∥C
∥∥∥

F
:

∥C∥2
F +
∥∥∥C
∥∥∥2

F
= ∑

x,y∈S
|ax|2(|⟨y|Π f (x)|ψt

x⟩|2 + |⟨y|Π1− f (x)|ψt
x⟩|2) = 1 (21.13)

57

∥∥∥C
∥∥∥2

F
= ∑

x∈S
|ax|2

∥∥∥Π1− f (x)|ψt
x⟩
∥∥∥2
≤ ϵ (21.14)

Therefore∥C∥F

∥∥∥C
∥∥∥

F
≤ maxx∈[0,ϵ]

√
x(1− x) =

√
ϵ(1− ϵ) assuming ϵ ∈ [0, 1/2] and thus |Wt| ≤ 2

√
ϵ(1− ϵ)∥Γ∥

as claimed.
It remains to understand how much the weight function can decrease at each step of the algorithm.

We have:
W j+1 −W j = ∑

x,y∈S
Γxya∗xay(⟨ψj+1

x |ψ
j+1
y ⟩ − ⟨ψ

j
x|ψ

j
y⟩) (21.15)

Consider how the state changes when we make a query. We have |ψj+1
x ⟩ = Uj+1Ox|ψj

x⟩. Thus the elements

of the Gram matrix of the states
{
|ψj+1

x ⟩ : x ∈ S
}

are:

⟨ψj+1
x |ψ

j+1
y ⟩ = ⟨ψ

j
x|O†

x(Uj+1)
†Uj+1Oy|ψj

y⟩ = ⟨ψ
j
x|OxOy|ψj

y⟩ (21.16)

since Uj+1 is unitary and Ox is Hermitian. Therefore:

W j+1 −W j = ∑
x,y∈S

Γxya∗xaY⟨ψ
j
x|(OxOy − I)|ψj

y⟩. (21.17)

Observe that OxOy|i, b⟩ = (−1)b(xi⊕yi)|i, b⟩. Let P0 = I ⊗ |0⟩⟨0| denote the projection onto the b = 0 states,
and let Pi denote the projection |i, 1⟩⟨i, 1|. (As with Ox, the projections Pi implicitly act as the identity on
any ancilla registers, so ∑n

i=0 Pi = I.) Then OxOy = P0 + ∑n
i=1(−1)xi⊕yi Pi, so OxOy − I = −2 ∑i:xi ̸=yi

Pi.
Thus we have:

W j+1 −W j = −2 ∑
x,y∈S

∑
i:xi ̸=yi

Γxya∗xay⟨ψj
x|Pi|ψ

j
y⟩ (21.18)

Now for each i ∈ {1, . . . , n}, let Γi be a matrix with:

(Γi)xy :=

{
Γxy if xi ̸= yi

0 if xi = yi
(21.19)

Then we have (doing more algebra and the proposition):

|W j+1 −W j| ≤ 2 max
i∈{1,...,n}

∥Γi∥ . (21.20)

Since |Ω0| =∥Γ∥, we have:
|Wt| ≥∥Γ∥ − 2t max

i∈{1,...,n}
∥Γi∥ (21.21)

Thus, we have |Wt| ≤ 2
√

ϵ(1− ϵ)|Γ|, we require:

t ≥ 1− 2
√

ϵ(1− e)
2

Adv(f) (21.22)

where:

Adv(f) := max
Γ

∥Γ∥
maxi∈{1,...,n}∥Γi∥

(21.23)

with the maximum taken over all adversary matrices Γ for the function f . Sometimes the notation Adv(f)
is reserved for the maximization over nonnegative adversary matrices, with Adv±(f) for the generalized
method.

58

Unstructured search

As a simple application of this method, we prove the optimality of Grover’s algorithm. It suffices to
consider the problem of distinguishing between the case of no marked items and the case of a unique
marked item (in an unknown location). Thus, consider the partial function where S consists of strings of
Hamming weight 0 or 1, and f is the logical OR of the input bits.

For this problem, adversary matrices take the form:

Γ =

0 γ1 · · · γn

γ1 0 · · · 0
...

...
. . .

...
γn 0 · · · 0

 (21.24)

for some nonnegative γ1, . . . , γn. By symmetry we set them all equal - this can be formalized, but for now
let’s just consider it as an ansatz.

Setting γ1 = . . . = γn = 1 (since the overall scale is irrelevant for the bound), we have:

Γ2 =

n 0 · · · 0
0 1 · · · 1
...

...
. . .

...
0 1 · · · 1

 (21.25)

which has norm
∥∥∥Γ2

∥∥∥ = n, and hence∥Γ∥ =
√

n. We also have:

Γ1 =

0 1 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0

...
...

...
. . .

...
0 0 0 · · · 0

 (21.26)

and similarly for the other Γi, so ∥Γi∥ = 1. Thus, we find that Adv(OR) ≥
√

n, and so Qϵ(OR) ≥
1−2
√

ϵ(1−ϵ)
2

√
n. This shows that Grover’s algorithm is optimal up to a constant factor (recall that Grover

finds a unique marked iterm with constant probability in π
4
√

n + o(1) queries).

22 Adversary methods continued, Divide and Conquer

There is some repetition here with the material in the last section, which was a missed lecture.

Adversary bound

Proposition

Let f : D ⊆ {0, 1}n → {0, 1}. Then Qϵ(f) ≥ 1−2
√

ϵ(1−ϵ)
2 Adv(f).

Proof. We have:
W j := ∑

x,y∈D
a∗xayΓxy⟨ψj

x|ψ
j
y⟩. (22.1)

59

Γ is an adversary matrix, i.e. it is symmetric, real, and f (x) = f (y) =⇒ Γxy = 0.
By choosing a ∈ C|D| such that∥Γ∥ = ⟨a|Γ|a⟩, we have |W0| =∥Γ∥ and |WT | ≤ 2

√
ϵ(1− ϵ)∥Γ∥ (shown

previously). Let us calculate the difference W j+1 −W j:

W j+1 −W j = ∑
xy

a∗xayΓxy

(
⟨ψj+1

x |ψ
j+1
y ⟩ − ⟨ψ

j
x|ψ

j
y⟩
)

(22.2)

note that |ψj+1
x ⟩ = Uj+1Ox|ψj

x⟩. Since the U cancels when we take the inner product, we note that:

⟨ψj+1
x |ψ

j+1
x ⟩ = ⟨ψ

j
x|OxOy|ψj

y⟩ (22.3)

and in fact this motivates the definition of the “step”.
We use the phase oracle definition of Ox, i.e. rather than Ox|i, b⟩ = |i, xi+1 ⊕ b⟩ we take Ox|i, b⟩ =

(−1)b·xi+1 |i, b⟩. Then:
OxOy = ∑

i,b
(−1)b(xi+1+yi+1)|i, b⟩⟨i, b| (22.4)

but since I = ∑i,b|i, b⟩⟨i, b|. So then, OxOy − I = −2 ∑i,xi ̸=yi
Pi with Pi = |i, 1⟩⟨i, 1|.

Now looking back at the difference of the Ws, we can write:

W j+1 −W j = ∑
x,y∈D

∑
i

a∗xay(Γi)xy⟨ψj
x|Pi|ψ

j
y⟩ =

n

∑
i=1

Tr(QΓiQ†) (22.5)

where Q = ∑ axPi|ψ
j
x⟩⟨x|. Then:

|W j+1 −W j| ≤
n

∑
i=1
∥Qi∥2

2∥Γi∥ (22.6)

Then:

∥Qi∥2
2 = Tr(Q†

i Qi) = Tr

∑
x

a∗x|x⟩⟨ψi
x|P†

i ∑
y

ayPi|ψi
y⟩⟨y|

 = ∑
x
|ax|2⟨ψj

x|Pi|ψ
j
x⟩ (22.7)

so then:

|W j+1 −W j| ≤ max
i
∥Γi∥

n

∑
i
∥Qi∥2

2 = max
i
∥Γi∥

n

∑
i

∑
x

∥∥∥Pi|ψ
j
x⟩
∥∥∥2

(22.8)

the norm square appearing in the above is less than 1.
Combining the three results |W0| =∥Γ∥, bound on |WT |, bound on |W j+1 −W j|, we obtain:

T ≥ 1− 2
√

ϵ(1− ϵ)

2
∥Γ∥

maxi∥Γ∥
=⇒ T ≥ 1− 2

√
ϵ(1− ϵ)

2
Adv(f). (22.9)

A simple example of divide-and-conquer

Proposition

∃c1, c2 > 0 such that for any f : Σn → {0, 1}, c1Adv(f) ≤ Q(f) ≤ c2Adv(f).

We won’t prove the upper bound part, but we’ll use it. The proof is similar. As a comment, you can
take the Adv quantity, then consider a semidefinite program (then dualize) to get a minimizing program,
then construct a quantum algorithm.

60

Why should we consider this adversary quantity when trying to study divide and conquer quantum
algorithms? We consider:

Fact

For f : Σa → {0, 1} and g : Σb → {0, 1}, if we consider F : Σa × Σb → {0, 1} iwth F(x, y) =

f (x) ∧ g(y) (or ∨) then Adv(F) =
√

Adv(f)2 + Adv(g)2.

Now if we consider ORn(x) = OR(ORn/2(xL), ORn/2(xR)) but then this implies Qn ≤
√

2Qn/2 if we
solve the recurrence so Qn = O(

√
n). But this bound of Qn ≤

√
2Qn/2 is NOT TRUE for the quantum

query complexity.
But if we consider the adversary quantity, Adv(ORn) ≤

√
Adv(ORn/2)2 + Adv(ORn/2)2 =

√
2Adv(ORn/2).

So what we hoped for for the quantum complexity holds exactly for the adversary object. Therefore
Adv(ORn) ≤

√
n.

As an example, suppose Σ = {0, 1, 2}. Then, f : Σn → {0, 1}. Then f (x) = 1 iff x contains a substring
of the form 20 ∗ 2 (∗ denoting any number of repeating zeros). So 20021 would be f = 1, and 20102 would
be f = 0.

So how would we find this using divide and conquer? There are three possibilites if we split the input
string; either the substring can appear in xL or xR or between the two. So, we consider:

fn(x) = fn/2(xL) ∨ fn/2(xR) ∨ g(x) (22.10)

with g accounting for the center part. So then:

Adv(fn)
2 ≤ 2Adv(fn/2)

2 + Adv(g)2 ≤ 2Adv(fn/2)
2 + O(Q(g)2) (22.11)

We do this by grover binary search, because we check to see if the bit string on the right is all zero O(
√

n),
then halve that which is O(

√
n/2), and so on. Therefore the O(Q(g)2) = O((

√
n)2) = O(n). Therefore,

the recurrency relation reads:
Adv(f (n))2 = 2Adv(fn/2)

2 + O(n) (22.12)

The O(n) does not enter the recurrence part, and we end up solving it to find:

Advn(fn) ≤ O(
√

n log n) (22.13)

note that a direct Grover search method before this result gave O(
√

n log n).
Another note - bonus HW 2 problem. Doable with just Grover, but it’s basically the same as this

problem. The hard instance of this problem are when all the edges and the top and bottom are entirely
present, and this technique gives a nice way to do it.

k-common subsequence

We take k a constant. Consider Σn → x = einstein and Σn → y = entwined. Here the e-n-t-i-n would
be a common 4-subsequence. The k-common subsequence problem is whether the two strings share a
k-common subsequence or not. We denote this as −kCS

The randomized complexity of this problem is Ω(n). If we assume we know what x is, then all it is is
a search problem on y. Q(1−CS) ≤ O(n2/3) by its commonality to element distinctness. If we generalize,
we find O(k− CS) ≤ O(n(k+1)/(k+2)) using quantum walk.

But in fact we can do better.
Proposition

For all constant k, Q(kCS) ≤ Õ(n2/3) (̃ denoting polylogarithmic factors).

61

We split up x, y into m parts. k-CS could be SIMPLE if the commonality occurs within the same part,
or COMPOSITE otherwise.

For COMPOSITE, we have O(∑k−1
j=1 aj(n) log(n)) where aj(n) is the Adv. quantity of j− CS.

For the SIMPLE case, A priori there are m2 possible paths. We need to do a search of m2 parts.
But this is not actually what we need - we can get away with O(m). 2m − 1 suffices. Do the following
precomputation. Compute the m2 lines between the blobs, where the line indicates whether the two blobs
have a common symbol. But importantly, this is not whether the blobs share a k-CS, but rather a common
symbol/1-CS. I can then afford to do m2 checks because we only do a 1-CS. This is just ED so is O(m2n2/3)
(really (n/m)2/3, but this wont matter). The worst case is lines going from all top ones to the first blob on
the bottom and all bottom ones to the first blob on the top

23 Hamiltonian Simulation

What is a useful task we can do with a quantum computer? Shor is a strict negative for humanity, and
even if it works we just move to quantum-safe encryption techniques.

One useful goal would be to simulate physical systems. An n-qubit system is specified by 2n complex
numbers/amplitudes, so any classical algorithm would generically have O(2n) space complexity. But on
an n-qubit quantum system, we would expect we only need an n-qubit universal quantum computer - and
this turns out to be indeed the case, with quantum systems able to be simulated in poly(n) time.

Hamiltonian H (hermitian) encodes the dynamics of the quantum system, with ⟨ψ|H|ψ⟩ denoting the
average energy. The time evolution is given by the SE:

d
dt
|ψ(t)⟩ = −iH|ψ(t)⟩ (23.1)

with solution |ψ(t)⟩ = exp(−iHt)|ψ(0)⟩. exp(−iHt) is the matrix exponential defined by:

exp(A) =
∞

∑
j=0

Aj

j!
(23.2)

so, given H, t we want to simulate U(t) = exp(−iHt) to a suitable degree of approximation. To this end
we review/introduce some useful definitions:

Definition: Operator norm

The operator norm of operator A is:
∥A∥ = max

|ψ⟩

∥∥A|ψ⟩
∥∥ (23.3)

with the max taken over normalized |ψ⟩. If A is diagonalizable, then ∥A∥ is the maximum eigen-
value of A.

Proposition: Operator norm inequalities

∥A + B∥ ≤∥A∥+∥B∥ (23.4)

∥AB∥ ≤∥A∥∥B∥ (23.5)

We will work with k-local Hamiltonians - for this fixed k, we expect poly(n) scaling (but not as we
increase it).

62

Definition: k-local Hamiltonians

A Hamiltonian H is k-local on n qubits if:

H =
m

∑
j=1

Hj, (23.6)

where Hj acts on at most k qubits, i.e Hj = H̃j ⊗ I where H̃j acts on some k qubits and I the others
as identity.

The number of m terms we need in the above definition is bounded by:

m ≤
(

n
k

)
= O(nk). (23.7)

Some examples:

1. H = X⊗ I ⊗ I − Z⊗ I ⊗Y is 2-local on 3 qubits.

2. H = J ∑n−1
i,j=1 Z(i,j)Z(i,j+1) + Z(i,j)Z(i+1,j) is the Ising model on an n× n lattice of qubits. It is 2-local

on n2 qubits.

3. H = ∑n−1
i=1 JxXiXi+1 + JyYiYi+1 + JzZiZi+1 is the Heisenberg model on a n qubit line. It is 2-local on

n bits.

Why is the idea of k-locality useful? The idea is we can simulate each exp(iHjt) separately and combine.

However, unless the
{

Hj

}
are mutually commuting, then in general:

exp(−i ∑
j

Hjt) ̸= ∏
j

exp(−iHjt) (23.8)

so we need to somehow solve this problem. Putting it aside for now, we can start with the quantum
simulation problem. We make use of the following, technical, theorem (which proof is given, e.g., in
Nielsen and Chuang):

Theorem: Solovay-Kitaev

Let U be a unitary be a unitary operator on k qubits and S any universal set of quantum gates.
Then U can be approximated to within ϵ using O(logc 1

ϵ) from S, with c < 4.

Thus, we can simulate each exp(−iHjt) with modest overhead in circuit side for improved error,
assuming we fix k.

We also need to keep track of the accumulation of errors. To this end, the following Lemma is useful:

Lemma: Error Accumulation

Let {Ui} , {Vi} be sets of unitary opeartors with:

∥Ui −Vi∥ ≤ ϵ (23.9)

then:
∥Um . . . U1 −Vm . . . V1∥ ≤ mϵ. (23.10)

63

Proof. (Sketch) Unitary gates preserve the size of vectors, and hence do not blow up errors - they simply
accumulate linearly.

Warm-up; easy case with mutually commuting terms.

Proposition: Commuting Hamiltonian Case

Let:

H =
m

∑
j=1

Hj (23.11)

be any k-local Hamiltonian with commuting terms.
Then for any t, exp(−iHt) can be approximated to within ϵ by a circuit of:

O

(
mpoly

(
log(

m
ϵ
)

))
(23.12)

gates from any universal gate set.

Proof. Pick ϵ′ = ϵ/m and approximate exp(−iHjt) to within ϵ′. Then the total error is bounded by mϵ′ = ϵ,
and this uses:

O

(
mpoly

(
log(

m
ϵ
)

))
(23.13)

gates.

Full-commutative case; for this, note the piece of notation that X +O(ϵ) means X + E with∥E∥ = O(ϵ).

Lemma: Lie-Trotter Product Formula

Let A, B matrices with∥A∥ ,∥B∥ ≤ K < 1. Then:

exp(−iA) exp(−iB) = exp(−i(A + B)) + O(K2). (23.14)

Proof.

exp(−iA) = I − iA +
∞

∑
k=2

(iA)k

k!
= I − iA + (iA)2 ∑

k=0

(−iA)k

(k + 2)!
(23.15)

noticing that
∥∥∥(iA)2

∥∥∥ ≤ K2, and the final sum has norm bounded by eK < e, so:

exp(−iA) = I − iA + O(K2). (23.16)

Then we have:
exp(−iA) exp(−iB) = exp(−i(A + B)) + O(K2) (23.17)

where we use Eq. (23.16) twice and then need that∥A + B∥ ≤ 2K = O(K) and∥AB∥ ≤ K2 = O(K2).

We now apply this repeatedly to accumulate sums H1, H2, . . . , Hm in the exponent. First of all, we note
that if each ∥Hi∥ < K, then ∥Hi + . . . + Hl∥ < lK. We want this to be < 1 for all l ≤ m. So for now, we
assume K < 1

m . Also, take t = 1 for now. Then:

∏
j

exp(−iHj) = exp(−i ∑
j

Hj) + O(m3K2) (23.18)

64

where we repeatedly multiply and then use that ∑m
n=1 n2 = O(m3). We write teh error as Cm3K2.

This is ok for small K, but it won’t be in general. For general K and t values, we introduce a large N
such that: ∥∥∥∥∥Hjt

N

∥∥∥∥∥ <
Kt
N
≤∥K∥ < 1. (23.19)

Imn other words, we divide time up into small t/N intervals.

U = exp(−i ∑
j

Hjt) = (exp(−i ∑
j

Hjt
N

))N (23.20)

which holds because ∑j
Hjt
N commutes with itself.

We now want to make sure the final error for U is < ϵ. So, we know each term exp(−i ∑j
Hjt
N) needs

to be approximated to ϵ/N. So, using our previous formula, we want:

Cm3K̃2 <
ϵ

N
, (23.21)

Doing some algebraic manipulation, we find that we need:

N >
Cm3K2t2

ϵ
(23.22)

We now have Nm gates of the form exp(iHjt/N), so the circuit size is at most:

O(
m4(Kt)2

ϵ
). (23.23)

Recall for n qubits, a general k-local Hamiltonian has m = O(nk). So the circuit size is:

∥C∥ = O(
n4k(Kt)2

ϵ
). (23.24)

Now this is in terms of the number of exp(iHjt/N) gates. If we want to express this in terms of universal

gates, then each needs to be approximated to O(ϵ/|C|). We then need O(logc(|C|ϵ)) gates for each, for
some c < e. So we only get an extra modest multiplicative factor in |C|. Note tht for fixed n but variable t,
the quantum process runs in t but our simulation needs O(t2), which can be improved to O(t1+δ) for any
δ > 0 by using “better” Lie-Trotter expansions.

Local Hamiltonian Problem

There are many other things we might want to do with a k-local Hamiltonian. One question we might be
interested in is the eigenvalues of H. Suppose we are given a 5-local Hamiltonian:

H =
m

∑
j=1

Hj (23.25)

on n qubits. We suppose∥Hi∥ < 1, and we are given two numbers a < b, such as a = 1
3 and b = 2

3 . We are
promised that the smallest eigenvalue E0 of H is < a or > b. The problem is to decide to whether E0 < a.

The reason why we have these funny a, b is so that we don’t have to worry about precision. If we only
had a single a and want to determine if E0 > a or E0 < a, it would be difficult if E0 ≈ a.

Kitaev’s theorem says that the above problem is complete for a complexity class known as QMA, i.e.
it is the “hardest” QMA problem. In other words, any problem in QMA (the quantum version of NP) can
be translated into a local Hamiltonian problem.

65

24 Quantum Signal Processing

QSP is a powerful, unifying framework. Given an operator represented via a block encoding, we can
encode spectral information via qubitization and then transform via QSP to implement a function of it.
Applying this to the Hamiltonian Simulation problem, and using amplitude amplification, we can simulate
sparse Hs with optimal complexity tradeoff. These techniques can also be applied in a wide variety of
other algorithms.

Block Encoding

We say a unitary U is a block encoding of A if:

U =

(
A ·
· ·

)
= |0⟩⟨0| ⊗ A + . . . =

(
⟨0| ⊗ I

)
U
(
|0⟩ ⊗ I

)
(24.1)

Note that for A to have a blcok encoding, ∥A∥ ≤ 1, but we can consider them under rescaling - i.e. A/α
with α ≥∥A∥ can be block encoded. α measures the quality of the encoding (with α small corresponding
to a better encoding).

Obviously an efficient quantum circuit block-encodes itself, but we can give efficient block encodings of
many other kinds of matrices - of particular interest is sparse matrices. Suppose A ∈ CN×N is d-sparse and
efficiently row and column computable. Furthermore suppose maxi,j|Ai,j| ≤ 1. Then we can efficiently
implement unitaries R, C acting on C3×N×N as:

R : |0⟩|0⟩|i⟩ 7→ |0⟩ 1√
d

N

∑
k=1

√
A∗ik|i⟩|k⟩+ |1⟩|i⟩|µj⟩ (24.2)

R : |0⟩|0⟩|j⟩ 7→ |0⟩ 1√
d

N

∑
k=1

√
Al j|l⟩|j⟩+ |1⟩|j⟩|νj⟩ (24.3)

For some states |µi⟩, |νj⟩. This can be done via quantum walk implementations. Then, R†C is a block
encoding of A/d.

Block encodings have nice closure properties, e.g. A, B block encodings can be used to efficiently
construct a block encoding of AB.

QSP

A key problem is tranforming a block encoding of one matrix into a related one. In particular, given a
block encoding of A, when we can produce a block encoding of f (A), and at what cost? This is addressed
by quantum signal processing.

We describe Low/Yoder/Chuang’s result for 2× 2 matrices, which generalizes to higher dimensions.
Suppose we are given:

W(x) :=

(
x i

√
1− x2

i
√

1− x2 x

)
= exp(i arccos(x)σx) (24.4)

Our goal is to generate a matrix whose entries are polynomial in x. We do this by interspersing W(x) with
z-rotations, giving circuit:

WΦ(x) := exp(iϕ0σz)W(x) exp(iϕ1σz)W(x) . . . W(x) exp(iϕkσz) (24.5)

where Φ := (ϕ0, ϕ1, . . . , ϕk). the functions W(x) that can be realized this way are captured by the following
Lemma:

66

Lemma: QSP

There exists Φ ∈ Rk+1 such that:

WΦ(x) =

(
P(x) iQ(x)

√
1− x2

iQ∗(x)
√

1− x2 P∗(x)

)
(24.6)

iff P, Q ∈ C[x] satify:

1. deg(P) ≤ k and deg(Q) ≤ k− 1.

2. P has parity k mod 2 and Q has parity k− 1 mod 2

3. ∀x ∈ [−1, 1], |P(x)|2 + (1− x2)|Q(x)|2 = 1.

Proof. We first show by induction on k that Eq. (24.6) implies three conditions:
For the induction step, we find that:

W(ϕ0,...ϕk+1)
=

(
P(x) iQ(x)

√
1− x2

iQ∗(x)
√

1− x2 P∗(x)

)
W(x)eiϕkσz =

(
P̃(x) iQ̃(x)

√
1− x2

iQ̃∗(x)
√

1− x2 P̃∗(x)

)
(24.7)

With:
P̃(x) = eiϕk

(
xP(x)− (1− x2)Q(x)

)
(24.8)

Q̃(x) = e−iϕk
(

P(x) + xQ(x)
)

(24.9)

clearly satify the three conditions.
For the converse, we show by induction that the three conditions suffice to construct the decomposition.
For k = 0, deg(P) = 0, so the third condition implies that P(x) = exp(iϕ0) for some ϕ0 ∈ R and

Q(x) = 0. Proof details can be filled in via the AMC notes.

When lifting this decomposition to higher-dimensional cases via qubitizations, we will use a variant of
QSP with reflections.

Qubitization

Qubitization lets us map a high-dimensional block encoding to a single qubit, to which we can apply
QSP. This mapping relies on a decomposition of the block encoding into two-dimensional subspaces. This
allows us to perform QSP in superposition on the high-dimensional target space.

Applications to Hamiltonian Simulation

QSP yields an optimal algorithm for simulation of sparse Hamiltonians.
As described in the block encoding section, we can construct an efficient block encoding of sparse H

(scaled down by sparsity times largest magnitude of a matrix element). Our goal is to turn this into a
block encoding of the evolution operator exp(−iHt).

To do this, we use the Jacobi-Anger expansion:

exp(it cos θ) =
∞

∑
k=−∞

ik Jk(t) exp(ikθ) = J0(t) + 2
∞

∑
k=1

ik Jk(t)Tk(cos θ) (24.10)

67

Where Jk is a Bessel function and Tk(θ) = cos(kθ) is a Chebyshev polynomial. By truncating this expres-
sion to the first K terms, we get a degree-K polynomial in x:

J0(−t) + 2
K

∑
k=1

ik Jk(t)Tk(cos θ) ≈ exp(−itx) (24.11)

Using this polynomial as f in the QSP Lemma, we get a good approximation of exp(−iHt)/2.
To understand the quality of the approximation, we must bound the error incurred by truncating of

the infinite series. We omit the details here as it is technial, but it turns out to be O((t/2)K/K!). To make
this O(ϵ), we take:

K =

(
t +

ln(1/ϵ)

ln(e + ln(1/ϵ)/t)

)
(24.12)

and this expression is tight.
Since this is scaled by a factor of 2, we need to scale it back up to achieve the desired deterministic sim-

ulation. We can use this via robust oblivious amplitude amplification with only constant-factor overhead.
Overall, this gives a quantum algorithm for sparse Hamiltonian simulation with optimal dependence on
both t and ϵ.

68

	Classical Query Complexity
	OR, Dirac Notation
	Quantum query complexity
	Basic Design Principles for Quantum Algorithms
	Time Complexity
	Complexity continued
	Analysis of the hypercube and Simon's problem
	Simon's Problem continued
	Randomized Query Complexity of Simon's Problem
	Period Finding
	Period Finding Continued, Factoring
	Time Complexity of Shor's Algorithm
	Finishing Up Shor, The Hidden Subgroup Problem
	The Hidden Subgroup Problem Continued
	Dihedral HSP
	Time Complexity of DHSP, Intro to Element Distinctness Problem
	Amplitude Amplification in Element Distinctness, Quantum Walk
	Quantum Walk Continued
	Quantum Walk Conclusion, Quantum Phase Estimation
	Quantum Walk for OR and ED
	Adversary Method
	Adversary methods continued, Divide and Conquer
	Hamiltonian Simulation
	Quantum Signal Processing

