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1 Lecture 1

1.1 Lecture Notes - Lagrangian Mechanics Part 1

1.1.1 Newtonian Mechanics to Lagrangian Mechanics

Recall the Newtonian formulation of classical mechanics; given the forces F1(t), · · ·Fn(t) on a particle, we
can solve Newton’s second law (a second order differential equation):

n∑
i=1

Fi(t) = mr̈(t)

To obtain the trajectory r(t), which is uniquely determined by the initial conditions r(t0) and ṙ(t0).
In this course, we will begin by looking at the Lagrangian formulation of classical mechanics. While this

formulation contains no new physics compared to the Newtonian formulation, there are two distinct benefits:

(a) We can obtain EOM that do not depend on the coordinate system

(b) It is easier to treat constrained systems.

1.1.2 The Variational Principle Setup

To do this, we will use a new approach, known as the Variational principle. To set this up, let us consider
the trajectory (as well as some ”wrong” paths between the same two endpoints) travelled by a particle:

The trajectory from time t1 to t2 is parametrized by the generalized coordinate q. Examples of these are
x1, y1, θ1.

1.1.3 Generalized Coordinates

For N particles, a generalized coordinate qi depends on the positions of the N particles:

qi = qi(r1, · · · , rN )

In Cartesian coordinates, we have 3N coordinates but these are not necessarily independent. In general,
we may have constraint functions fα(r, ṙ, t) = 0 where α = 1, · · · , k (i.e. k constraints). We then have qi
independent coordinates, where i = 1, · · ·n where i = 3N − k. In other words, for a system of N particles,
we have 3N − k independent/generalized coordinates. Generalized coordinates allow us to avoid worrying
about the constrained parameters.

1.1.4 Hamilton’s Principle and the Lagrangian

Let us consider assigning to each generalized coordinate q(t) a number/value:

q(t) 7→ S[q(t)] ∈ R

This is a functional (as denoted by the square brackets), as it takes in a function as an argument. Now, let
us consider Hamilton’s principle:
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The actual path of a particle between times t1 and t2 is such that the line integral:

S[q] =

∫ t2

t1

L(q1, q̇1, t)dt

is stationary.

Though the principle saysthe integral is stationary, often this correponds to a minimum (though not always).
The function L is defined as:

L = T − U
where T is the kinetic energy and U is the potential energy. This is called the Lagrange Function or
Lagrangian. S is called the action. Though we have not shown it explicitly, this Lagrange function gives
the correct trajectory. Note that we have in essence replaced a second order ODE (Newton’s second law)
with an integral of L. Having two endpoints t1 and t2 is consistent with the two initial conditions for a
second order ODE. documentclass[../PHYS306Notes.tex]subfiles

1.2 Worksheet - Shortest Distance and Variational Principle

Problem 1.1. We wish to find the shortest path between two points (x1, y1) and (x2, y2) in the plane. First,
write out the distance between these two points in terms of a general function y(x) connecting points (x1, y1)
and (x2, y2), and possibly it’s derivative y′(x), in terms of an independent variable x.

Solution. We can define an infinitesimal path element of the trajectory from (x1, y1) to (x2, y2) as:

ds =
√
dx2 + dy2

We can use the identity:

dy ≡ dy

dx
dx = y′(x)dx

Substituting this into the path element equation above, we obtain:

ds =

√
dx2 +

(
y′(x)dx

)2
We may integrate the path element from the initial state to the final state to obtain the length of the path:

L(y(x), y′(x)) =

∫ t2

t1

ds =

∫ x2

x1

√
dx2 +

(
y′(x)dx

)2
=

∫ x2

x1

√
1 + y′(x)2dx

Notice here we have the functional L[y(x), y′(x)] (here only depends on y′(x)).

Problem 1.2. If light were travelling between points (x1, y1) and (x2, y2), we would expect it to follow a
straight line, but if the index of refraction n = n(x, y) is not constant, the speed of light in the medium is
v = c/n and the path is not a straight line but follows the trajectory of minimum time (Fermat, 1662).Find
an integral expression for the time taken by a trajectory y(x) through a medium n(x, y).
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Solution. The infinitesimal time element dt to travel a distance ds is given by:

dt =
ds

v
=
n(x, y)ds

c
=

1

c
n(x, y)

√
1 + y′(x)2dx

Where in the second inequality we use the identity v = c/n. Again we can integrate from an initial time to
a final time to obtain the total time the light takes to travel along the path:

T =

∫ t2

t1

dt =

∫ x2

x1

1

c
n(x, y)

√
1 + y′(x)2dx =

1

c

∫ x2

x1

n(x, y)
√

1 + y′(x)2dx

Where again we have a functional T [y(x), y′(x)].

Problem 1.3. In our variational treatment, if the “wrong” or “varied” curves from the minimum pass
through the points 1 and 2, write the condition on the deviations from the correct curve, η(x).

Solution. η(x1) = η(x2) = 0 as the endpoints of the wrong path must match that of the correct path.

Problem 1.4. If S(α) =
∫ x2

x1
f
(
y + αη, y′ + αη′, x

)
dx, use the chain rule to write dS(α)/dα in terms of an

integral of a function that contains derivatives on y and y′, and η and η′.

Solution. As the integral is with respect to x, we may interchange the order of integration and differentiation:

dS(α)

dα

∣∣∣∣
α=0

=
d

dα

∫ x2

x1

f
(
y + αη, y′ + αη′, x

)
dx

∣∣∣∣∣
α=0

=

∫ x2

x1

(
∂

∂α
f
(
y + αη, y′ + αη′, x

)∣∣∣∣
α=0

)
dx

Then by the chain rule, we have:

dS(α)

dα

∣∣∣∣
α=0

=

∫ x2

x1

(
η
∂f

∂y
+ η′

∂f

∂y′

)
dx =

∫ x2

x1

η
∂f

∂y
dx+

∫ x2

x1

η′
∂f

∂y′
dx

Problem 1.5. Rewrite the 2nd term
∫ x2

x1
η′ ∂f∂y′ dx by integrating by parts. Note

∫
vdu = [uv] −

∫
udv is

equivalent to
∫
u′vdx = [uv] −

∫
uv′dx. After simplifying, write the integral expression for ∂S

∂α = 0. l.e.
∂S
∂α =

∫ x2

x1
η(x)[. . .]dx = 0. This condition ensures that S(α) has a minimum at α = 0 and y is the curve that

extremizes S.

Solution. Carrying out integration by parts on the second term, we have:

dS(α)

dα

∣∣∣∣
α=0

=

∫ x2

x1

η
∂f

∂y
dx+ η

∂f

∂y′

∣∣∣∣x2

x1

−
∫ x2

x1

η

(
d

dx

∂f

∂y′

)
dx

From problem 3, we know that η(x1) = η(x2) = 0 and so the second term evaluates to zero, leaving us with:

dS(α)

dα

∣∣∣∣
α=0

=

∫ x2

x1

(
η
∂f

∂y
− η d

dx

∂f

∂y′

)
dx

and we set this to zero:
dS(α)

dα

∣∣∣∣
α=0

=

∫ x2

x1

η

(
∂f

∂y
− d

dx

∂f

∂y′

)
dx = 0

We require that this holds for all possible deviations η(x). The only way this could hold is if the term in
brackets is zero; this is exactly the Euler-Lagrange equation!

Problem 1.6. Write the general form of the Euler-Lagrange Equation. What is the function f for the
distance between two points? What does this say about ∂f

∂y in the E-L equation?
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Solution. The general form of the Euler-Lagrange equation is given by:

∂f

∂y
− d

dx

∂f

∂y′
= 0

The function for the distance between two points is f =
√

1 + y′2 as derived above. Hence,
∂f

∂y
= 0, and

therefore by the Euler Lagrange equation:

∂f

∂y′
= constant

Problem 1.7. Solve the above equation for y′2 and hence y′ and y.

Solution. We have that:
∂f

∂y′
=

y′√
1 + y′2

= Constant

Therefore:
y′2 = c2(1 + y′2)

Or alternatively:

y′2 =
c2

1− c2 = c′ =⇒ y′(x) =
√
c′ = m

So integrating, we have that:
y(x) = mx+ b

as we knew already!

2 Lecture 2

2.1 Lecture Notes - Lagrangian Mechanics Part 2

2.1.1 Review of Variational Principle

Variational principle. We want to minimize a functional (that takes in a function as an argument), by
finding stationary points. This is reminiscent of the process of finding extremum in elementary/single
variable calculus, where if we move slightly away from the point, we don’t change the function very much.
Now, we generalize this notion to a function space, where if we change the function slightly, we do not change
the functional very much.
We want to derive that the shortest path between two points is a straight line (no objections general
relativists!). We consider the variation y(x) + αη(x) around the true path y(x). Look at worksheet one for
the solutions/walkthrough of this.

2.2 Worksheet - Variational Principle Applied to Free Fall

As a second example for the variational principle, let’s consider the (one-dimensional) free fall of a particle
of mass m due to gravity starting at zero and from rest for a duration T.

Problem 2.1. Write down the Lagrange-Function L = T − U using a generalized coordinate q.
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Solution. Let us use the height of particle as our generalized coordinate q. In this case the velocity of the
particle is simply q̇, so we have that:

T =
1

2
mq̇2, U = mgq

Hence the Lagrangian is:

L = T − U =
1

2
mq̇2 −mgq

Problem 2.2. Using Newton’s 2nd law, write down the equation of motion for q and the solution q(t).

Solution. By Newton’s second law, we have that there is only a gravitational force −mg acting on the
particle, and hence it reads: ∑

F = −mg = mq̈ =⇒ −g = q̈

We solve this second order differential equation by integrating twice, which gives us:

q(t) = −1

2
gt2 + q̇(t = 0)t+ q(t = 0)

Since the particle starts at rest, we have that q̇(0) = 0 and hence:

q(t) = −1

2
gt2 + q(t = 0)

Problem 2.3. Write down the “boundary conditions” q(t = 0) and q(t = T ).

Solution. We define our coordinate system such that q(t = 0) = 0, and then by the solution above, q(t =
T ) = − 1

2gT
2.

Problem 2.4. A possible ’trial trajectory’ could be the from qtrial ,α(t) = − 1
2gt

2 + α sin
(
πt
T

)
. (This is how

variational calculus is carried out!) Check that this function satisfies the boundary conditions at t = 0 and
t = T.

Solution. We see that:

q(t = 0) = −1

2
g(0)2 + α sin

(
π(0)

T

)
= 0

and

q(t = T ) = −1

2
gT 2 + α sin

(
πT

T

)
= −1

2
gT 2

as desired.

Problem 2.5. Instead of considering all possible trajectories that obey the boundary conditions, we consider
here only a specific family parameterized by α. Thus S

[
qtrial,α(t)

]
= S(α) is a function of α Write down

S
[
qtrial,α(t)

]
and show that it can be written as

S
[
qtrial,α(t)

]
= S[q(t)] +mα2π2/4T

In the above form it is evident that the true trajectory (α = 0) minimizes S.
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Solution. Plugging in the trial trajectory into the Lagrangian determined in question 1, we have:

S
[
qtrial,α(t)

]
=

∫ T

0

L(q, q̇, t)dt

=

∫ T

0

1

2
m

 d

dt

(
−1

2
gt2 + α sin

(
πt

T

))2

−mg
(
−1

2
gt2 + α sin

(
πt

T

))
dt

=

∫ T

0

1

2
m

(
−gt+

απ

T
cos

(
πt

T

))2

+
mg2

2
t2 −mgα sin

(
πt

T

)
dt

=

∫ T

0

1

2
m

(
g2t2 − 2

gtαπ

T
cos

(
πt

T

)
+
α2π2

T 2
cos2

(
πt

T

))
+
mg2

2
t2 −mgα sin

(
πt

T

)
dt

=

∫ T

0

mg2t2 +
mα2π2

2T 2
cos2

(
πt

T

)
dt (Integrals over full period of sine/cosine are zero)

=

∫ T

0

mg2t2 +
mα2π2

4T

= S[q(t)] +
mα2π2

4T

Clearly this is minimized for α = 0, and for any α > 0 the action is larger. The one the action that makes
the action minimal is the true physical path.

Problem 2.6. Show that if S =
∫ t2
t1
f(x, y, ẋ, ẏ)dt that there are two Euler-Lagrange equations for the

stationary curves x(t), y(t). Write the Euler-Lagrange equations.

Solution. Let the correct path be given by x = x(u) and by y = y(u), and the wrong/varied path be given by
x = x(u)+αξ(u) and y = y(u)+βη(u). By a very similar process to worksheet 1, we impose the requirement

that dS
dα

∣∣∣
α=0

= 0 and dS
dβ

∣∣∣
β=0

= 0. This leads to the two Euler Lagrange equations:

∂f

∂x
=

d

du

∂f

∂x′
and

∂f

∂y
=

d

du

∂f

∂y′

Problem 2.7. Construct Lagrange’s equations for a particle in a two-dimensional potential U(x, y), and
show that these are equivalent to a particle obeying Newton’s equations.

Solution. We have that the Lagrangian is given by:

L =
1

2
m
(
ẋ2 + ẏ2

)
− U(x, y)

So by the two Euler-Lagrange equations above:

∂L

∂x
=

d

dt

∂L

∂ẋ
=⇒ − dU(x, y)

dx
=

d

dt
mẋ =⇒ Fx = mẍ

∂L

∂y
=

d

dt

∂L

∂ẏ
=⇒ − dU(x, y)

dy
=

d

dt
mẏ =⇒ Fy = mÿ

So we recover Newton’s second law of:
F = mr̈
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3 Lecture 3

3.1 Lecture Notes - Lagrangian Mechanics Part 3

3.1.1 Review of Variations

Recall Hamilton’s Principle, where we consider a trajectory between t1, t2, and variations from that
trajectory η(t). The true trajectory taken by the physical system is given by q̄(t). We parameterize the
variations with an α term, where q(t) = q̄(t) +αη(t). q̄(t) minimizes the action functional S[q] if S[q̄] < S[q]
for any other trajectories q. Our functional S[q] is given by:

S[q] =

∫ t2

t1

L(q, q̇, t)dt

We found a method to find q̄ by taking the derivative of the action (i.e. a stationary point):

dS[q̄ + αη]

dα

∣∣∣∣
α=0

= 0

or alternatively, the statement that the (first order) variation must vanish:

δS[q̄] = lim
α→0

1

α

(
S[q̄ + αη]− S[q̄]

)
= 0

We will explore this more on Monday when we look at constraint forces.

3.1.2 Invariance, The Functional Derivative, and Multiple Variables

(a) Form invariance of Euler-Lagrange equations. Going from generalized coordinates q → q̃, then we have
that:

L(q̃, ˙̃q, t) = L(q, q̇, t)

by the definition of the Lagrangian. Alternatively, see that the action is invariant of the choice of
general coordinates:

S̃[q̃] =

∫ t2

t1

L̃
(
q̃, ˙̃q, t

)
dt =

∫ t2

t1

L(q, q̇, t)dt = S[q]

(b) One can take a functional derivative and set this to zero. The variation can be written using a functional
derivative (indicated by lowercase δ):

δS[q] =

∫
δS

δq
η(t)dt

What is the definition of the functional derivative? It’s very similar to the conventional derivative:

δS

δq(t)
= lim
α=0

S[q + αδ(t)]− S[q]

α
=
∂L
∂q
− d

dt

∂L
∂q̇

Therefore, δS
δq = 0 implies the Euler Lagrange equations. The way you can think about it is like the

partial derivative. We are familiar with the total differential of a function (the sum of the partial
differentials, see HW1 as an example). Now, imagine we have a function that depends continuously on
a function q; its like a partial derivative with an index that is continuous (rather than discrete).

(c) If we have multiple variables, the generalization is straightforwards; for n variables, the action functional
becomes:

S =

∫ t2

t1

L(q1, q2, · · · , qn, q̇1, q̇2, · · · , q̇n, t)dt
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So we would get n Euler-Lagrange equations:

∂L
∂qi

=
d

dt

∂L
∂q̇i

Where
∂L
∂qi

is the generalized force, and
∂L
∂q̇i

is the generalized momentum.

3.1.3 Torque, Angular Momentum, and Generalized Momentum Conservation

See derivation in Worksheet three for the relation:

∂L
∂φ

=
d

dt

∂L
∂φ̇

Which corresponds to:

Γ =
dL

dt

So if there is zero torque, we have conservation of angular momentum. Generally, if L is independent
of qi, then the generalized momentum ∂L

∂q̇i
is conserved. We have a conservation law that comes from a

certain property in the Lagrangian. We call variables that do not appear in the Lagrangian as a ”cyclic” or
”ignorable” variable.

3.2 Worksheet - Lagrangians and Coordinate Transformations

Problem 3.1. If we transform x, y into polar coordinates, what happens to the principle of least action?
What do Lagrange’s equations become for a particle in a two-dimensional potential U(x, y), now using polar
coordinates. What are the generalized forces and generalized momenta?

Solution. Since the Lagrangian is invariant of the choice of coordinates, nothing happens; the principle
of least action still holds (the Lagrangian and action integral are equivalent between the two coordinate
systems):

S[r, θ] =

∫ t2

t1

L(r, ṙ, θ, θ̇, t)dt =

∫ t2

t1

L(x, ẋ, y, ẏ, t)dt = S[x, y]

Using the fact that r = rr̂ and ṙ = ṙr̂ + rφ̇φ̂ The Lagrangian becomes:

L = T − U =
1

2
mṙ2 − U(x, y) =

1

2
m(ṙ2 + r2φ̇2)− U(r, θ)

So Lagrange’s equations become:

∂L
∂r

=
d

dt

∂L
∂ṙ

=⇒ − ∂U
∂r

+mrφ̇2 = mr̈

So the generalized force is − ∂U

∂r
+mrφ̇2 and the generalized momentum is mṙ.

∂L
∂φ

=
d

dt

∂L
∂φ̇

=⇒ − ∂U
∂φ

= mr2φ̈

So the generalized force is − ∂U

∂φ
(which is just the torque!) and the generalized momentum is mr2φ̇ (which

is the angular momentum!).
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Problem 3.2. Write the Lagrangian for two particles interacting through a potential U(r1, r2), using the
“lab frame” coordinates r1, r2. How does the potential simplify if it is translationally-invariant? How does
it simplify if it is orientationally-invariant (i.e. central)?

Solution. The Lagrangian is given by:

L =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 − U(x, y)

If the potential is translationally invariant, then there is no difference if we move the entire system through
space; hence, it can only depend on the difference, i.e. U(r1− r2). If it is orientationally-invariant (central),
then it only depends on the magnitude of the the difference, i.e. U(|r1 − r2|).

Problem 3.3. Rewrite the kinetic energy in terms of the centre of mass (CM) and relative coordinates,
R, r. What are the Lagrange equations in these coordinates?

Solution. We have that the relative coordinate is r = r1 − r2 and U = U(|r|). The CM position is given by:

R =
m1r1 +m2r2

m1 +m2

Let us also define the combined mass M = m1 +m2, we then have that:

T =
1

2

(
m1ṙ

2
1 +m2ṙ

2
2

)
=

1

2

(
m1

(
Ṙ +

m2

M
ṙ

)2

+m2

(
Ṙ− m1

M
ṙ

)2
)

=
1

2

(
MṘ2 +

m1m2

M
ṙ2

)
So defining the reduced mass µ = m1m2

M we have:

L = T − U =
M

2
Ṙ2 +

(
µ

2
ṙ2 − U(r)

)
We end up with a Lagrangian that has essentially two independent terms; a COM motion term (which is
trivial, just a particle of mass M) and a relative position term which is equivalent to a particle of mass µ
subject to potential U(r). We have essentially converted a two particle problem into what is effectively a
one particle problem. This makes the two-body problem analytically (somewhat) easy to solve with this
method.

Problem 3.4. Write the expressions for r1 and r2 in terms of appropriate generalized coordinates, for the
double pendulum.
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Solution. Trigonometry to get the position vectors:

r1 = l1 sinφ1x̂ + l1 cosφ1ŷ

r2 = (l1 sinφ1 + l2 sinφ2) x̂ + (l1 cosφ1 + l2 cosφ2) ŷ

This problem has four degrees of freedom (motion in the plane) but two constraints that |r1| = l1 and
|r2 − r1| = l2. This leaves to two generalized coordinates. Note that the constraints f(r1, · · · , rn, t) = 0 are
called ”holonomic” and are in general nice for solving problems.

4 Lecture 4

4.1 Lecture Notes - Lagrangian Mechanics Part 4

4.1.1 Proof of Lagrange Equations for Holonomic Systems

We consider a holonomic system with f(ri, t) = 0 constraints. Consider a true path r∗(t), and a general
path with variation of r(t) = r∗(t) + αδr(t) Note that r is not necessarily generalized coordinate. r(t) and
r∗(t) are on a surface to which the particle is constrained; this implies that the variation is also constrained.
Now, we study the action:

S[r∗ + αδr] =

∫ t2

t1

L[r∗ + αδr, ṙ∗ + αδṙ, t]dt

Now, we do a Taylor expansion around the true path:

S[r∗ + αδr] =

∫ t2

t1

dt

(
L(r∗, ṙ∗, t) + αδr

∂L
∂r

+ αδṙ
∂L
∂ṙ

+ δ(α2)

)
First term is unperturbed action, so we can write as:

= S[r∗, ṙ∗, t] + α

∫ t2

t1

dt
∂L
∂r

δr + α

∫ t2

t1

dt
∂L
∂ṙ

d

d
t+ δ(α2) Integrating by parts, we have:

= S[r∗, ṙ∗, t] + α

∫ t2

t1

dt
∂L
∂r

δr +
∂L
∂ṙ

δr

∣∣∣∣t2
t1

−
∫ t2

t1

dt

(
d

dt

∂L
∂ṙ

)
δr Boundary term is zero, so:

= S[r∗, ṙ∗, t] + α

∫ t2

t1

dt

(
∂L
∂r
− d

dt

∂L
∂ṙ

)
δr + δ(α2)

This is a first order variation (as we can tell from the fact that we expanded around α to first order). This
is given by:

δS = lim
α→0

1

α

(
S[r∗ + αδr]− S[r∗]

)
=

∫ t2

t1

dt

(
∂L
∂r
− d

dt

∂L
∂ṙ

)
δr

We have that the first term
∂L
∂r

= −∇U are conservative forces. Now considering the kinetic energy as

T = m
2 ṙ2, then the second term is

d

dt

∂L
∂ṙ

= mr̈ = Ftot = Fconstraint + Fconservative. The contribution to
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the action integral for the constraint forces are given by −
∫ t2
t1
δr · Fconstaint = 0 as the constraint force is

perpendicular to any direction for which we can actually very the path! Hence, the first order variation is
given by:

δS = −
∫ t2

t1

δr · (mr̈ +∇U) dt

If the particle follows Newton’s laws of motion, then mr̈ + ∇U = 0 and hence the first order variation
is δS = 0! The beauty of this formulation is the constraint forces do not contribute. Here, δr must be
consistent with the constraint. So for the generalized coordinate, any variation works, and δS[q] = 0.

4.2 Worksheet - Lagrangian Mechanics with Dissipative Forces & Constrained
Systems

Problem 4.1. Write down Newton’sequation of motion for a mass m hanging on a spring with spring
constant k, equilibrium length x0, and damping coefficient b,and subject to a vertical forcing function F (t).

Solution. In one dimension, we have:∑
F = −k(x− x0)− bẋ−mg + F (t) = mẍ

Where the first term is the spring force, the second term is the air friction, the third term is the gravitational
force, and the fourth term is the forcing function. We may rearrange this to say:

mẍ+ bẋ+ k(x− x0) = F (t)

Problem 4.2. In the previous problem, there were nonconservative forces that are not included in our
Lagrange formalism. Compare the equation of motion above to the Langrange equation for a mass on a
spring without damping and forcing, and suggest how the Lagrange equations should be modified to include
friction.

Solution. We consider that Lagrange’s equation of motion
∂L
∂x

=
d

dt

∂L
∂ẋ

does not account for the noncon-

servative forces (i.e. the forcing function F (t) and the air friction term −bẋ), as the Lagrangian is given by
L = T −U = 1

2mẋ
2 +mgx+ 1

2k(x−x0)2 and clearly this does not account for the damping or forcing terms.
Without these terms, we have that:

∂L
∂x

= −k(x− x0) =
d

dt

∂L
∂ẋ

= mẍ

But with these terms, we have that:

∂L
∂x

= k(x− x0)− bẋ+ F (t)

So the ”fix” for nonconservative forces to the Lagrange equations of motion are:

∂L
∂x

+ Fnoncons =
d

dt

∂L
∂ẋ

You have to add these in manually because there is no principle of least action for dissipative forces.

Problem 4.3. Write down the Lagrangian for the Atwood machine. How many degrees of freedom are there?
Pick a generalized coordinate, find the Lagrange equation of motion, and solve it for the acceleration.
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Solution. There is only one degree of freedom as the motion of one of the masses is completely determined
by the other. Let our generalized coordinate be x, and we can define the height of the other mass as y = l−x
where l is some constant representing the length of the string. The potential energy of the system is given
by:

U = −m1gx−m2g(l − x) = xg(m2 −m1)−m2lg

The kinetic energy of the system is given by:

T =
1

2
m1ẋ

2 +
1

2
m2(−ẋ)2 =

1

2
(m1 +m2)ẋ2

Hence the Lagrangian of our system is given by:

L = T − U =
1

2
(m1 +m2)ẋ2 − xg(m2 −m1) +m2lg

Solving for the equation of motion:
∂L
∂x

=
d

dt

∂L
∂ẋ

g(m1 −m2) =
d

dt
(m1 +m2)ẋ

g(m1 −m2) = (m1 +m2)ẍ

Hence solving for the acceleration, we get:

ẍ = g
m1 −m2

m1 +m2

The beauty here is that we really can ignore the constraint forces; if we want to know the motion of the
particles, we can use directly the Euler-Lagrange equations of motion. With Newton’s laws, we have to keep
track of them explicitly; this is why the Lagrangian formulation is often easier.

Problem 4.4. A particle of mass m is constrained to move on a frictionless cylinder of radius R, given by
the equation ρ = R in cylindrical polar coordinates (ρ, φ, z). Besides the force of constraint (the normal
force of the cylinder), the only force on the mass is a force F = −kr directed toward the origin. Using z and
φ as generalized coordinates, find the Lagrangian L Write down and solve Lagrange’s equations and describe
the motion.

Solution. The ”spring” potential energy from the force directed towards the origin is given by Uspr =
1
2k(R2 + z2). The kinetic energy of the particle is given as T = 1

2mṙ2 = 1
2m(ż2 +R2φ̇2). The Lagrangian is

therefore given by:

L = T − U =
1

2
m(ż2 +R2φ̇2)− 1

2
k(R2 + z2)
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Now we use the EL equations to find the equations of motion for z and phi. Starting with z:

∂L
∂z

=
d

dt

∂L
∂ż

−kz = mz̈

The solution to this differential equation is simple harmonic motion with frequency ω =
√

k
m :

z(t) = A cos(ωt) +B sin(ωt)

Next for φ:
∂L
∂φ

=
d

dt

∂L
∂φ̇

0 =
d

dt

(
mR2φ̇

)
0 = mR2φ̈

Hence (as we knew already from angular momentum conservation) we find that φ̈ is conserved and hence φ̇
is constant.

5 Lecture 5

5.1 Worksheet - Bead on a spinning circular wire

A bead of mass m is threaded on a frictionless circular wire hoop of radius R. The hoop lies in a vertical
plane, which is forced to rotate about the hoop’s vertical diameter with constant angular velocity φ̇ = ω.
The bead’s position on the hoop is specified by the angle θ.

Problem 5.1. Write an expression for the potential energy of the system.

Solution. The height of the bead is determined (via trigonometry) to be h = 1− cos θ, so the gravitational
potential energy is given by:

U = mgh = mg(1− cos θ)
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Problem 5.2. Write an expression for the kinetic energy of the system. Thus you can now write out the
Lagrangian L.

Solution.

T =
1

2

m

v
ṙ2 =

m

2

(
Rω sin θ +Rθ̇

)2

=
m

2

(
R2ω2 sin2 θ +R2θ̇2

)
Where the first term is the normal velocity (out of the page in the diagram) and the second term is the
tangential velocity (velocity in the frame of the page in the diagram). Hence the Lagrangian is:

L = T − U =
m

2

(
R2ω2 sin2 θ +R2θ̇2

)
+mg(cos θ − 1)

Problem 5.3. From the Lagrangian, what is the torque acting on the angle θ of the bead? What is the
equation of motion for the bead?

Solution. To get the torque, we look at the generalized force for θ:

∂L
∂θ

= −mgR sin θ +mR2ω2 sin θ cos θ

By the EL equation, we obtian the equation of motion for θ:

−mgR sin θ +mR2ω2 sin θ cos θ =
d

dt

∂L
∂θ̇

= mR2θ̈

Problem 5.4. Sketch your best estimate for where the equilibrium point(s) of the bead are, i.e. sketch the
equilibrium value(s) of θ0 versus ω.

Solution. There is an equilibrium point at the bottom of the ring (somewhat intuitively), and when the ring
spins fast enough, there are additional equilibrium points symmetrically across the axis:

The derivation of this graph and other equilibrium points mathematically is given in the next problem.
We can see that as ω → ∞ that the bead will be perfectly horizontal (which lines up with our intuition
somewhat).

Problem 5.5. Convince yourself that an equilibrium point has θ̇ = θ̈ = 0. Find all equilibrium points of the
bead. Where is the equilibrium point when 0 < ω2 < g/R?

Solution. If we want equilibrium, we require the condition of θ̈ = 0 (as the bead should not feel any net
torque and start with no angular velocity if it is to remain at rest), which results in(

ω2 cos θ0 −
g

R

)
sin θ0 = 0

This has solutions of θ0 = 0 or θ0 = π (the sine term is zero) or cos θ0 = g
ω2R or θ0 = ± arccos

(
g

ω2R

)
. Since

cos only varies between 1 and −1 this arccos solution only has a solution for ω2 ≥ g
R .
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Problem 5.6. Show that at the equilibrium points defined by ω2 cos θ− g/R = 0, the tangential components
of the gravitational and centrifugal forces (in the non-inertial frame of the hoop) cancel. Show that for any
points with θ > π/2 including near the top, the above two forces are in the same direction.

Solution. Consider the balance of forces at these equilibrium points. There is the centrifugal force that
throws the particle outwards, and the gravitational force that pulls the particle downwards. The centrifugal
force is given by |Fcent| = mω2r = mω2R sin θ that throws the particle outwards and the gravitational force∣∣Fg∣∣ = −mg downwards. We decompose these forces into the radial and tangential components.

For the angle to remain constant, we require that the tangential components (pictured in red above) must
cancel. This is given by:

Ftan = −mg sin θ +mω2R sin θ cos θ = sin θ
(
ω2R cos θ − g sin θ

)
Which we see is 0 whenever ω2 cos θ − g/R = 0 and hence we get the same answer in two different ways.
If θ > π

2 , then we have that sin θ > 0 and cos θ < 0 and hence we can see from the above expression of
the tangential force above that the gravitational tangent force and the centrifugal force point in the same
direction; there is no hope of having an equilibrium point on the upper half of the metal loop!

Problem 5.7. Show that the equilibrium point at θ0 = 0 is stable, so long as ω <
√
g/R. What is the

oscillation frequency about the equilibrium point?

Solution. When θ is small, we can do a small angle approximation and so cos θ ∼ 1 and sin θ ∼ θ. Going
back to our equation of motion, we see that:

mRθ̈ = −mgRθ +mR2ω2θ

and therefore:

θ̈ =

(
ω2 − g

R

)
θ

Which is a nice equation we can solve analytically. We see that the RHS is negative when ω <
√

g
R and

positive when ω >
√

g
R . In the first case, the solutions to the differential equations are sines/cosines; i.e.

simple harmonic oscillation with frequency Ω =
√

g
R − ω2:

θ̈ = −Ω2θ

θ(t) = A cos(Ωt) +B sin(Ωt)

Which is a stable equilibrium; it oscillates about the θ = 0 point when perturbed from it.

Problem 5.8. Find the oscillation frequencies about the equilibrium points θ0 when ω >
√
g/R. What is

the stability condition for these oscillations? What is the oscillation frequency? Now sketch the equilibrium
values of θ0, as a function of ω, over the full range ω > 0.
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Solution. Conversely, when ω >
√
g/R, consider a small perturbation θ0 + ε from the equilibrium. For a

small ε, we have:
cos(θ0 + ε) ≈ cos θ0 − ε sin θ0

sin(θ0 + ε) ≈ sin θ0 + ε sin θ0

The equation of motion then becomes:

θ̈ =

[
ω2 cos(θ0 + ε)− g

R

]
sin(θ0 + ε)

θ̈ ≈
[
ω2 cos θ0 − εω2 sin θ0 −

g

R

]
[sin θ0 + ε cos θ0]

Now the ω2 cos θ0 and −g/R terms cancel, and neglecting terms in ε2, we have:

θ̈ = ε̈ = −εω2 sin2 θ0 = −Ω′ε

So we can see that if we perturb around θ0 that we have oscillation around θ0 which corresponds to a stable
equilibrium.

In conclusion, we see that this is quite a rich problem with respect to different equilibrium points and
their behavior. There is also a discontinuous jump between certain equilibria ω =

√
g/R, which is known as

bifurcation, which can lead to chaotic motion.

6 Lecture 6

6.1 Lecture Notes - Charged Particles in EM Fields

6.1.1 Newton’s Law in the presence of EM fields

Newton says:
mr̈ = q(E + ṙ×B)

for an electric field E and magnetic field B. This is just the sum of the Coloumb force and Lorentz force.

6.1.2 Scalar and Vector Potentials

We will now apply the ideas of vector potential (for the magnetic field) from PHYS 301 to this situation.
Recall that we defined the vector potential A as

B =∇×A

. We also recall Faraday’s Law, which states (combined with the definition of the potential above) that:

∇×E = − ∂B

∂t
= − ∂∇×A

∂t

Interchanging the order of taking the curl and taking the time derivative, we see that:

∇×
(

E +
∂A

∂t

)
= 0

So there exists a scalar potential V such that:

−∇V = E +
∂A

∂t

22



Which comes from the fact that a curl of a gradient is zero. We can rewrite this to say that:

E = −∇V − ∂A

∂t

Now, we construct L such that we get the Lorentz Force. Generalize U = qV to get:

U ′ = qV − qṙ ·A

And we use L′ = T − U ′ as our Lagrangian.
Next week Monday, we will look at symmetry properties of the Lagrangian and how we can use this

to derive conservation laws. On Wednesday we will look at the method of using Lagrange multipliers for
constrained systems. On Friday we will review damped oscillators before moving into a discussion of coupled
oscillators.

6.2 Worksheet - Lagrangians for EM fields, Uniqueness

Problem 6.1. From the form of the Lagrangian for a charged particle in an electromagnetic field, find the
generalized momentum p.

Solution. As discussed in the lecture, we generalize the potential

U ′ = qV − qṙ ·A

and hence construct the Lagrangian:

L = T − U ′ =
1

2
mṙ2 − qV + qṙ ·A

The generalized momentum is then given by:

p =
∂L
∂ṙ

= mṙ + qA

Problem 6.2. Find the generalized force for the above system in the x-direction, and the total time derivative
of the generalized momentum, dp

dt (Recall that A = A(x, y, z, t))).

Solution. The generalized force in the x direction is given by:

Fx =
∂L
∂x

= −q
(
∂V

∂x
− ẋ ∂Ax

∂x
− ẏ ∂Ay

∂x
− ż ∂Az

∂x

)
The total time derivative of the generalized momentum is given by:

d

dt
px = mẍ+ q

(
ẋ
∂Ax
∂x

+ ẏ
∂Ax
∂y

+ ż
∂Ax
∂z

+
∂Ax
∂t

)
Where we have used the chain rule.

Problem 6.3. Write the equations of motion in terms of the electric and magnetic fields.

Solution. Combining the two equations above (EL equation), we have:

mẍ = −q
(
∂V

∂x
+
∂Ax
∂t

)
+ qẏ

(
∂Ay
∂x
− ∂Ax

∂y

)
+ qż

(
∂Az
∂x
− ∂Ax

∂z

)
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Recognizing the first term as the electric field term and the second/third terms as Bz and −By respectively,
we recognize this as the x component of ṙ× (∇×A), or the Lorentz Force! The y and z components follow
similarly and we recover:

mr̈ = q(E + ṙ×B)

Which matches up with Newton’s Law. Hence, we have been able to extend the Lagrangian formalism to
charged particles in electromagnetic fields.

Problem 6.4. Consider a charged, relativistic particle in an electric field E. Show that the Lagrangian
L = −mc2

√
1− v2/c2− qV + qv ·A, with m given by the rest mass, gives the correct (relativistic) equations

of motion.

Solution. If we recall from PHYS 200, the momentum generalized to the relativistic case has a Lorentz factor
of γ = 1√

1− v2
c2

, given by:

p = m0γv

So we require that we get this back from the Lagrangian expression. Checking the generalized momentum,
we see:

p =
∂L
∂v

= −m0c
2 1

2

1√
1− v2

c2

(
−2

v

c2

)
= m0γv

Which lines up with our expectation.

Problem 6.5. Show that L = T − U + x2ẋ also gives the Newton’s equations of motion. What is the
implication for the uniqueness of the Lagrangian then?

Solution. Showing that this satisfies Newton’s equations of motion:

∂L′
∂x

= − ∂U

∂x
+ 2xẋ

∂L′
∂ẋ

= mẋ+ x2 =⇒ d

dt

∂L′
∂ẋ

= mẍ+ 2xẋ

Therefore by the EL equation:
∂L′
∂x

=
d

dt

∂L
∂ẋ

− ∂U

∂x
+ 2xẋ = mẍ+ 2xẋ

So we recover Newton’s law:

− ∂U

∂x
= mẍ

This shows that the Lagrangian is not unique. In general, we can always add a total derivative of the form:

d

dt
G(q, t)

to L without changing the equations of motion. To see that this is the case, consider the modified Lagrangian:

L′(q, q̇, t) = L(q, q̇, t) +
d

dt
G(q, t)

And now computing the action, we have:

S′(q, q̇, t) =

∫ t2

t1

L(q, q̇, t)dt+

∫ t2

t1

d

dt
G(q, t)dt

The second term we compute to be G(q2, t2)−G(q1, t1) which are independent of the trajectory (as the start
and endpoints are the same). So this does not affect the overall action, or the trajectory that minimizes the
action, or in other words:

δS′ = δS
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7 Lecture 7

7.1 Lecture Notes - Symmetries and Conservation Laws

7.1.1 Noether’s Theorem

Idea: Certain symmetries we observe in nature are associated with conservation laws. E.g. momentum with
translational symmetry. Formally, we consider the following:
Consider a Lagrangian L(q, q̇, t) is invariant under a coordinate transformation (q1, · · · , qn)→ (q̃1(α), · · · , q̃n(α))
with q̃i(α) = qi + αhi(q, t) + δ(α2). Consider taking the derivative with respect to α and set α = 0:

d

dα
L(q̃(α), ˙̃q(α), t)

∣∣∣∣
α=0

= 0

Where the expression is zero as L is invariant of α. Now, by the chain rule, we can say:

0 =

n∑
j=1

(
∂L
∂q̃j

∂q̃j
∂α

+
∂L
∂ ˙̃qj

∂ ˙̃qj
∂α

)∣∣∣∣∣∣
α=0

Now, we can say that
∂ ˙̃qj
∂α

=
d

dt

∂ q̃j
∂α

my equality of mixed partials. Using the EL equations, we can also say

that
∂L
∂q̃j

=
d

dt

∂L
∂ ˙̃qj

. We can then write the whole expression as:

0 =
d

dt

n∑
j=1

(
∂L
∂ ˙̃qj

∂q̃j
∂α

)∣∣∣∣∣∣
α=0

By the chain rule. We have just recollapsed the sum using the chain rule multiple times. Now, call this sum

I(q, q̇, t). This object is conserved as its time derivative is zero, i.e.
d

dt
I(q, q̇, t) = 0. Let us apply this to

make this more concrete.

7.1.2 Translational and Rotational Symmetry

The first symmetry we will consider is the homoegeneity of space. This can be mathematically represented
as ri 7→ r̃i + αê (where ê is some unit vector) and where ṙi = ˙̃ri.
The next symmetry we can consider is the isotropy of space. This is represented as ri 7→ r̃i = ri + α̂ × ri
(where α̂ is the axis of rotation).
Now, what does Noether tell us about these symmetries? Assuming that the Lagrangians are invariant under
the transformations, then I is conserved, and hence:

I =
n∑
j=1

(
∂L
∂ ˙̃qj

∂q̃j
∂α

)∣∣∣∣∣∣
α=0

=

{
(Translation)

∑n
j=1mj ṙj · ê

(Rotation)
∑n
j=1mj ṙj ·

(
α̂× rj

)
= α̂

∑n
j=1 rj ×mj ṙj = α̂ · L

In the first case (with translational symmetry) we have conservation of linear momentum along ê. In the
second case (with rotational symmetry) we have the conservation of angular momentum along α̂.

7.1.3 Time symmetry and the Hamiltonian

We next consider a scenario where we have homogeneity of time; In other words, where L is unchanged by

t. t 7→ t+ ε, and
∂L
∂t

= 0. Expanding out the total time derivative of the Lagrangian, we have:

d

dt
L(q, q̇, t) =

n∑
j=1

(
∂L
∂qj

∂qj
∂t

+
∂L
∂q̇j

∂

∂t

∂qj
∂t

)
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We recall that
∂qj
∂t

= q̇j ,
∂L
∂q̇j

= pj (generalized momentum) and
∂L
∂qj

=
d

dt

∂L
∂q̇j

(generalized force/time

derivative of generalized momentum). Again by taking out the time differential operator out of the sum, we
have:

d

dt
L(q, q̇, t) =

d

dt

∑
j

pj q̇j

where pj is the generalized momentum of the coordinate qj . We can write this as:

d

dt

∑
j

pj q̇j − L

 = 0

And we call the term in the brakets to be the Hamiltonian:

H =
∑
j

pj q̇j − L

which is a conserved quantity.

7.2 Worksheet - Energy and the Hamiltonian

Problem 7.1. Show that if a coordinate transformation is ”natural” (no explicit time-dependence, r =
r(q1, · · · , qn)) that the kinetic energy is a homogenous quadratic function of the velocities (a function is
homogenous of degree k if f(αx) = αkf(x). Find this quadratic function.

Solution. Note that any function that is a power law will satisfy this property; it turns out that kinetic
energy has this property (as we know). To solve the problem, we consider ṙj :

ṙj =

n∑
i=1

∂rj
∂qi

q̇i

To calculate ṙ2
j , we multiply the two sums:

ṙ2
j =

∑
i

∂rj
∂qi

q̇i

∑
k

∂rj
∂qk

q̇k


This gives us:

T =
1

2

∑
j

mj ṙ
2
j =

1

2

∑
i,k

q̇iq̇j

∑
j

mj
∂rj
∂qi

∂rj
∂qk


This term on the right is a matrix which we can call Aik. Once we sum over these components, we get the
total energy. Now we can see that this is homogenous, quadratic in ṙj .

Problem 7.2. Show then that the conjugate momenta have the form pi =
∑
j Aij q̇j, and thus that the

hamiltonian H = E, the total energy. Thus, under the above conditions, symmetry under time translation
is equivalent to conservation of energy.

Solution. Using the result from above:

pi =
∂L
∂q̇i

=
∂T

∂q̇i
=
∑
j

Aij q̇j
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Therefore: ∑
i

piq̇i =
∑
i

∑
j

Aij q̇j

 q̇i =
∑
i,j

Aij q̇iq̇j = 2T

Hence (using the defintion of H from lecture):

H = 2T − L = 2T − (T − U) = T + U = E

Which is just the total energy.

Problem 7.3. Show that the same derivation follows directly by using the property that the kinetic energy
is a homogenous function of degree 2 in the generalized velocities (use Euler’s homogeneity theorem: f is
positively homogenous of degree k if and only if x ·∇f(x = kf(x).

Solution. We have (letting x = q̇:

q̇ · ∂T
∂q̇

=
∑
i

piq̇i = 2T

Where the last line follows from the homogeneity theorem.

8 Lecture 8

8.1 Lecture Notes - Lagrange Multipliers

8.1.1 Motivation

How do you deal with a problem with constraints. Before, we had a method with generalized coordinates,
obtain an EoM for each of them. But sometimes we might be interested in the constraint force itself. For
this, we turn to the method of Lagrange multipliers (which have much broader use than mechanics!)

8.2 Worksheet - Lagrange Multipliers & Atwood Machine

Problem 8.1. Write the constraint equations f(x, y) = const. for x and y for the simple plane pendulum
and the Atwood Machine.

Solution. The constraint equation is f(x, y) =
√
x2 + y2 = L for the simple pendulum and f(x, y) = x+y =

L for the Atwood machine (constrained by length of rope).

Problem 8.2. Write down the Hamilton’s principle δS(x, y) = 0 for the two constrained variables x and y.
If we try to make the action stationary, how would the deviations δx and δy have to be constrained?

Solution.

δS +

∫ (
∂L
∂x
− d

dt

∂L
∂ẋ

)
δxdt+

∫ (
∂L
∂y
− d

d

∂L
∂ẏ

)
δydt = 0

But, these variations must be constrained as x and y are not independent of one another. We note that
δx, δy obey the constraints.

Problem 8.3. For deviations that meet the conditions of the question above, write down the variations of
the constraint δf . Multiply δf by an unknown function λ(t) and add to δS.
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Solution.

δf =
∂f

∂x
δx+

∂f

∂y
δy = 0

As the displacement must leavve the constraint unchanged. Hence we may add a 0 to the total variation of
S without changing anything. We therefore write:

δS =

∫ (
∂L
∂x

+ λ(t)
∂f

∂x
− d

dt

∂L
∂ẋ

)
δxδt+

∫ (
∂L
∂y

+ λ(t)
∂f

∂y
− d

dt

∂L
∂ẏ

)
δydt = 0

Problem 8.4. Can δx and δy be independently varied? The multiplying function of the constraint λ(t) is
so far undetermined and can be chosen as we wish. What special choice of λ(t) makes all of the arguments
δx, δy, δz... vanish? How have the Lagrange equations been modified when the dependent variables are
constrained?

Solution. Unlike the case with generalized coordinates, the variations are not independent. Consider that
we can pick λ(t) (Lagrange multiplier) to be whatever we like to make the first integral vanish. However,
this then means that the second term must vanish as well, as the sum has to be zero (and if the term
is to be zero for all variations, then the integrand must be zero)! In general, if we have a function of
(not necessarily generalized coordinates) L(xk, ẋk, t) with fi(xk, t) = 0 (m holonomic constraints), we can
consider the modified Lagrangian:

L̃(xk, ẋk, t) = L(xk, ẋk, t)−
m∑
i=1

λifi(xk, t)

And if we require that the variation vanishes δS = 0, then we get a set of generalized Lagrange equations:

∂L
∂xk

+

m∑
i=1

λi
∂fi
∂xk

=
d

dt

∂L
∂ẋk

Problem 8.5. What are Lagrange’s equations for x and y of the Atwood Machine?

Solution. The Lagrangian is given by:

L =
m1

2
ẋ2 +

m2

2
ẏ2 +m1gx+m2gy

Hence the equations of motions are:
m1ẍ = m1g + λ

m2ÿ = m2g + λ

Where λ is the Lagrange multiplier.
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Problem 8.6. Using the constraint equation for x and y, eliminate the Lagrange multiplier and solveagain
for the acceleration of x.

Solution. From the constraint equation (taking two time derivatives of it) we obtain that ẍ = −ÿ. We
therefore have that:

ẍ =
(m1 −m2)

(m1 +m2)
g

Problem 8.7. Now solve the equations for the Lagrange multiplier.

Solution. Solving for λ, we have:
λ = m1ẍ−m1g

We note that m1ẍ is the total force of the system, so

mẍ = − ∂U

∂x
− FT

Where the first term is the conservative (gravitational) force from potential and FT is the tension/constraint
force. Therefore, we have that:

λ = −FT
And we have found the lagrange multiplier to be the constraint/tension force!

Problem 8.8. Show that λ∂f∂x s the constraint force on mass m1.

Solution. Here,
∂f

∂x
= 1 so λ

∂f

∂x
= λ = −FT which is the expected result.

9 Lecture 9

9.1 Worksheet - Review of Damped & Driven Harmonic Oscillators

Problem 9.1. An undamped harmonic oscillator has general solution x(t) = B1 cos(ωt) +B2 sin(ωt). Show
this can be recast as x(t) = A cos(ωt− δ), where A =

√
A2 +B2.

Solution. Consider a right-angle triangle with side lengths B1, B2 and hypotenuse A +
√
B2

1 +B2
2 . Then,

let cos δ = B1

A and sin δ = B2

A . Looking at the equation for x(t) above, we can multiply it by one in a clever
way:

x(t) = A

[
B1

A
cosωt+

B2

A
sinωt

]
= A [cos δ cosωt+ sin δ sinωt] = A cos(ωt− δ)

Where the last equality follows by a trigonometric identity.

Problem 9.2. Show that the kinetic and potential energy of a simple undamped oscillator have the same
amplitude but are out of phase, such that the total energy is conserved.

Solution. Using our equation for x(t) above (where x(t) is the displacement from equilibrium), the total
energy is given by:

E = U + T =
1

2
kx2 +

1

2
mẋ2 =

1

2
kA2 cos2(ωt− δ) +

1

2
mA2ω2 sin2(ωt− δ)

We have that ω2 = k
m so:

k

2
A2 cos2(ωt− δ) +

k

2
A2 sin2(ωt− δ) =

kA2

2

And hence the total energy is a constant; we can therefore see that dE
dt = 0 and that the total energy is

conserved.
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Problem 9.3. Damped oscillatons are described by the ODE ẍ+ 2βẋ+ω2
0x = 0. Show that for overdamped

motion, the decay ”constant” (decay parameter) for a damped oscillator decreases with increasing friction.
Sketch the decay parameters vs. β for the whole range of β.

Solution. We guess a solution of the form x(t) = exp(rt). We can therefore generate a characteristic equation
for r, by substituting in the solution into the ODE and then cancelling out the exponential terms (as these
can never be zero). Hence, we have:

r2 + 2βr + ω2
0 = 0

This is a quadratic equation with solutions:

r = −β ±
√
β2 − ω2

0

There are now different possibilities for the damping depending on the ratio of β and ω0. For β > ω0, the
oscillator is overdamped. For β < ω0, the oscillator is underdamped. For β = ω0, the oscillator is critically
damped. Let us now consider the overdamped case. Then, we have that the discriminant in the equation
above β2 − ω2

0 is positive, and the general solution is the sum of decaying exponentials:

x(t) = C1 exp(r1t) + C2 exp(r2t)

where r1 = −β +
√
β2 − ω2, r2 = −β −

√
β2 − ω2. The dominant term will be the exp(r1t) term as this

decays more slowly. Therefore, the decay parameter is:

−β +
√
β2 − ω2

0

Which decreases with increasing β. We will also have a decay parameter for the underdamped case. In this
case, the decay parameter is just β, as the discriminant is negative, and hence the solution x(t) is composed
of an oscillating part (the imaginary exponential part from the square root) and a real exponentially decaying
part (exp(−βt)). Hence the decay parameter increases linearly in this regime. Overall, we obtain a plot that
looks like the follows:

Where the decay parameter is maximized when β = ω0, where we have critical damping.

Problem 9.4. Show that for critical damping, the solution x(t) = tert solves the ODE ẍ+ 2βẋ+ ω2
0x = 0.

Find r. Write the general solution.

Solution. For critical damping, we have that β = ω0 and we can calculate r to be:

r = −β ±
√
β2 − β2 = −β

Hence one solution is given by:
x1(t) = C1 exp(−βt)
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And we check the Ansatz provided in the question to verify it as a second solution. The first time derivative
is given by:

ẋ = exp(rt) + rt exp(rt)

And the second time derivative as:

ẍ = r exp(rt) + r exp(rt) + r2t exp(rt) = 2r exp(rt) + r2t exp(rt)

So substituting this into the ODE, with r = −β:

−2β exp(−βt) + β2t exp(−βt) + 2β
(
exp(−βt)− βt exp(−βt)

)
+ β2t exp(−βt) = 0

So we can see that this is indeed a solution! Hence the general solution is given by:

x(t) = C1 exp(−βt) + C2t exp(−βt)

Problem 9.5. Find the condition on C for z(t) = Ceiωt to be a solution to z̈+ 2βż+ω2
0z = f0e

iωt. Express
the coefficient C as Ae−iδ and find A and δ.

Solution. Let us plug in z(t) into the ODE:

(−ω2 + 2iβω + ω2
0)C exp(iωt) = f0 exp(iωt)

We may cancel out the exponentials on both sides:

(−ω2 + 2iβω + ω2
0) = f0

Hence we find:

C =
f0

−ω2 + 2iβω + ω2
0

= A exp(iδ)

We have that A2 = CC∗ and so:

A2 =
f0

−ω2 + 2iβω + ω2
0

f0

−ω2 − 2iβω + ω2
0

=
f2

0

(ω2
0 − ω2)2 + 4β2ω2

To get the phase, we see that:
f0 exp(iδ) = A(ω2

0 − ω2 + 2iβω)

And solving (using some knowledge of complex numbers and extracting their phase) we get:

δ = arctan

(
Im

Re

)
= arctan

(
2βω

ω2
0 − ω2

)

Problem 9.6. Write the general solution to ẍ + 2βẋ + ω2
0x = f0 cos(ωt) for the underdamped case. What

are the two undetermined constants?

Solution. Writing the general solution, we have:

x(t) = A cos(ωt− δ) + C1 exp(r1t) + C2 exp(r2t)

Where the first term is the particular solution (comes from the driving) and the exponentials come from the
homogenous solution. The former is the long-term oscillatory behavior, the latter is the transient solution
(the exponentials decay away with time).
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Problem 9.7. Show that the Q-factor given by the ratio of the width to the mean of the resonance curve is
equal to π times the number of oscillations in one decay time.

Solution. When ω ∼ ω0 (when the driving frequency approaches the natural frequency), we notice a res-
onance phenomenon, where the amplitude of the driven oscillator gets very large (technically it is slightly
off from ω = ω0, but to good approximation it is at the natural frequency of the system). This is pictured
below:

We can also consider the width of the resonance peak. It is defined as:

Q =
ω0

2β

Stronger damping implies a smaller quality factor and a narrower peak, and weak damping implies a larger
quality factor and a broadened peak. To prove the claim provided in the question, we consider that the
decay time is given by τ = 1

β and the period is T = 2π
ω0

, so plugging this in we can immediately see that:

Q =
ω0

2β
=

1
βπ
2π
ω0

= π
τ

T

which is the desired result.

Problem 9.8. Find the phase shift at resonance when the driving frequency ω is varied. Sketch the phase
shift δ vs. ω.

Solution. The phase shift is given by δ = π
2 (perfectly out of phase). We can see this as the phase shift is

given above by:

δ = arctan

(
2βω

ω2
0 − ω2

)
And at resonance we have ω ∼ ω0, so therefore the argument fo the arctan goes to infinity, and hence the
value of δ goes to π

2 .

10 Lecture 10

10.1 Lecture Notes - Intro to Coupled Oscillators

10.1.1 Analysis with Newtonian Mechanics
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A system of two coupled harmonic oscillators has spring constants k (left spring), k12 (middle spring) and
k (right spring). The displacements of the blocks are measured from equilibrium. The forces on the blocks
are therefore given by:

F1 = −kx1 − k12(x1 − x2)

F2 = −kx2 − k12(x2 − x1)

The Lagrangian formulation gives the same result; see worksheet!

10.2 Worksheet - Intro to Coupled Oscillators

Problem 10.1. Give some examples of coupled oscillators.

Solution.

• Masses coupled together by springs

• A crystal lattice, which can be approximated as atoms being connected by springs in a lattice structure

• Molecules (e.g. CO2) which we can treat as a carbon atom connected linearly to two oxygen atoms.

Problem 10.2. Find the Lagrangian for the two coupled oscillators(two masses connected by springs). Find
the equations of motion.

Solution. The Lagrangian is given by:

L = T − U =
m

2

(
ẋ2

1 + ẋ2
2

)
−
[
k

2
x2

1 +
k12

2
(x1 − x2)2 +

k

2
x2

2

]
To obtain the equations of motion, we use the EL equations:

d

dt

∂L
∂ẋ1

= mẍ1 =
∂L
∂x1

= −kx1 − k12x1 + k12x2

d

dt

∂L
∂ẋ2

= mẍ2 =
∂L
∂x2

= −kx2 − k12x2 + k12x1

Which agrees with our analysis using the Newtonian formulation. This is clearly a coupled system of ODEs.

To start solving this, we start by writing this in a nicer form, defining a column vector x =

[
x1

x2

]
. This

transforms things into a matrix equation:(
m 0
0 m

)(
ẍ1

ẍ2

)
= −

(
k + k12 −k12

−k12 k + k12

)(
x1

x2

)
Which we can write as:

Mẍ = −Kx
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Problem 10.3. Using the complex quantity z = a exp(iωt), show that the equation for the normal modes
can be written as (K− ωM)a = 0.

Solution. We define the complex quantity z as above (such that x = Re z, and then we have:

Mz̈ = Ma(−ω2) exp(iωt) = −Ka exp(iωt)

Then cancelling out the exponentials, we have:

Ka = Mω2a

Rearranging, we have:
(K− ω2M)a = 0

This is an eigenvalue problem, which we are familiar with from linear algebra. We note that here, M is
just an identity matrix multiplied by m.

Problem 10.4. Write out the characteristic equation. What are the roots? (i.e. the eigenfrequencies).

Solution. To solve this eigenvalue problem (i.e. for the system to have nontrivial solutions) we require that
det
(
K− ω2M

)
= 0. This is a polynomial/characteristic equation, for which the solution are the eigenvalues.

For M, K as we have defined them, this looks like:

det
(
K− ω2M

)
= (k + k12 −mω2)2 − k2

12 = 0

Where the first term is the product of the diagonals and the second term is the product of the off diagonals.
Factoring, we have:

(k −mω2)(k + 2k12 −mω2) = 0

So the characterstic equation hence has the two roots of:

ω1 =

√
k + 2k12

m
,ω2 =

√
k

m

The types of motion described by these two eigenfrequencies are as follows. For ω1, the blocks move with
the same frequency and exactly out of phase. For ω2, the blocks move with the same frequency, and exactly
in phase. We will see why this is in the last two question, by solving for the amplitudes a1, a2.

Problem 10.5. Find the normal mode corresponding to the eigenfrequency
√
k/m.

Solution. To find the normal mode, we solve for the eigenvector corresponding to the above eigenfre-
quency/eigenvalue:

(K− ω2M)

[
a1

a2

]
=

[
k12 −k12

−k12 k12

] [
a1

a2

]
= 0

Or equivalently:

k12

[
1 −1
−1 1

] [
a1

a2

]
= 0

From which we can see that the restriction on a1, a2 is that:

a1 = a2 = A exp(−iδ)
Hence solving for z:

z =

[
a1

a2

]
exp(iω2t) =

[
A
A

]
exp
(
i(ω2t− δ)

)
Therefore, finding x we have:

xII = Re z =

[
A
A

]
cos(ω2t− δ)

This is an eigenmode, at the lower frequency. We can see from this that the two masses oscillate in phase
with each other.
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Problem 10.6. Find the normal mode corresponding to the eigenfrequency
√

(k + 2k12)/m.

Solution. Similarly solving for the eigenvector, we have:

(K− ω2M)a =

[
−k12 −k12

−k12 −k12

]
a = −k12

[
1 1
1 1

] [
a1

a2

]
= 0

Therefore we obtain the requirement that a1 = −a2, and hence:

xI =

[
A
−A

]
cos(ω1t− δ)

Problem 10.7. What is the general solution?

Solution. The general solution is the sum of the eigenmodes:

x(t) = xI(t) + xII(t)

Problem 10.8. If block 1 oscillates while block 2 is held fixed, what is the frequency of oscillations?

Solution. The frequency of oscillations of the first block would be given by ω0 =
√

k+k12
m ; the reasoning for

this is the block feels a restoring force −kx from the left, restoring force k12x from the right, which leads to
an effective spring constant k + k12 and hence leads to the solution as stated.

Problem 10.9. How does the uncoupled frequency above compare to the two eigenfrequencies?

Solution.
ω2 < ω0 < ω1

ω2 is the frequency of the lowest mode, the blocks are in phase. The middle frequency is where we fix one
block and just let the other oscillate. ω1 corresponds to the higher eigenmode, with the blocks oscillating
out of phase, at the highest frequency. Next day, we will look at coupled pendulums and normal coordinates
(which is changing bases to diagonalize our matrices), where we obtain the useful result that the normal
coordinates are independent of one another.

11 Lecture 11

11.1 Lecture Notes - Normal Coordinates

11.1.1 Normal Coordinates of Spring-Mass system

From last day, we recall the general solution of the coupled spring mass system:

x1(t) = A1 exp(iω1t) +A2 exp(iω2t)

x2(t) = −A1 exp(iω1t) +A2 exp(iω2t)

We would like a transformation such that for each mode, there is only one non-zero coefficient. The first
normal coordinate is given by:

ξ1(t) =
1

2
(x1 − x2)
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and the second by:

ξ2(t) =
1

2
(x1 + x2)

For mode I (A1 = A and A2 = 0), we have that ξ1(t) = A cos(ωt− δ), and ξ2(t) = 0. For mode II (A1 = 0
and A2 = A), we have that ξ2(t) = A cos(ωt− δ) and ξ1(t) = 0. Why is this useful? Because each normal
mode describes an oscillation at a single frequency.

11.1.2 Generalization

The motion of a system of coupled oscillators can be described with normal coordinates:

q(t) =

n∑
i=1

aiξi(t)

where each normal coordinate ξi(t) satisfies:

ξ̈i + ω2
i ξi = 0

as each of the ξis are an independent harmonic oscillator with a certain frequency. We will return to this
point on Friday.

11.2 Worksheet - Double Pendulum

Problem 11.1. Find the potential energy of the double pendulum.

Solution. The height of the first mass is given by L1(1− cosφ1), and the height of the second mass is given
by L1(1 − cosφ1) + L2(1 − cosφ2) by trigonometry (the second mass is just the height of the first + the
relative height from the first mass). Hence the total potential energy is given by:

U = U1 + U2 = m1gL1(1− cosφ1) +m2gL1(1− cosφ1) +m2gL2(1− cosφ2)

Problem 11.2. Write the kinetic energy in terms of φ̇2
1 and φ̇2

2

Solution. The first mass is easy; it is just T1 = 1
2m1L

2φ̇2
1. The second term is slightly harder as the position

vector is given by the sum of the vector from the fixed point to m1 plus the vector from m1 to m1. Expanding
this out, this yields total kinetic energy:

T =
m1

2
L1φ̇

2
1 +

m2

2

(
L2

1φ̇
2
1 + L2

2φ̇
2
2 + 2L1L2φ̇1φ̇2 cos(φ1 − φ2)

)
Note the cross term we get at the end.

Problem 11.3. Write the kinetic and potential energies in the simplifying case where the angles φi and
their derivatives φ̇i are small.Find the two equations of motion in this case.
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Solution. Time for the small angle approximation! In the limit of small angles, cosφ ≈ 1 − φ2

2 and so the
potential energy reduces to:

U =
m1 +m2

g
L1φ

2
1 +

m2

2
gL2φ

2
2

For the kinetic term, the only cosine that shows up is the last term. We do have to be slightly careful here
as expanding this out, we already get terms that are nonlinear (e.g. (φ1 − φ2)2). We only want terms of
order 2 and lower in our expression, (e.g. φ2, φφ̇, φ̇2) so in our expansion of cos(φ1 − φ2) we only keep the
highest order term (e.g. just 1)! Thus the kinetic energy reduces to:

T =
m1 +m2

2
L2

1φ̇
2
1 +m2L1L2φ̇1φ̇2 +

m2

2
L2

2φ̇
2
2

Problem 11.4. From the two linearized equations of motion for the double pendulum, find the corresponding
matrices M and K.

Solution. The EL equations yield:

(m1 +m2)L2
1φ̈1 +m2L1L2φ̈2 = −(m1 +m2)gL1φ1

m2L1L2φ̈1 +m2L
2
2φ̈2 = −m2gL2φ2

Which we can see are (fortunately) linear from our small angle simplification above. We can write these
equations in matrix form:

Mφ̈ = −Kφ
Writing out these matrices, we have:

M =

[
(m1 +m2)L2

1 m2L1L2

m2L1L2 m2L
2
2

]

K =

[
(m1 +m2)gL1 0

0 m2gL2

]

Problem 11.5. What are the eigenfrequencies and eigenvectors (the normal modes) when m1 = m2 = m
and l1 = l2 = l?

Solution. In the case that all the masses and lengths are the same, we may write these matrices as:

M = mL2

[
2 1
1 1

]

K = mL2

[
2ω2

0 0
0 ω2

0

]
Where we introduce ω0 =

√
g
l . Exactly as we did last day, we make an Ansatz:

z = a exp(iωt)

This generates a characteristic equation for the eigenvalues:

det
(
K− ω2M

)
= 0
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Expanding this out, we have:

det

(
mL2

[
2(ω2

0 − ω2) −ω2

−ω2 (ω2
0 − ω2)

])
= 0

Which yields the equation:
2(ω2

0 − ω2)2 − ω4 = ω4 − 4ω2
0ω

2 + 2ω4
0 = 0

This is a quadratic equation in ω2, which has roots:

ω2
1/2 = 2ω2

0 ±
√

16ω2
0 − 8ω2

0

4
= ω2

0

(
2±
√

2
)

Now solving for the normal modes (e.g. the eigenvectors), we get solutions:

φI(t) = A

[
1√
2

]
cos(ω1t− δ)

φII(t) = A

[
1

−
√

2

]
cos(ω2t− δ)

We see that this is similar to the results of last day (one mode with the two masses in phase, one mode with
the two masses out of phase), but with a difference that the lower mass has a greater amplitude.
Remark: After linearization, the problem solving method reduces to what we saw last day; without lineariza-
tion, the double pendulum system is chaotic! Perhaps to be revisited at the end of this class. But for small
deviations from local minima in the potential, this method is generally feasible.

12 Lecture 12

12.1 Lecture Notes - Weakly Coupled Oscillators

Recall from our work two lectures ago that for the 2-mass 3-springs problem, the eigenfrequencies were
determined to be:

ω1 =

√
k + 2k12

m
, ω2 =

√
k

m

Now, we make the assumption that k12 � k, i.e. that the middle spring joining the masses is quite weak. In
this limit, we can clearly see that ω1 ≈ ω2. This generates an interesting physical case; here we can define a
”middle frequency” which is the average of the two eigenfrequencies above:

ω0 =
ω1 + ω2

2

We could then rewrite ω1, ω2 in terms of ω0 and a small parameter ε:

ω1 = ω0 + ε

ω2 = ω0 − ε
The general solution could then be written as:

z(t) = C1

[
1
−1

]
exp
(
i(ω0 + ε)t

)
+ C2

[
1
1

]
exp
(
i(ω0 − ε)t

)
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We can factor this expression, recognizing common terms:

z(t) =

(
C1

[
1
−1

]
exp(iεt) + C2

[
1
1

]
exp(−iεt)

)
exp(iω0t)

Now, suppose that C1 = C2 = A
2 (i.e. the two modes are excited to be the same amplitude). We then have

that:

z(t) =
A

T

[
exp(iεt) + exp(−iεt)
exp(−iεt)− exp(iεt)

]
exp(iω0t)

Then using Euler’s formula:

z(t) = A

[
cos(εt)
−i sin(εt)

]
exp(iω0t)

Now taking the real part of this:

Re z(t) = x(t) =

[
x1

x2

]
=

[
A cos(εt) cos(ω0t)
A sin(εt) sin(ω0t)

]
This result corresponds to a fast oscillation (e.g. at frequency ω0) modulated by a slower oscillation (at
frequency ε which is small by assumption). When graphed, this looks like:

Where we see ”beats”! Exactly like with AM radio waves, we see the frequency stay constant but the
amplitude going up and down with time.

12.2 Worksheet - Generalized Coupled Oscillators

Problem 12.1. Show that for any system undergoing small oscillations, the kinetic and potential energies
can be written as quadratic forms of the generalized velocities and coordinates, respectively.

Solution. Our vector of n generalized coordinates is given by:

q = (q1, · · · , qn)

Which may be related to the Cartesian coordinates ri = ri(q1, · · · , qn). Previously, we solved for the kinetic
energy:

T (q, q̇) =
1

2

∑
j,k

Ajk(q)q̇j q̇k

Which is a quadratic form. When we actually evaluate this, we only keep the constant terms from Ajk so
we get the familiar kinetic energy:

T (q̇) =
1

2

∑
j,k

Mjkq̇j q̇k =
1

2
q̇TMq̇
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Where things have been written as a matrix product in the last line (replacing the double sum). The
potential energy we can do a similar way. In general, the potential energy depends on all of the positions of
the particles. We can taylor expand this around an equilibrium value, where q = 0:

U(q) = U(0) +
∑
j

∂U

∂qj
qj +

1

2

∑
j,k

∂2U

∂qj∂qk
qjqk + · · ·

By the fact that we take 0 as a minimum, the second term vanishes. We can also neglect the constant term,
so:

U(q) =
1

2

∑
j,k

Kjkqjqj =
1

2
qTKq

Hence, we have obtained quadratic forms for both the kinetic and potential energies! This is just a general
description that we could do for any system.

Problem 12.2. Prove that the equations of motion for the eigenfrequencies and eigenvectors are det
{
K− ω2M

}
=

0 and (K− ω2M)a = 0.

Solution. Given our system, we have m Lagrange equations in general. These are given by:

m∑
j=1

Mij q̈j =
∂U

∂qi
= −

m∑
j=1

Kijqj

Which we may rewrite as:
Mq̈ = −Kq

As done previously, let q(t) = Re z(t), where z(t) = a exp(iωt). Plugging this in and cancelling out the time
derivatives, we obtain an algebraic set of equations:

(K− ω2M)a = 0

Which we can get the eigenvalues from:

det
(
K− ω2M

)
= 0

We know that these matrices are positive semidefinite, so the eigenvalues will be positive (or perhaps zero).

Problem 12.3. Show generally that each normal coordinate ξi oscillates at its own normal frequency ωi,
uncoupled to the other normal coordinates.

Solution. Normal modes are given by:

qi(t) = ai cos(ωit− δi)

I.e. each have an oscillatory solution with characterstic frequency ωi. It also satisfies the eigenvalue problem
from above:

Kai = ω2
iMai

The normal mode expansion is then given by:

q(t) =

m∑
i=1

ξi(t)ai
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Where ξi(t) are the weights of the modes in the general solution representation. We note that ai forms a
basis in which we can expand the solution, which is nice because in this basis we can solve the equations of
motion for the normal coordinates trivially. We have that q(t) satisfies:

Mq̈ = −Kq

Let us plug in this normal mode expansion into the equation of motion. This yields:

m∑
i=1

ξ̈i(t)Mai = −
m∑
i=1

ξi(t)Kai

But Kai = ω2
iMai (eigenvalue) so:

m∑
i=1

ξ̈i(t)Mai = −
m∑
i=1

ξi(t)(−ω2
i )Mai

This must hold for the components individually, i.e. this must hold for each value of i. We therefore obtain
the identity:

ξ̈i(t) = −ω2
i ξi(t)

From which we recover the fact that the normal coordinates satisfy equations for simple harmonic motion.

Problem 12.4. Check for the 2-mass-3-springs problem that the normal coordinates are the coefficients of
the eigenvector expansion for the displacements

(
x1

x2

)
.

Solution. The eigenvectors on Monday were given by:

a1 =

[
1
1

]
, a2 =

[
1
−1

]
The normal mode expansion is then:

q = ξ1a1 + ξ2a2

So therefore:

q =

[
ξ1 + ξ2
ξ1 − ξ2

]
=

[
q1

q2

]
From which we obtain the normal coordinates:

ξ1 =
q1 + q2

2
, ξ2 =

q1 − q2

2

Problem 12.5. Using the expansion of (x1, x2) in terms of eigenvectors,find the normal coordinates for the
double pendulum.

Solution. For the double pendulum, we had the general solution:

φ1(t) = A1 exp(iω1t) +A2 exp(iω2t), φ2(t) = A1

√
2 exp(iω1t)−A2

√
2 exp(iω2t)

This corresponds to eigenvectors:

a1 =

[
1√
2

]
,a2

[
1

−
√

2

]
The normal mode expansion is given by:

φ = ξ1a1 + ξ2a2 =

[
ξ1 + ξ2√

2ξ1 −
√

2ξ2

]
=

[
φ1

φ2

]
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Solving for ξ1, ξ2 we then solve the system:

ξ1 + ξ2 = φ1, ξ1 − ξ2 =
φ√
2

Adding and subtracting these equations, we get:

ξ1 =

(
φ1 + φ2√

2

)
2

ξ2 =

(
φ1 − φ2√

2

)
2

13 Lecture 13

13.1 Worksheet - Review of Weeks 1-4

Problem 13.1. Which of these problems must be solved using the calculus of variations?
1. Find the period of small oscillations for a particle sliding (without friction) on the inside of a sphere.
2. Find the surface with fixed area that encloses the maximum volume.
3. Find the path between two points that minimizes the time for a particle to slide (without friction) between
the points.
4. Find the path of a projectile (with no air resistance) that leads to the maximum range.

Solution. Exactly two. For 1, we looked at the equations of motion and Taylor expanded around the
minimum for small φ. So, we aren’t looking for the path that minimizes some functional in this case,
hence its not particularly a variational problem. For 2, we have an optimization problem; we are trying to
extremize/maximize a volume. We can write an expression for the surface area, and add in a constraint (e.g.
we could use Lagrange multipliers for example). We could optimize this with the Calculus of variations. 3
is the brachistochrone problem, obviously yes. 4 does not require varations; this is just a question of initial
conditions of the trajectory.

Problem 13.2. A calculus of variations problem requires minimizing

J [y(x)] =

∫ x2

x1

f
[
y(x); y′(x);x

]
dx

When we solve Euler’s equation
∂f

∂y
− d

dx

∂f

∂y′
= 0

what do we learn?

Solution. We learn of the path y(x) that minimizes J [y(x)]; the EL equation gives a differential equation for
the path y(x) which minimizes J [y(x)].

Problem 13.3. What is the Lagrangian of a particle of mass m attached to a spring with spring constant
k?

Solution. L = T − U = 1
2mẋ

2 − 1
2kx

2 (the kinetic energy term minus the potential energy term).

Problem 13.4. What is the Lagrangian of a pendulum of mass m, length l? Assume the potential energy
is zero when θ is zero.
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Solution. L(θ, θ̇, t) = 1
2ml

2θ̇2 −mgl(1− cos θ)

Problem 13.5. For which of these systems could you use Lagrange’s equations of motion?
1. A double pendulum: a pendulum (mass m, length 1 ) has a second pendulum (mass m, length l) connected
to its bob.
2. A projectile moves in two dimensions with gravity and air resistance.
3. A bead slides without friction on a circular, rotating wire.

Solution. Everything but 2 works; with 2, we have friction/a non-conservative force and hence the Lagrange
equations no longer apply (though we can add in a correction to account for this).

Problem 13.6. A particle moves in one dimension with Lagrangian L = T − U . Suppose we shift the
potential energy U by a constant C. What changes?

Solution. The value of S changes (S depends on the Lagrangian) but the physical path x(t) taken by the
particle remains invariant (that is, the path that gives δS = 0); one way of seeing this is the equations of
motion are given by derivatives of the Lagrangian, which would remove the effects of any constants.

Problem 13.7. A bead of mass m slides on a circular wire of radius R, which rotates about a vertical axis
with angular velocity Ω. The equation of motion of the bead is

θ̈ +
g

R
sin θ − Ω2 sin θ cos θ = 0

What are the equilibrium values of θ?

Solution. θ = 0 and θ = arccos
(

g
RΩ2

)
.

Problem 13.8. The equation of motion for small motions about the equilibrium θ = arccos
(

g
RΩ2

)
above is

given by:
θ̈ + Ω2 sinθ0 θ = 0

What is the oscillation frequency of the bead?

Solution. ω = Ω sin θ0

Problem 13.9. Which of these systems are holonomic? E.g. which of these systems have a constraint that
can be written as f(q1, . . . , qn, t) = 0?
1. The double pendulum, but with the lower mass attached by a spring instead of a spring.
2. The motion of a hockeyu puck around a frictionless air hockey table
3. A bead moving frictionless on a circular wire hoop spinning at fixed angular velocity.

Solution. A and C. With C, this is obviously possible (we constrain the radius). With B, the constraint is
an inequality (e.g. the normal force is just such that the mass stays at the level of the table), which makes
it non-holonomic. With A, we have that the lower mass can move more freely; the system is still holonomic,
we just got rid of the constraint on the second mass. Note that if forces are dissipative, then we can also
not write constrains as holonomic.

Problem 13.10. What is the constraint equation?
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Solution. f(x, y) = y
x − tan(α) = 0. A typical holonomic constraint.

Problem 13.11. A particle of mass m slides on the outside of a cylinder of radius a. A good choice of
generalized coordinates is (r, θ). What is the constraint equation?

Solution. f(r, θ) = r − a = 0

Problem 13.12. What can you conclude from the fact that
∂L
∂ẋi

is constant for all i?

Solution. Momentum is conserved.

Problem 13.13. How can we rewrite: ∫ t2

t1

pj
d

dt
δqjdt

Solution. By integrating by parts, we get:

−
∫ t2

t1

ṗjδqjdt

(the variation vanishes at the boundary, so it is discarded).

14 Lecture 14

14.1 Lecture Notes - Review of Inertial Frames

14.1.1 Definition & Newton’s Law in an accelerating Frame

By definition, an inertial frame S0 is a frame with no acceleration or rotation. We now consider a constantly
accelerating frame S with A = v̇. Newton’s law holds in the inertial frame, so:

mr̈0 = F

The velocity ṙ0 (in the non-inertial frame) and ṙ (in the inertial frame) are related by:

ṙ0 = ṙ + v

Taking the time derivative:
r̈ = r̈0 −A

So applying Newton’s law:
mr̈ = F−mA = F + Finertial

We get an extra term accounting for the fictitous force.
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14.2 Worksheet - Review of Noninertial Frames

Problem 14.1. A pendulum is inside of a railcar that is accelerating in the x-direction with acceleration A
Find the equilibrium value of the angle φ.

Solution. Apply Newton’s law in the non-inertial frame:

mr̈ = F−mA

We have that the forces in the inertial frame are given by F = mg + T, (gravity and tension) so:

mr̈ = mg + T−mA

Grouping terms:
mr̈ = T +m(g −A)

Where we may call g−A the effective acceleration, geff . By trigonometry, the equilibrium angle would be
given by:

tanφeq =
A

g

As can be seen from the diagram below:
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Problem 14.2. The earth and moon orbit each other, while both earth and moon frames of reference are
accelerating. Find the acceleration in each frame of reference.

Solution. In the inertial frame, the forces on the test mass on the surface of the Earth is given by:

F = mg − gMmm
d̂

d2

Where Mm is the mass of the moon. The Earth is not an inertial system, so it experiences some acceleartion.
The acceleration of the center of the mass of the earth is given by:

A = −GMm
d̂0

d2
0

Hence we have:

mr̈ = mg −GMmm

(
d̂

d2
− d̂0

d2
0

)
= mg − Ftidal

The tidal force is the vector difference between if the mass is at the surface of earth vs. at the center of
mass of the earth. This results in tidal effects at either side of the earth, with the same magnitude and
in the opposite direction (d̂ and d̂0 are parallel at these two points, so the effect is maximal). We end up
with a bulge on both sides of the Earth. At the top and bottom, we have that the x components cancel by
symmetry, so we only have the y component (weaker effect, inwards pointing). This is shown in the diagram
below:

Problem 14.3. Find the equation of motion for a particle on the surface of the ocean of the earth, in the
earth’s frame of reference.

Solution.
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15 Lecture 15

15.1 Lecture Notes - Rotating Frame Clickers

Which of the following motion leads to fictituous forces?

1. The frame moves at a constant velocity with respect to an inertial reference frame.

2. The frame rotates at a constant angular velocity with respect to an inertial reference frame.

3. The frame moves at a constant acceleration with respect to an inertial reference frame.

4. The frame rotates at a constant angular acceleration with respect to an inertial reference frame.

Solution. Three of these frames have fictituous forces (1 does not, its inertial). 2. We saw last day, 3/4 lead
to fictituous forces as we will see today!

The coriolis and centrifugal ”forces” are

Fcoriolis = −2 mΩ× v
Fcentifitigal = −mΩ× (Ω× r)

Which force is more important in the limit of slow velocity (in the rotating frame)?

Solution. In the limit of slow velocity, the centrifugal force (independent of velocity) dominates (the Coriolois
force is linear in velocity).

A disk drive typically rotates at 3600rpm, or 360 radians per second. For a dust particle at radius
r = 5cm, how fast must the particle be moving (in the rotating frame) for the Coriolis and the centrifugal
forces to have approximately equal magnitude?

Solution. Equating the two expressions and solving for |v|, we find that |v| = 900cm/s.

A hockey puck slides from the center towards the edge of a frictionless, rotating merry-go-round. The merry-
go-round has angular velocity Ω and rotates CCW when viewed from above. In the rotating frame, the initial
velocity is in the positive y direction. In the inertial frame, which way does the path of the puck bend?

Solution. The path of the puck does not bend in the inertial frame; it retains a straight trajectory (there is
no force acting on it!)

In the rotating frame, which way does the path of the puck bend?

Solution. Applying the RHR, we see that the path curves to the right when viewed from above (towards
positive x).
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15.2 Worksheet - Rotating Coordinate Systems

Problem 15.1. What is the time rate of change, dr
dt = v of a vector r to a point in a body that is rotating

about an axis O with angular velocity ω?

Solution. We define the rotation vector:
ω = ωû

Where û points along the rotation axis (the sign is determined by the RHR). Geometry tells us that the
distance from the rotation axis ρ is given by:

ρ = r sin θ

Hence the velocity of this point is given by:

v = ρω = r sin θω

Generalizing this to the vector form, we have:

v = ω × r = ṙ

Problem 15.2. Consider a body rotating in a reference frame that is itself rotating with respect to a fixed
reference frame. Show that angular velocities add just like linear velocities.

Solution. This is a consequence of the linearity of the cross product. Suppose we have:

v31 = ω31 × r = v32 + v21 = ω32 × r + ω21 × r = (ω32 + ω21)× r

Hence:
ω31 = ω32 + ω21

So we can see that we can add angular velocities just like linear velocities.

Problem 15.3. Consider a vector Q, which may be a position, velocity, or force vector. Show that the time
rate of change of Q, dQ

dt in a fixed frame of reference S0 is related to dQ
dt in a rotating frame of reference S

by: (
dQ

dt

)
S0

=

(
dQ

dt

)
S

+ Ω×Q
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Solution.
We express the unit vectors in the rotating frame by transforming the unit vectors in the fixed frame:

x̂ = x̂0 cosωt+ ŷ0 sinωt

ŷ = ŷ0 cosωt− x̂0 sinωt

So expressing an arbitrary vector Q in the rotating frame, we have:

Q = Qxx̂ +Qyŷ +Qz ẑ

Now expressing this in terms of the unit vectors in the stationary frame, we have:

Q = (Qx cosωt−Qy sinωt)x̂0 + (Qx sinωt+Qy cosωt)ŷ0 +Qz ẑ0

We pick ẑ to be the rotation axis, so ẑ = ẑ0 by our choice of coordinate system. Looking at the rate of
change w.r.t the lab frame, we have:(

dQ

dt

)
S0

=
(
−ωQx sinωt− ωQy cosωt

)
x̂0 +

(
ωQx cosωt− ωQy sinωt

)
ŷ0

Where the unit vectors do not have time dependence, only the cosωt and sinωt terms do. Looking at this
expression, we can see that this can be written as the expression:(

dQ

dt

)
S0

= ω(ẑ0 ×Q) = ω ×Q

Now, we take the derivative in the rotating frame:(
dQ

dt

)
S

= Q̇xx̂ + Q̇yŷ + Q̇z ẑ

Now, we consider what is
(

dQ
dt

)
S0,x

. By the chain rule:

(
dQ
dt

)
S0,x

=
d

dt

(
Qx cosωt−Qy sinωt

)
x̂0(

dQ
dt

)
S0,x

=
[
Q̇x cosωt− Q̇y sinωt) + (−ωQx sinωt− ωQy cosωt)

]
x̂0

Doing the same for the x and y components, we get the simple formula:(
dQ

dt

)
S0

=

(
dQ

dt

)
S

+ ω ×Q
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Problem 15.4. Now find the acceleration in a fixed frame of reference, and thus write the modified Newton’s
law for a constantly rotating frame of reference, as we’d experience on the earth for example.

Solution. The goal is to find the second derivative of the position vector in the S (rotating) frame. First

calculating
(

d2r
dt2

)
S0

, we have: (
d2r

dt2

)
S0

=

(
d

dt

)
S0

(
dr

dt

)
S0

So applying the result from above twice, we have:(
d2r

dt2

)
S0

=

(
d

dt

)
S0

((
dr

dt

)
S

+ Ω× r

)
(

d2r

dt2

)
S0

=

(
d

dt

)
S

((
dr

dt

)
S

+ Ω× r

)
+ Ω×

((
dr

dt

)
S

+ Ω× r

)
We now simplify this expression. Henceforth, we will use the dot notation to refer to a derivative in S.(

d2r

dt2

)
S0

= r̈ + Ω̇× r + Ω× ṙ + Ω× ṙ + Ω× (Ω× r)

Multiplying both sides by m, and simplifying using the antisymmetry of the cross product (a×b = −b×a)
have:

m

(
d2r

dt2

)
S0

= F = mr̈− 2mṙ×Ω−m(ṙ× Ω̇)−m(Ω× r)×Ω

Where we use the identity that the LHS is just the total force on the system by Newton’s second law.
Rearranging this, we have:

mr̈ = F + 2mṙ×Ω +m(Ω× r)×Ω +m(r× Ω̇)

Where the first term is the sum of the (real) forces on the system, the second term is the coriolois force,
the third term is the centrifugal force, and the fourth term (which is nonzero only if the angular velocity is
changing in time) is the Euler force. We may write this as:

mr̈ = F + Fcor + Fcent + Feuler

We note that we can also derive this using the Lagrangian approach! If we write the Lagrangian with the
correct velocity, i.e.:

L =
m

2

∣∣∣∣∣
(

dr

dt

)
S0

∣∣∣∣∣
2

− U(r)

Then we will find that we recover the same result.

16 Lecture 16

16.1 Lecture Notes - Focault Pendulum

16.1.1 Rotating Coordinate System EOM(
dQ
dt

)
S0

=
(
dQ
dt

)
S

+ ~ω ×Q

mr̈ = ~F + 2mṙ×Ω +m(Ω× r)×Ω +mr× ~̇Ω = F + Fcoriolis + Fcentrifugal + FEuler
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16.1.2 Review Questions

A bead rests on a wire that extends from the origin at an angle θ to the vertical. The wire rotates with
angular velocity Ω about the vertical. In the frame rotating with the wire, what is the magnitude and
direction of the centrifugal force when the bead is a distance r from the origin?

Solution. By trigonometry, the bead is r sin θ away from the rotation axis, so there is a centrifugal force of
mΩ2r sin θ away from the rotation axis.

A bucket of water spins about its central axis. After a relaxation time, the shape of the water surface
reaches a steady state. Where is the water surface highest?

Solution. At the edge of the bucket, as the centrifugal force pulls the water towards the edge. The surface
of the water is a parabola.

A puck slides from the center towards the edge of a frictionless, rotating merry-go-round. The merry-go-
round has angular velocity Ω and rotates CCW when viewed from above. In the rotating frame, the initial
velocity is in the positive y direction. What effect does the Coriolis force have on the velocity of the puck?

Solution. The coriolis force changes the direction of the velocity (deflected left) but does not change the
magnitude (we can see from the v ×Ω form that the force does no work).

Consider the same scenario as the previous question. How many rotations does the merry-go-round make
before the puck slides off of the edge?

Solution. #rotations = aΩ
2πv . First consider that the time to reach the edge is simply the distance a (radius)

divided by the velocity v of the puck. Then, we may divide this time by the time per rotation (the period),
which is T = 2π

Ω . This yields:

#rotations =
∆t

T
=

aΩ

2πv

At which of these points will a person’s measured weight be the largest (equator, 30, 40, 60 degrees
latitude, or north pole)

Solution. At the north pole; there we have no centrifugal force there (which acts against the gravitational
force and decreases the weight of the person).

In the northern hemisphere, which directions are winds from the north and south deflected by the Coriolis
force?

Solution. Winds from the N are deflected E and winds from the S are deflected W.

Where are these low pressure areas?
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Solution. The left image rotates clockwise, the right one rotates counterclockwise. For a low pressure sys-
tem, we have air coming in, and in the northern hemisphere, we have right deflection (and vise versa for
the southern hemisphere) so we would expect a counterclockwise motion for the northern hemisphere and
clockwise for the southern hemisphere.

16.1.3 The Foucault Pendulum

We start with our general expression:

mr̈ = F + 2mṙ×Ω +m(Ω× r)×Ω +mr× Ω̇

The third term can be neglected as the Earth spins at a constant rate, and the second term can be neglected
as Ω is small. Define x to be north south, y to be east west. F is the sum of the tension and the gravitational
force, that is:

F = T +mg

Now we consider the given picture:

By similar triangles:

Tx = −T x
L

Ty = −T y
L

Tz = −T z − L
L

But for the Tz, we can consider that we do small amplitudes, so z ≈ 0, and ż ≈ 0. Hence, Tz ≈ T ≈ mg.
Hence, we have dealt with the tension. Now, we think about Ω.
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If our latitude is λ and we use coordinates such that x points towards the equator, y points parallel to the
latitude line, and z points away from the center of the earth, what is the rotation vector in this coordinate
system?

Solution. We know that Ωearth points straight upwards. Projecting this, we get:

Ω = ω

− cosλ
0

sinλ



Next, what is Ω× v?

Solution. Using that v =

ẋẏ
0

 (Assume ż is negligible) and Ω from above, we get:

Ω× v =

−ẏΩ sinλ
ẋΩ sinλ
−ẏΩ cosλ



Now, putting together the equations of motion for x and y we get:

mẍ = −mg x
L

+ 2mΩ sinλẏ

mÿ = −mg y
L
− 2mΩ sinλẋ

We have a system of coupled equations. As a trick, multiply both equations by i and add them together,
and define s = x+ iy. We then have:

s̈+ 2iαṡ+ k2ṡ = 0

Where α = Ω sinλ, k2 = g
L . To solve this differential equation, we guess s(t) = c exp(γt). This yields a

characteristic equation:
γ2 + 2iαγ + k2 = 0

Solving this, we get:

γ1/2 = −iα± i
√
α2 + k2

The general solution is the sum of these two:

s(t) = C1 exp(γ1t) + C2 exp(γ2t)
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We assume initial conditions of s(0) = x̂, ṡ(0) = 0 (elongation along x, with no initial velocity). We may
then solve for the coefficients C1, C2 (homework!). Then, taking the real part of the complex solution, we
get the final result: [

x(t)
y(t)

]
=

[
cos(αt) sin(αt)
− sin(αt) cos(αt)

]x̂ cos
(√

α2 + k2t
)

x̂
sin(
√
α2+k2t)α√
α2+k2


Question: We have this result. What is the effect of multiplying through by this matrix?

Solution. We recognize this just as a rotation matrix, rotating by a time dependent angle Ωzt = αt.

This is a characteristic feature of the Focault pendulum, indeed that it precesses.

17 Lecture 17

17.1 Lecture Notes - Rotational Motion of Rigid Bodies

17.1.1 Review of Center of Mass - Clickers

A system of n particles is described by the masses and positions of each particle, mα, rα. The total mass is
M =

∑
αmα. What is the center of mass of the system?

Solution. The center of mass is the weighted positional average of the position vectors (weighted by the
masses, normalized by the total mass). It is given by R = 1

M

∑
αmαrα

Consider particles α and β, and the internal force Fαβ (the force on particle α due to particle β). How
does Newton’s third law relate the internal forces?

Solution. Fαβ = −Fβα

Suppose a system of particles experiences only internal forces (no external forces). What can we say of the
linear momentum of the system?

Solution. The momentum of the COM is constant; the momentum of individual particles can change due to
internal forces, but the lack of external forces means the center of mass will have conserved momentum.

17.1.2 Linear and Angular Momentum of COM

We have that the center of the mass position vector is:

R =
1

M

∑
α

mαrα

Then the momentum of the center of mass is:

P = MṘ =
∑
α

mαṙα
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The external force is given by:
Fext = MR̈

We can resolve the motion of the body into the motion of the center of mass and motion relative to the
center of mass. Define rα (the position vector of one of the point masses that makes up the body) as:

rα = R + r′α

Where the primed coordinates are in the COM frame. The total angular momentum is given by:

L =
∑
α

lα =
∑
α

rα ×mαṙα

We substitue rα with our expression above, which yields four terms:

L =
∑
α

R×mαṘ +
∑
α

R×mαṙ′α +
∑
α

r′α ×mαṘ +
∑
α

r′α +mαṙ′

What can we say of the quantity
∑
αmαr′α?

Solution. Evidently,
∑
αmαr′α = 0 as the sum of the relative positions to the COM weighted by the masses

would be zero by definition of the COM!

This makes two of our terms in the above sum vanish (namely, the second and third terms). This leaves
us with:

L =
∑
α

R×mαṘ +
∑
α

r′α +mαṙ′

The first term we may rewrite as R ×MṘ = R × P, i.e. the angular momentum of the center of mass.
The other term is the angular momentum relative to the center of mass. This is a nice decomposition; any
angular momentum we can write as:

L = Lorbital + Lspin

For example, with the Earth-sun system, we have:

17.1.3 Potential and Kinetic Energy of a Rigid Body

We can also decompose the potential energy of a rigid body:

U = Uext + Uint
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Where:
Uint =

∑
i<j

Uij(rij)

But since in a rigid body all particle distances rij are fixed, the internal potential energy Uint must be
constant!
Consider particles α and β; the internal force fαβ = the force on particle α due to particle β; the position
vector rαβ = the vector from particle α to particle β. If the force between the two particles is central, what
can you say about rαβ × fαβ?

Solution. Since the vectors would be parallel in the case of central forces, rβα × fαβ = 0, that is internal
central forces do not change the angular momentum.

A system of n particles is described by the masses and positions of each particle, relative to the center of
mass: mα, r

′
α The squared velocity of each particle is therefore

v2
α = ṙ′2α + 2ṙ′α · Ṙ + Ṙ2 = v′2α + 2ṙ′α · Ṙ + V2

What is the total kinetic energy of the system?

Solution. T = 1
2

∑
α mαv′2α +

∑
αmαv′α · V + 1

2MV2 But the second term vanishes by the same previous

argument, so: T = 1
2

∑
α mαv′2α + 1

2MV2 Where we can see that the kinetic energy can also be decomposed
to the kinetic energy of the center of mass, and the kinetic energy relative to the center of mass.

Note that for the kinetic energy about an instantaneous axis of rotation of a rigid body, we have

T =
1

2

∑
α

mαṙ
′2
α

Where we have chosen the center of mass R to be a point of the body at rest (and hence Ṙ = 0).

17.1.4 Example: Rolling Disk

The kinetic energy of a disk rolling down an incline is given by:

T =
1

2
mẋ2 +

1

2
Iφ̇2

Where I is the moment of inertia about the central axis.
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17.1.5 Rotation about the z axis

In this case, the angular momentum and kinetic energy are given by:

L =
∑
α

rα ×mαvα

Where:

vα = ω × rα =

0
0
ω

×
xαyα
zα

 =

−ωyαωxα
0


Hence:

mαrα × vα = mα

xαyα
zα

×
−ωyαωxα

0

 = mαω

 −zαxα−zαyα
x2
α + y2

α


x2
α+y2

α is just the distance from the rotation axis, so identify it as ρ2
α. Then, the z component of the angular

momentum is given by:

Lz =
∑
α

mαρ
2
αω = Izzω

The double zz notation will become clear in a moment.
Next, let’s look at the kinetic energy T = 1

2

∑
αmαv

2
α. Since we are doing circular motion about a rotational

axis, vα = ωρα. Hence:

T =
1

2

∑
α

mαω
2ρ2
α =

1

2
Izzω

2

Next looking at the other components of the angular momentum, we have

Lx = −
∑
α

mαxαzαω, Ly = −
∑
α

mαyαzαω

We now define some new quantities:

Lx = −Ixzω, Ly = −Iyzω

We see that ω only has one component (in the z direction), but evidently, the angular momentum has more
than one component, and hence is not parallel to omega! In the past (e.g. first year physics) we have only
studied problems where L is parallel to ω but here this is definitely not the case.
We note that Iij are the products of inertia. This can be generalized to three dimensions, by introducing
the inertia matrix/tensor:

L = Iω

It is no longer sufficient to treat the moment of inertia as a single number.
What is the direction of L of m at this moment pictured?
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Solution. The velocity is into the page, and the position vector points up and right, so evaluating l = r× v
(with the RHR), we get that the direction is up and left.

Now considering the same setup as above, what happens to L and the moment of inertia I as the mass spins
around?

Solution. As the mass rotates around the axis, the direction of the angular momentum will change. Since ω
is constant in time, we must have that I changes in time by L = Iω. Hence, L and I both change, and there
is a net torque on the mass. There will only be some special axis for which the moment of inertial will not
change (e.g. the wheel rolling down the inclined plane). But in general, L, I are not invariant in time.

For the shown configuration, what are the products of inertia for rotation about the z axis? Using the
formulas we derived previously, we have:

Izz =
∑
α

mα(x2
α + y2

α) = m(0 + y2
0 + 0 + y2

0) = 2my2
0

Ixz = −
∑
α

mαxαzα = 0

Iyz = −
∑
α

mαyαzα = −m(y0z0 + y0(−z0)) = 0

So in this case, we have that ω ‖ L. Next day, we will look at the general inertia tensor, and perhaps the
principle axes of rotation (for which the inertia tensor is simple/diagonal).
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18 Lecture 18

18.1 Lecture Notes - Moment of Inertia Tensor

18.1.1 Review of Last Day’s Results

L = LCM + Lrel

T = TCM + Trel

U = UCM + Urel

We can decompose the angular momentum and energies into the center of mass term and the relative to the
COM term. We note that for rigid bodies, Urel is constant.
Last time (see 17.1.5) we observed that the angular momentum vector and the rotation vector are, in general,
not parallel. Let us solve a question with a similar idea. Suppose we have a rotating dumbbell of two masses
m which move in circles (radius a) at a z displacement l and −l, joined by a massless rod. The Angular
velocity vector is given by ω = ωẑ. What is the direction of L?

Solution. Direction E. Use the right hand rule with L = r× v and the add the angular momenta of the two
terms.

Follow-up question; consider the body frame where the position of the masses are (0, a, l), (0,−a,−l). What
is the Izz component of the inertia tensor?

Solution. Recall that Izz =
∑
αmα(x2

α + y2
α). Applying the formula, we have that Izz = ma2 + m(−a)2 =

2ma2.

Next, what is the Ixz component of the inertia tensor?

Solution. Recall that Ixz = −∑α xαzα. We see that x = 0 for both masses so hence Ixz = 0.

What’s Iyz?

Solution. Recall that Iyz = −∑αmαyαzα. We therefore have that Iyz = −mal−m(−a)(−l) = −2mal.

What is the kinetic energy of the system?

Solution. We use that T = 1
2Izzω

2 = 1
2 (2ma2)ω2 = ma2ω2.

Remark: We can genrealize this to be T = 1
2ω · L.
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18.1.2 Angular momentum for rigid body with angular velocity along arbitrary direction

We have that:

ω =

ωxωy
ωz


As well as that:

L =
∑
α

mα

(
rα × (ω × vα)

)
We apply the BAC-CAB rule, that is:

A× (B×C) = B(A ·C)−C(A ·B)

Using this, the above expression for the angular momentum becomes:

L =

LxLy
Lz

 =
∑
α

mα

(y2
α + z2

α)ωx −xαyαωy −xαzαωz
−yαxαωx (z2

α + x2
α)ωy −yαzαωz

−zαxαωx −zαyαωy (x2
α + y2

α)ωz


We may pull out these coefficients and define a moment of inertia matrix/tensor:

I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz


Where L = Iω. Note that this matrix is both real symmetric, as Iij = Iji, and hence contains 6 independent
elements. We also note that this means IT = I (equal to its transpose). For example, using the definition,
we can say that:

Ixx =
∑
α

mα(y2
α + z2

α)

Ixy = −
∑
α

mαxαyα = −
∑
α

mαyαxα = Iyx

We can extend this notion to continuous mass distributions:

I =

∫
dV ρ(x, y, z)

y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2


18.1.3 Index notation

Note that when we write L = Iω, this is equivalent to Li =
∑
j Iijωj . We can also write this compactly by

introducing the Kronecker Delta notation:

δij =

{
1 if i = j

0 otherwise

Hence we could write the above expression for the inertia tensor more compactly as:

Iij =

∫
dV ρ(x, y, z)

(
r2δij − rirj

)
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18.1.4 Example: Components of Inertia Tensor for rotation of cube about corner

We have a uniform solid cube of mass M and side b, rotating about a corner (the origin). We assume a
constant ρ of ρ = M

b3 . Calculating Ixx, we have:

Ixx = ρ

∫ b

0

dx

∫ b

0

dy

∫ b

0

dz(y2 + z2) = . . . =
2

3
Mb2

Note we have pulled out ρ from the integration as these are constant. By symmetry of the object, Ixx =
Iyy = Izz. What about the off diagonal terms? Calculating Ixy we have:

Ixy = ρ

∫ b

0

dx

∫ b

0

dy

∫ b

0

dz(−xy) = −M
4
b4

And we would expect the other off diagonal elements to again be identical by symmetry. Writing the total
inertia tensor, we then have:

I = Mb2

 2/3 −1/4 −1/4
−1/4 2/3 −1/4
−1/4 −1/4 2/3


18.1.5 Example: Components of Inertia Tensor for rotation of cube about COM

Our bounds of integration will change compared to the last case. Calculating Ixx, we have:

Ixx = ρ

∫ b/2

−b/2
dz

∫ b/2

−b/2
dy

∫ b/2

−b/2
dz(y2 + z2) =

Mb2

6
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Again by symmetry, Ixx = Iyy = Izz. We note that this is different from before! Calculating Ixy, we have:

Ixy = ρ

∫ b/2

−b/2
dz

∫ b/2

−b/2
dy

∫ b/2

−b/2
dz(−xy) = 0

The integral is immediately zero by the fact that the integrand is odd. The same goes for the other off
diagonal elements, which yields the final inertia tensor:

I =
Mb2

6

1 0 0
0 1 0
0 0 1


Which is diagonal! This happens to be the case because this is a principal axis of rotation, where the inertia
tensor has a particularly simple (diagonal) form.

18.1.6 Parallel Axis Theorem

If Iij is the inertia tensor calculated in the CM coordinates, and Jij is the tensor element in the displaced
coordinates (where R = r + a), then:

Jij = Iij +M(a2δij − aiaj)

18.1.7 Example: Applying the Parallel Axis Theorem to the Cube

For the displacement of coordinates from the center of the mass of the cube to the corner of the cube, we
have that:

a =

−b/2−b/2
−b/2

 , a2 = |a|2 =
3

4
b2

Then, for the diagonal elements we have:

M(a2δii − aiai) = M

[
3

4
b2 − −b

2
· −b

2

]
=
Mb2

2

And for the off diagonals:

M(a2δij − aiaj) = M

[
−−b

2

−b
2

]
= −Mb2

4

Hence calculating the inertia tensor about the corner of the cube (in the displaced coordinates) we get:

J = Mb2

1/6 0 0
0 1/6 0
0 0 1/6

+Mb2

 1/2 −1/4 −1/4
−1/4 1/2 −1/4
−1/4 −1/4 1/2

 = Mb2

 2/3 −1/4 −1/4
−1/4 2/3 −1/4
−1/4 −1/4 2/3


Which agrees with the result obtained from the direct calculation.
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18.1.8 Principal axes

If L = λω for a scalar λ, the body rotates around one of its principal axes. λ is the ”Moment of inertia”
about that axis. So if:

I =

λ1 0 0
0 λ2 0
0 0 λ3


Then the chosen axes are the principal axes and λi are the principal moments. For any rigid body and any
point O, there are three perpendicular axes with respect to which the inertia tensor is diagonal! This is a
consquence of the fact that the moment of inertia tensor has real entries and is symmetric.
Which of the following statements are a consequence of the fact that the inertia tensor is a 3x3 matrix with
real positive eigenvalues and orthogonal eigenvectors?

(a) The matrix can be diagonalized

(b) The matrix of eigenvectors is an orthogonal matrix

(c) The matrix of eigenvectors is a rotation matrix (if properly normalized)

(d) In the coordinate system aligned with the eigenvectors, the tensor is diagonal.

Solution. All 4 are correct.

19 Lecture 19

19.1 Lecture Notes - Principle Axes of Inertia & Euler’s Equations

19.1.1 Motivation Clickers

Suppose we calculate a diagonal inertia matrix for an objecct in some coordinate system, with λ1 > λ2 > λ3.
What are the principle axes?

Solution. (1, 0, 0), (0, 1, 0) and (0, 0, 1). If we calculate the inertia matrix to be diagonal in our coordinate
system, then it is just the x/y/z axis that are the principal axes. In general, the principal axes are just the
coordinate axes if I is diagonal!

Next, suppose we calculate the moment of inertia of a second object, and it is not diagonal. What are
the principle axes in this case?

Solution. (e1, e2, e3) where ei are the eigenvectors of I.

19.1.2 Linear algebra review

A real symmetric (nxn) matrix can be diagonalized, i.e.:

S−1AS =


λ1 · · · 0
...

. . .
...

0 · · · λn


The matrix A has eigenvectors v1, · · ·vn corresponding to eigenvalues λ1, · · ·λn.

The matrix S has the eigenvectors as its columns, that is, S = [v1, · · ·vn].
The eigenvectors obey the equation Avi = λivi.
The eigenvectors form an orthonormal basis.
Note that S here is an orthogonal matrix, that is, ST = S−1, or SST = SS−1 = I. So we could write

the above equivalently as STAS.
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Another property is that detS = ±1.
A group theoretic property is that Orthogonal matrices with det(S) = 1 form the SO(n) group.

Multiplication of a vector by a matrix A is a linear transformation v 7→ Av. What happens to an eigenvector
of A under this linear transformation?

Solution. The magnitude of the vector can change (in fact, it is rescaled by the corresponding eigenvalue)
but the direction does not change.

The eigenvalue equation can be written as (A− λI)v = 0. What condition must be satisfied for λ to be
an eigenvalue of A?

Solution. det(A− λI) = 0

The matrix A has eigenvectors v1, · · ·vn corresponding to eigenvalues λ1, · · ·λn. The matrix S has the
eigenvectors as its columns, that is, S = [v1, · · ·vn]. What is the product AS?

Solution. Recall that:

S−1AS =


λ1 · · · 0
...

. . .
...

0 · · · λn


Hence:

AS = S


λ1 · · · 0
...

. . .
...

0 · · · λn


Therefore the answer is:

AS = [λ1v1 · · ·λnvn]

(Question from last day) Which of the following statements are a consequence of the fact that the inertia
tensor is a 3x3 matrix with real positive eigenvalues and orthogonal eigenvectors?

(a) The matrix can be diagonalized

(b) The matrix of eigenvectors is an orthogonal matrix

(c) The matrix of eigenvectors is a rotation matrix (if properly normalized)

(d) In the coordinate system aligned with the eigenvectors, the tensor is diagonal.

Solution. All 4 are correct (for (c), recall that when we diagonalize a matrix, we rotate our axes/coordinate
system).
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19.1.3 Rotational motion and principal axes

We have that the torque is defined as:
Γ = L̇

Where Γ = r× F. We can expand out the time derivative of the angular momentum with:

L̇ = İω + Iω̇

But it is quite nasty to work in a frame where the inertia tensor is constantly changing. Hence, let us work
in a coordinate system where I is fixed and hence İ = 0.
How is the time derivative of a vector v in an inertial frame I related to the time derivative of the vector in
a rotating frame R, which rotates with angular velocity vector ω?

Solution. As we derived previously,
dv

dt

∣∣∣∣
I

=
dv

dt

∣∣∣∣
R

+ ω × v

So, we work in the body frame where I is fixed. Then, expressing the torque in this frame, we have:

Γ =
dL

dt

∣∣∣∣
S0

=
dL

dt

∣∣∣∣
Sbod

+ ω × L = Iω̇ + ω × L

Choosing our principal axes such that I is diagonal, we have that:

ω × L = ω ×

λ1 0 0
0 λ2 0
0 0 λ3

ω1

ω2

ω3

 = det

 ê1 ê2 ê3

ω1 ω2 ω3

λ1ω1 λ2ω2 λ3ω3


Hence, Euler’s equations in the body frame (expanding out our expression for Γ above are:

Γ1 = λ1ω̇1 − (λ2 − λ3)ω2ω3

Γ2 = λ2ω̇2 − (λ3 − λ1)ω1ω3

Γ3 = λ3ω̇3 − (λ1 − λ2)ω1ω2
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19.1.4 Torque free tumbling

Consider a box of side lengths a, 2a, 3a aligned as follows:

We can write the inertia tensor to be diagonal:

I =

I1 0 0
0 I2 0
0 0 I3


Where I1 > I2 > I3 We can then have rotations around three possible axes:

We can now apply Euler’s equations to learn something about this tumbling motion. Pick arbitrary axis (3)
such that ω3 � ω2 = ω1 ≈ 0, i.e. the body is rotating very fast about one axis and not the others. The
Euler equations then give us:

λ3ω̇3 = (λ1 − λ2)ω1ω2 ≈ 0

λ1ω̇1 = (λ2 − λ3)ω3ω2

λ2ω̇2 = (λ3 − λ1)ω3ω1

The first equation tells us that ω̇3 ≈ 0 and the angular velocity stays relatively constant. Let us take the
time derivative of the second equation to learn more information:

λ1ω̈1 = (λ2 − λ3)(ω̇3ω2 + ω3ω̇2)

By the first equation, ω̇3ω2 ≈ 0. We can therefore use the third equation to eliminate ω̇2, which gives us:

λ1ω̈1 ≈ (λ2 − λ3)ω3
(λ3 − λ1)ω3ω1

λ2
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We can rewrite this as:
ω̈1 = −kω1

Where

k =
(λ3 − λ2)(λ3 − λ1)

λ1λ2
ω3

This is a very familiar differential equation. The sign of k will tell us about the resulting motion.
(1) In the first case, suppose λ3 > λ2 and λ3 > λ1, or λ3 < λ2 and λ3 < λ2. Inn these two cases, we
have that k > 0, and the above equation of motion for ω1 corresponds to simple harmonic motion (stable +
oscillatory).
(2) In the second case, suppose λ1 < λ3 < λ2 or λ2 < λ3 < λ1, then k is negative, and the above equation
of motion for ω1 corresponds to real exponential solutions (unstable!)
Our conclusion is that the rotation around the middle axis is unstable. This is a mathematical explanation
for the famous intermediate axis theorem/tennis racket theorem, which we can see realized here:
https://www.youtube.com/watch?v=1n-HMSCDYtM

20 Lecture 20

20.1 Lecture Notes - Free Rotation of Spinning Top & Euler Angles

20.1.1 Euler Equations Review

A rotating dumbbell consists of two masses m which move in circles at a z displacement l and −l, joined by
a massless rod. The angular velocity vector is ω = ωẑ. Consider the body frame where the positions of the
masses are (0, a, l) and (0,−a,−l). What are the principle axes of inertia?

Solution. A). The principle axes of inertia are aligned with the symmetries of the body. If there is a symmetry
axes, we can expect this to correspond to a principle axis.
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Followup: What is the components of the angular velocity vector in this frame? (where θ is the angle formed
by the z-axis/rotation axis and the mass?)

Solution. ω =

ω cos θ
ω sin θ

0

 by trigonometry.

Consider the body frame aligned with the principle axes of inertia (as sketched). What are Euler’s
equations in this frame?

Solution. We first recall the three moments of inertia:

λ1 = 0

λ2 = 2m(a2 + l2)

λ3 = 2m(a2 + l2)

We also recall the Euler equations:
Γ1 = λ1ω̇1 − (λ2 − λ3)ω2ω3

Γ2 = λ2ω̇2 − (λ3 − λ1)ω1ω3

Γ3 = λ3ω̇3 − (λ1 − λ2)ω1ω2

In this case, we have that ω3 along v3 is zero (from the previous problem) and that the time derivatives of
all of the ωis are zero (as the dumbell rotates at constant velocity. From this we get:

Γ1 = 0

Γ2 = 0

Γ3 = 2m(a2 + l2)ω2 sin θ cos θ

Cosnider the body frame aligned with the principle axes of inertia. In this frame, the torque is constant
in the 3 directions (out of the page). How can you describe the torque in the space frame?

Solution. Since L is rotating and Γ is perpendicular to this and rotating with it (in the lab frame), we
therefore have that |Γ| is constant and it is rotating about the z axis.

What is the angular momentum in the body frame?

Solution. L = Iω, and since I is diagonal in the body frame, we have:

L = Iω =

0 0 0
0 2m(a2 + l2) 0
0 0 2m(a2 + l2)

ω cos θ
ω sin θ

0

 =

 0
2m(a2 + l2)ω sin θ

0


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20.1.2 Free Rotation of symmetric top

Here, we study the motion of a symmetric top. This means that λ1 = λ2. In addition, no torque, so Γ = 0.
Writing down the Euler equations (where the LHS will be zero), we then have:

0 = λ1ω̇1 − (λ2 − λ3)ω2ω3

0 = λ2ω̇2 − (λ3 − λ1)ω1ω3

0 = λ3ω̇3 − (λ1 − λ2)ω1ω2

Since λ1 − λ2 = 0, we therefore find that ω̇3 = 0 and hence ω3 is constant (as lines up with our experience.
Writing the other equations down (making the substitution that λ2 = λ1, we have:

ω̇1 =
λ1 − λ3

λ1
ω2ω3

ω̇2 = −λ1 − λ3

λ1
ω1ω3

Let us define Ωb = λ1−λ3

λ1
ω3, then we have:

ω̇1 = Ωbω2

ω̇2 = −Ωbω1

Let us add i times the second equation to the first equation. Then, define η = ω1 + iω2. We then have:

ω̇1 + iω̇2 = η̇ = Ωb(ω2 − iω1) = −iΩbη

This has a complex exponential solution:

η(t) = η0 exp(−iΩbt)

Suppose η0 = ω0. then:
η(t) = ω0 exp(−iΩbt)

Takign the real and imaginary parts to recover ω1 and ω2, we get:

ω =

 ω0 cos(Ωbt)
−ω0 sin(Ωbt)

ω3


From which we can see tha the free top undergoes precession. We can check that ˙bmω = Ωb × ω which
would indeed correspond to rotation. We note that |ω| is a constant here. Visually, we could think of these
as follows:
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20.1.3 Rotation Matrices

We need to establish a more systematic way to go from body to lab frame (i.e. rotating the coordinate
system).

These rotations are performed through rotation matrices. The first picture is a rotation around the z axis.
The matrix that does this is

Rz =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


The second picture is a rotation around the y axis. The matrix that does this is:

Ry =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


Where the minus sign is switched in order to preserve the handedness of the coordinate system. X is the
same, with:

Rx =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ


In general, to go from one coordinate system to another, we can decompose the rotations into rotations
about x, y, and z. But note that the order matters! This brings us to discussion of Euler angles.

20.1.4 Euler Angles

The Euler angles gives us a convention for the order of rotations.
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1. First, we rotate around the z-axis by φ.

2. Next, we rotate around the new y axis by θ

3. Finally, we rotate around the new z-axis by ψ.

Next day: A general Lagrangian for rigid systems, and then applying this to a spinning top with Torque
applied to it. Then, we get into Hamiltonian mechanics!

21 Lecture 21

21.1 Lecture Notes - Lagrangian for Rigid Body, Spinning Top with Torque

21.1.1 Review

If v is a vector in one frame and v′ is the same vector in a rotated frame, we showed that v′ = Av, where
A is a rotation matrix (matrix of direction cosines). This determines v′ given A and v. If instead we know
v′ and A, how can we find v?

Solution. v = ATv′. For a rotation, AT = A−1 so this corresponds to multiplying by the inverse.

For a rotation matrix, ATA = I. What does this imply about the determinant of A?

Solution. detA = 1, as det I = 1 so detATA = detAT detA = 1 and hence ±1 is possible, but, detA = −1
corresponds to a reflection (Rather than a rotation). So for a rotation, we have unit determinant.

What is the correct matrix for rotation about the x-axis?

Solution. The correct matrix is: 1 0 0
0 cos θ sin θ
0 − sin θ cos θ



Using Euler angles, we wish to construct a rotation matrix that rotates first by angle ϕ about the z-axis,
then θ about the x’ axis, then ψ about the z” axis. How should we multiply the three rotation matrices to
get the total/final rotation matrix A(ϕ, θ, ψ)?

Solution. Recalling order of matrix application (right to left) we have:

A(ϕ, θ, ψ) = AψAθAϕ
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What is the matrix A−1 that reverses this series of rotations?

Solution. The inverse is:
A−1 = AT (ϕ, θ, ψ) = ATϕA

T
θ A

T
ψ ]

Last lecture, we looked at free rotation of a symmetric top. Given ω and L, we found that both
precess/rotate about the symmetry axis with angular velocity ΩB = λ1−λ3

λ1
ω3 which on earth is ω3/300. In

the lab frame, there is no torque, so L is constant and hence we found the result that the body cone ”rolls
around” the space cone, and that ω and ê3 precess about L with ΩS = L/λ1.

21.1.2 Lagrangian of Rigid Body

We will use the Euler angles to get the general Lagrangian. Recall that T = 1
2ω ·L. Using Euler Angles, we

have:
ω = φ̇ẑ + θ̇ê′2 + ψ̇ê3

this is the vector sum of these three components, each of which are written in a different coordinate system
(related by rotations). We will now expand this in the body frame. We know that:

ê′2 = Re3ê2 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

0
1
0

 = sinψê1 + cosψê2

In a similar way, we get:
ê′1 = cosψê1 − sinψê2

Note that this is a passive transformation. Next, we determine:

ẑ = Re2′ ê3 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

0
0
1

 = − sin θê′1 + cos θê′3 = − sin θ cosψê1 + sin θ sinψê2 + cos θê3

Therefore plugging back into the original equation and collecting the terms, we get:

ω = (θ̇ sinψ − φ̇ sin θ cosψ)ê1 + (θ̇ cosψ + φ̇ sin θ sinψ)ê2 + (φ̇ cos θ + ψ̇)ê3
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Therefore, in the body frame, the kinetic energy is easy to calculate (as the inertia tensor is diagonal) so:

T =
1

2

(
λ1ω

2
1 + λ2ω

2
2 + λ3ω

2
3

)
=
λ1

2
(θ̇2 + φ̇2 sin2 θ) +

λ3

2
(ψ̇ + φ̇ cos θ)2

Where we suppose that λ1 = λ2 as the top is symmetric.
Question: How does the kinetic energy in the body frame T = 1

2ω · Iω compare to the kinetic energy in the
space frame?

Solution. We will come back to this on Wednesday. Try a conversion between the two frames by a rotation
and see what you get.

21.1.3 Symmetry Spinning Top with Torque (Gravity)

Now, we consider a spinning top with gravity. We have that the Lagrangian gives:

L =
1

2

[
λ3

(
ψ̇ + φ̇ cos θ

)2

+ λ1

(
φ̇2 sin2 θ + θ̇2

)]
−mgR cos θ

From which we can see that the total energy, the generalized momentum associated with ψ, and the gener-
alized momentum associated with φ are conserved (The Lagrangian does not depend on ψ or φ, so they are
cyclic and conserved). Calculating pψ, we get:

pψ =
∂L
∂ψ̇

= λ3(ψ̇ + φ̇ cos θ) = λ3ω3 = L3 = C

Which is just the angular momentum in the e3 direction in the body frame. Doing the same for pφ, we have:

pφ =
∂L
∂φ̇

= λ1φ̇ sin2 θ + λ3(φ̇ cos θ + ψ̇) cos θ = Lz = C

Which is the z-component of the angular momentum in the space frame, which makes sense if we think about
the effects of gravity. Finally, we calculate the equation for θ (which is the only quantity that can evolve:

λ1θ̈ = λ1φ̇
2 sin θ cos θ − λ3φ̇ sin θ(ψ̇ + φ̇ cos θ) +MgR sin θ

Now, we consider the simple situation where θ is constant. Then, θ̇ = θ̈ = 0, and from the equations for φ̇
and ψ̇ we see that the also are constant. Then, let us call φ̇ = Ω. Writing the EOM for θ, we have:

0 = λ1Ω2 cos θ − λ3Ωω3 +MgR

This is a quadratic equation for Ω, from which we can solve for it. For ω3 large, we get two solutions:

Ω1 ≈
λ3ω3

λ1 cos θ

Which is actually independent of g! It is the same precession we saw for the free top. The other frequency
is given by:

Ω2 ≈
MgR

λ3ω3

Which is precession due to the gravitational torque.
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22 Lecture 22

22.1 Lecture Notes - Spinning Top with Torque, Nutation, Intro to Hamiltonian
Mechanics

22.1.1 Returning to a Question

We determined the scalar product LTL in the body frame. How does this compare to the scalar product in
the space frame?

Solution. The scalar product should be the same under rotation (invaraince under rotation). Going from
the body frame to the space frame is just a rotation, and rotation preserves the angle between and the
magnitude of two vectors. Another way to think about it:

LTL = L′TRTRL′ = L′TL′

How does the rotational kinetic energy in the body frame T = 1
2ω

T Iω compare to the rotational kinetic
energy in the space frame.

Solution. As above, the kinetic energy in the body frame and space frames should be equivalent. Mathe-
matically:

1

2
ωT Iω =

1

2
ωT

′
RRT IRRTω′ =

1

2
ωT

′
Iω′

22.1.2 Spinning top with gravity/Nutation

Last time, we derived an equation of motion for θ of a spinning top, and solved the equations for the case
where θ was held constant. From this, we obtained the precession of the spinning top under gravity. We
now consider the more general case where θ varies with time (is not constant). We will consider explicitly
θ(t), and find ”nutation”; that is, nodding repeatedly. Let us consider the energy:

E = T + U =
λ1

2
θ̇2 + Ueff (θ)

Where:

Ueff (θ) =
(pφ − pψ cos θ)2

2λ1 sin2 θ
+

p2
ψ

2λ3
+MgR cos θ

(This was obtained just by replacing terms of φ̇ and ψ̇ with the generalized momenta). This looks like the
two body problem reduced to a one body problem with effective potential. We first notice that MgR cos θ

is negative for θ > π
2 and

(pφ−pψ cos θ)2

2λ1 sin2 θ
+

p2ψ
2λ3

is positive. At θ = 0, π we have that Ueff →∞. Graphically:

Now consider:
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If a symmetric top has total effective energy E1, then what type of motion does this top undergo?

Solution. The top undergoes constant precession about the vertical axis, at a constant θ; we have not excited
the one dimensional system, and θ must hence be constant (stay in the minimum)

If we now give it some energy:

What is the motion?

Solution. The top will now undergo precession combined with nutation, as θ oscillates about the minimum.

There are several qualitatively different scenarios that can occur. We have the equation:

φ̇ =
pφ − pψ cos θ

λ1 sin2 θ

Two possible scenarios are:
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The first scenario occurs where pφ > pψ and φ̇ > 0. The second scenario occurs where pφ ≈ pψ, then we have

pφ < pψ cos θ and pφ > pψ cos θ2 and hence we have that φ̇ changes direction (which is quite cool!) There is
also a third case, where we get cusps:

Where pφ ≈ pψ and we can have pφ = pψ cos θ1 or pφ = pψ cos θ2.

22.1.3 Intro to Hamiltonian Mechanics - Motivation

Why do we need another form of mechanics? Newton was nice and intuitive, and Lagrange is much easier
if we have constraints in our system and want to solve problems without having to explicitly worry about
the constraints. Why can’t we just be happy with Lagrange and leave it as it is? Reason 1 is that its

76



cool/beautiful. From a practical perspective, it doesn’t give us much of an advantage over Lagrange, but it
will allow us to give a richer understanding of dynamical systems and conserved quantities. There is also an
advantage when we want to link this to the most important theory of 20th century physics, that is, quantum
mechanics.

22.1.4 What was the Hamiltonian, Again?

As a reminder, we have the Lagrangian:

L = L(q1, q2, . . . , qn, q̇1, q̇2, · · · , q̇n)

We also introduced the generalized, or canonical momentum:

pi =
∂L
∂q̇i

We then defined the Hamiltonian:

H =

m∑
i=1

piq̇i − L

When the transformation from cartesian to generalized coordinates was natural (did not depend on time),
then H was just the total energy. For further applications in this course, we will generally assume this is the
case. The Hamiltonian is a function:

H = H(q1, q2, . . . , qn, q̇1, q̇2, · · · , q̇n, t)

The main difference is that we trade between the generalized velocities (Lagrangian) with the generalized
momentum (Hamiltonian). How does this occur? We will see in a moment, but let us do a basic example
first.

22.1.5 The Harmonic Oscillator

The Lagrangian for the Harmonic oscillator is:

L =
m

2
ẋ2 − kx

2

2

So the generalized momentum is:
∂L
∂ẋ

= mẋ = p

So calculating H, we have:

H = mẋ2 − L =
m

2
ẋ2 + k

x2

2
=

p2

2m
+ k

x2

2
= T + U

Calculating H is pretty straightforward.

22.1.6 The Hamiltonian as the Legendre Transform of L

Consider a function f(x, y). The total differential is then given by:

df =
∂f

∂x
dx+

∂f

∂y
dy = udx+ vdy

Now, we want to ”trade” the differentials, x 7→ u. We can do this via a function g = f − ux. Let’s check:

dg = df − udx− xdu
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But we’ve already calculated df , so:

df = udx+ vdy − udx− xdu = vdy − xdu

So as advertised, g is the Legendre transform of f , and it depends explictly on the variables u and y:

g = g(u, y)

To recap, we look at the total differential, we want to trade one function against the other, we then construct
a function such that the independent variables are swapped. This has connections to thermodynamics; we
recall that the energy of a thermodynamic system is dependent on the natural variables of number of particles,
volume, and entropy, that is E = E(N,V, S). But we had other relevant quantities, such as the Hemholtz
free energy; F = E − TS = F (N,V, T ). Hence, the varaibles S and T are conjugate to each other. In many
cases, its more convenient to use F as it is easier to control the temperature rather than the entropy. In
classical mechanics, it might be more convenient to work with the momenta rather than velocities, and easier
to work with H rather than L.

22.1.7 Hamilton Equations of Motion

We need to see what kind of equations of motion come out of this formulation of classical mechanics. Let’s
write the hamiltonian as:

H =
∑
i

piq̇i − L

Now, consider the total differential of H. We have:

dH =
∑
i

(q̇idpi + pidq̇i)−
∂L
∂qi

dqi −
∂L
∂q̇i

dq̇i −
∂L
∂t

dt

If we recall the definitions, the
∂L
∂q̇i

term is just pi, and
∂L
∂qi

is just ṗi if we use the Euler-Lagrange equation.

Hence the above becomes:

dH =
∑
i

(−ṗidqi + q̇idpi)−
∂L
∂t

dt

Hence we can read off the differential:
∂H
∂pi

= q̇i,
∂H
∂qi

= −ṗi

And these are Hamilton’s equations! We will look at these more closely on Friday.

23 Lecture 23

23.1 Lecture Notes - Hamiltonian Mechanics

23.1.1 Hamilton’s Equations & Properties

} A particle slides on a helical wire defined by z = kθ, r = R. If we use θ as the generalized coordinate, the
generalized momentum is p = m(r2 + k2)θ̇. What is the Hamiltonian of the system?

Solution. Using the fact that here the Hamiltonian is equal to the energy:

H = T + U =
p2

2m
+mgkθ
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Last lecture, we derived Hamilton’s equations of motion:

∂H
∂pi

= q̇i,
∂H
∂qi

= −ṗi

This was done by starting with the Hamiltonian (Legendre transform of L), expanding out in the total
differential of H, then using the EL equation to solve for Hamilton’s equation (see last day’s notes for more
detail). We notice that Hamilton’s equations are two first order equations, rather than a single second order
equation. In general, if we have n degrees of freedom, the Lagrangian gives us n 2nd order differential
equations, while Hamilton gives us 2n 1st order differential equations.
Now suppose that the Hamiltonian is independent of pi. What can we say about the system?

Solution. qi is constant by Hamilton’s equations.

Now, what do Hamilton’s equations tell us about the derivatives
∂q̇i
∂qi

+
∂ṗi
∂pi

?

Solution. Again using Hamilton’s equation, these are equal to:

∂H
∂qipi

− ∂H
∂piqi

= 0

By the equality of mixed partials.

23.1.2 The Variational Principle, Revisited

From Lagrangian mechanics, we have that the variation in the action is zero:

δS = δ

∫ t2

t1

Ldt = δ

∫ t2

t1

[
∑

piq̇i −H]dt = 0

Expanding this, we have: ∫ t2

t1

∑
i

−(ṗi +
∂H
∂qi

)
δqi +

(
q̇i −

∂H
∂pi

)
δpi

 dt = 0

What does this imply about the terms in parentheses?

Solution. Since q and p can be varied independently, both ṗi+
∂H
∂qi

and q̇i−
∂H
∂pi

must vanish independently;

these are exactly Hamilton’s equations of motion!

23.1.3 Hamiltonian Time Dependence

Let us now look at the time derivative of the Hamiltonian:

dH
dt

=
∑
i

(
∂H
∂qi

q̇i +
∂H
∂pi

ṗi

)
+
∂H
∂t

Assuming the trajectory obeys Hamilton’s equations, we have:

dH
dt

=
∑
i

(−ṗiq̇i + q̇iṗi) +
∂H
∂t

==
∂H
∂t

= − ∂L
∂t

Even though H is a function of q, p, t, the only explicit time dependence comes from the Hamiltonian itself!
H is constant if L is independent of time.
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23.1.4 The Atwood Machine, Again

The Atwood machine has Hamiltonian:

H =
p2

2(m1 +m2)
− (m1 −m2)gx−m2gl

What are the equations of motion?

Solution. By Hamilton’s equations:

ẋ =
p

m1 +m2

ṗ = (m1 −m2)g

How does the system move?

Solution. From above, we can see that x moves with constant gravitational acceleration with effective mass

m1 −m2

m1 +m2

Which we can see from:

ẍ =
m1 −m2

m1 +m2
g

We can also reason this from limits of m1 � m2, m1 � m2.

23.1.5 Phase Space of the Harmonic Oscillator

Phase space is the set of points {qi, pi} i.e. possible combinations of (generalized) position/momenta. We
can write the phase space vector as z = (q,p). For the Harmonic oscillator in one dimension (spring constant
k, mass m distance from equlibrium x), we have the Hamiltonian:

H =
p2
x

2m
+
k

2
x2

Hamilton’s equations give:

ṗx = − ∂H
∂x

= −kx

ẋ =
∂H
∂px

=
px
m
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Of course, we may combine these to get:

ẍ =
px
m

= − k
m
x

We may write Hamilton’s equations as a vector:[
ẋ
ṗx

]
=

[
px/m
−kx

]
We know that this will have solutions:

x = x0 cos

(√
k

m
t− δ

)

px = mẋ = −mx0

√
k

m
sin

(√
k

m
t− δ

)
Now, we observe:

x2

x2
0

+
p2
x

mx2
0k

= sin2(x) + cos2(x) = 1

But this of course is just the equation for an ellipse, that tells us that the trajectory in phase space of the
harmonic oscillator will be an ellipse! In particular, which of the two directions (if both) are possible?

Solution. Only B; consider that when we sit at the rightmost point in the ellipse, we get pulled back towards
the origin, hence the magnitude of the momentum increases, in the negative direction. Hence only the second
trajectory makes sense.

Now, consider a collection of harmonic oscillators which have the same energy but different relative phases.
Which collection of phase points represents this system at a given instant in time?
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Solution. For a given fixed energy, we stay on the ellipse, and the phase angle just tells you where you are
on the ellipse. So, A.

Consider an area element in phase space. What physically must happen for a particle to move into the area
across the left boundary?

Solution. The position qk increases but the momentum pk is constant.

23.1.6 Particle in a Central Force Field

The kinetic energy for a particle of mass m in a central force field is given by:

T =
m

2

(
ṙ2 + r2φ̇2

)
Then we have the generalized momenta:

pr =
∂T

∂ṙ
= mṙ =⇒ ṙ =

pr
m

pφ =
∂T

∂φ̇
= mr2φ̇ =⇒ φ̇ =

pφ
mr2

Hence the Hamiltonian has the form:

H = T + U =
1

2m

(
p2
r +

p2
φ

r2

)
+ U(r)

Hence Hamilton’s equations yield:

ṙ =
∂H
∂pr

=
pr
m
, ṗr = − ∂H

∂r
=

p2
φ

mr3
− dU

dr

φ̇ =
∂H
∂pφ

=
pφ
mr2

, pφ = − ∂H
∂φ

= 0

23.1.7 General Procedure for setting up Hamilton’s equations

1. Choose suitable generalized coordinates, q1, · · · , qn.

2. Write down the kinetic and potential energies, T and U , in terms of the q ’s and q̇ ’s.
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3. Find the generalized momenta p1, · · · , pn. (We are now assuming our system is conservative, so U is
independent of q̇i and we can use pi = ∂T/∂q̇i. In general, one must use pi = ∂L/∂q̇i.

4. Solve for the q̇ ’s in terms of the p ’s and q ’s.

5. Write down the Hamiltonian H as a function of the p ’s and q ’s. [Provided our coordinates are ”natural”
(relation between generalized coordinates and underlying Cartesians is independent of time), H is just
the total energy H = T + U, but when in doubt, use H =

∑
piq̇i − L. See Problems 13.11 and 13.12.].

6. Write down Hamilton’s equations (13.25).

We will illustrate the advantages of using Hamilton’s equations rather than Lagrange next week. One
advantage is that we get first order versus second order equations, which can be easier sometimes (we have
more techniques). A deeper advantage is theoretical, which we will see. We will also see how to construct a
quantum theory with this framework.

24 Lecture 24

24.1 Lecture Notes - Phase Space & Canonical Transformations

24.1.1 Cyclic/Ignorable Coordinates

If L is independent of a generalized coordinate qi, then for the associated generalized momentum we have
that ṗi = 0 and hence the generalized momentum is conserved. Equivalently, if H is independent of of a
generalized coordinate qi, the same conclusion holds (as ∂L

∂qi
= −∂H∂qi .) With Hamiltonian dynamics, you can

do another thing; consider H = H(q1, p1, p2) and with p2 = Const. = K, then we can reduce the degrees
of freedom by one explicitly; that is, H(q, p1,K). Hence we have one fewer equations of motion directly.
We have reduced the complexity by 1 DoF. It’s not necessarily easier to solve Hamilton’s equations than
Lagrange’s, but we may be able to reduce the number of coordinates by using Hamilton’s formalism.

24.1.2 Phase Space Vectors

In the Lagrangian formulation, the equations of motion are of the form f(q̈, q̇, q) = 0 (2nd order DEs). As
we have said in this course before (and has been covered in differential equations courses), we can convert
this second order DE into a system of two differential equations. If we define s = q̇, ṡ = q̈, then we have:

f(ṡ, s, q) = 0

Hence we have the two first order differential equations:

ṡ = q̈, f(ṡ, s, q) = 0

Hamilton’s equations of motion read:

q̇i =
∂H
∂pi

= fi(q,p)

ṗi = − ∂H
∂qi

= gi(q,p)

Both p and q are independent variables, so we might as well combine them into a single vector, which is the
phase space vector :

z = (q,p)

Hence we may write the equations as:
ż = f(z)
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So we have a system of first order DEs. This may be beneficial as we have many mathematical techniques
to solve first order DEs. Note that in particular we may write:

ż = J · ∇zH(z, t)

What is the form of the matrix J?

Solution.

J =


0 · · · I
...

. . .
...

−I · · · 0


Where the 0s and Is represent blocks of the matrices. Note that q̇i = ∂H

∂pi
and ṗi = −∂H∂qi . Note that J is

known as the ”metric of phase space”.

24.1.3 Canonical Transformations

In Lagrangian mechanics, we can take the generalized coordinates q = q(q1, . . . , qn) that can be replaced by
Q = (Q1, . . . , Qn) with Q = Q(q) and for which the Euler-Lagrange equations are still valid. The question
becomes: Can we do something similar with Hamilton’s equations? Can we transform qi 7→ Qi = Qi(q, p, t)
and pi 7→ Pi = Pi(q, p, t) so that:

Q̇i =
∂K

∂Pi

Ṗi = − ∂K

∂Qi

with a new hamiltonian K? The answer turns out to be not in general.
As a counterexample, we can have Q = p, P = q with H = K. The transform of phase space is a wider class
than the transformation of just the coordinate space, so there will only be a subset of the many possible
transformation that leave the Hamilton’s equation of motion form invariant. Such a subset is known as the
canonical transformations.
Recall in Lecture 6 that we talked about how general the Lagrangian was, and we showed that one can add
a total derivative dF

dt to L and not change the equations of motion. This is because adding dF
dt does not

contribute to the variation, that is:

δ

∫ t2

t1

dF

dt
dt = δF |t2t1 = 0

Where in the last equality we use the fact that the variation vanishes at the endpoints. Hence adding
the total derivative does not contribute to the variation. This F is known as the generating function. In
particular, we can set: ∑

i

q̇ipi −H =
∑
i

Q̇iPi −K +
dF

dt

And I know that these new variables will satisfy the same equations. We can use this F to generate such
tranformations. In full, we have 4n variables of q, p,Q, P but only 2n are independent; hence F should
depend on 2n independent variables. Hence, there are 4 possible ways we could construct a generating
function. These would be:

F1 = F1(q,Q, t)

F2 = F2(q, P, t)

F3 = F3(p,Q, t)

F4 = F4(p, P, t)
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For now, we will look at the first case, F1(q,Q, t). In this case,∑
i

q̇ipi −H =
∑
i

Q̇iPi −K +
dF1

dt
=
∑
i

Q̇iPi −K
∑
i

∂F1

∂qi
q̇i +

∑
i

∂F1

∂Qi
Q̇i +

∂F1

∂t

We now collect some terms (i.e. the terms that depend commonly on q̇i, Q̇i). Doing so we have:

∑
i

q̇i

(
pi −

∂F1

∂qi

)
−
∑
i

Q̇i

(
Pi +

∂F1

∂Qi

)
+K −H− ∂F1

∂t
= 0

From this equation, it is nice to read off what the transformed variables must look like. From the first term,

pi =
∂F1

∂qi
, Pi = − ∂F

∂Qi
, and the new Hamiltonian is K = H+

∂F1

∂t
.

This is all quite abstract, so let us consider an example. Let F1 = F1(q,Q, t) =
∑
i qiQi. We therefore have

that pi = ∂F1

∂qi
= Qi, Pi = ∂F1

∂Qi
= −qi, and K = H as the Hamiltonian is not explicitly time dependent. This

is just an interchange of coordinates. This shows that in the Hamiltonian description, p and q are compeltely
symmetric and can be completely interchanged.
We can derive very very similar transformation laws for the other three general cases above.
Whas is all of this good for? Can we do something more with it? Indeed we can, but we will see it
on Wednesday. The first thing we shall do is to introduce a criterion for when a transform is canonical,
and in doing so we will introduce something known as a Poisson bracket. We will also show that a time
evolution itself is a canonical transformation. We will also show conservation laws associated with canonical
transformations, and this will get us into Liouville’s theorem.

25 Lecture 25

25.1 Lecture Notes - The Poisson Brackeet and Liouville’s Theorem

25.1.1 Review

On Monday, we talked about canonical transformations. In Lagrangian picture, we found that Lagrange’s
equation of motion were invaraint under coordinate transformations. In Hamilton’s picture, p and q play
the same role. In the phase space spanned by p and q, there are a wider class of possible transformations
that can be made. Not all of these transformations leave Hamilton’s equations invariant. The subclass that
do is called canaonical. Adding he total time derivative of a function F is what could accomplish this.

25.1.2 Poisson Bracket

Consider the phase space function F (q, p, t) (any function of the variables of phase space, could depend on
time, could be energy, angular momentum etc.). Let us write the total time derivative of this. As usual, we
expand this total derivative to get:

dF

dt
=
∑
j

∂F

∂qj
q̇j +

∑
j

∂F

∂pj
ṗj +

∂F

∂t

Using Hamilton’s equations to replace q̇j and ṗj , we get that:

dF

dt
=
∑
j

∂F

∂qj

∂H
∂pj
−
∑
j

∂F

∂pj

∂H
∂qj

+
∂F

∂t

We may write this as:

[F,H] +
∂F

∂t
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This is the Poisson Bracket. It’s a shorthand for
∑
j
∂F
∂qj

∂H
∂pj
−∑j

∂F
∂pj

∂H
∂qj

. As a note of notation, it can

also be written with curly brackets { }. If F is conserved, an equivalent statement is that
dF

dt
= 0, and

equivalent to this is that [F,H] = 0.

25.1.3 Properties of the Poisson Bracket

(a) Anti-symmetry [F,G] = −[G,H], from which we obtain [F, F ] = 0.

(b) Bilinearity [aF + bG,H] = a[F,H] + b[G,H] and [H, aF + bG] = a[H,F ] + b[H,G]

(c) Leibniz’ Rule [FG,H] = [F,H]G+ F [G,H]

(d) Jacobi Identity [F, [G,H]] + [G, [H,F ]] + [H, [F,G]] = 0

25.1.4 Poisson Bracket and Canonical Transformations

We test if the following transformation is canonical:

qi 7→ Qi(p, q), pi 7→ Pi(p, q),
∂F

∂t
= 0, K = H

We claim that this is the case if the following identities hold for the fundamental Poisson brackets:

[Qi, Ql] = 0, [Pi, Pl] = 0, [Qi, Pl] = δil

are obeyed. As a remark, these identities are quite similar to the canonical commutation relations that we
see in quantum mechanics. This shows that the structure in phase space is ready to be quantized. But, we
return to this on Friday. For now, we return to the proof. Taking the total time derivative of F , we have:

dF

dt
= . . . =

∑
l

∂K

∂Ql
[F,Ql] +

∑
l

∂K

∂Pl
[F, Pl]

These identities were just obtained by the chain rule and reordering. We now consider some cases. In the
first case, consider F = Qi. In this case,

Q̇i =
∑
l

∂K

∂Ql
[Qi, Ql] +

∑
l

∂K

∂Pl
[Qi, Pl]

In order for Hamilton’s equation to be satisfied, we require that this expression is equal to
∂K

∂Pi
. From this,

we require that [Qi, Ql] = 0, and [Qi, Pl] = δil. In the second case, consider F = Pi. Then,

Ṗi =
∑
l

∂K

∂Ql
[Pi, Ql] +

∑
l

∂K

∂Pl
[Pi, Pl]

Again, in order for Hamilton’s equations to be satisfied, we require that this is equal to − ∂K

∂Qi
. From this

we obtain that [Pi, Ql] = −δil, and [Pi, Pl] = 0. This completes the proof of the claim.

25.1.5 Hamiltonian Flow

Recall our discussion of the phase space vector:

z =

[
q
p

]
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Which in general has 2n elements for n degrees of freedom (recall the 2d phase space vector for the 1-
dimensional harmonic oscillator). Taking the time derivative of this, we get the phase space velocity vector:

ż =

[
q̇
ṗ

]
=


∂H
∂p

− ∂H
∂q

 = v(z)

The idea is that the phase space trajectories depend on the total energy of the system. For example with
the double well potential:

Now, let us consider a bunch of systems that are some time close together (in phase space):

What happens to this cloud of points as it goes through a time evolution? These trajectories are unique and
deterministic, so at some later point in time, this cloud may have moved in phase space. It also does not
have to have the same shape. But, the points inside the cloud have to stay inside the cloud, as trajectories
cannot cross in Hamiltonian dynamics. Points inside stay on the inside.

In general, there is a hyper-volume (the cloud) in phase space, which moves through the space with time;
this is the picture we want to have when thinking about Hamiltonian flow.

25.1.6 Liouville’s Theorem

We hence consider a map:
z0 7→ z(t)
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which is the definition of the Hamiltonian/phase space flow. The statement of Liouville’s theorem is that
the area initially occupied by the cloud in phase space is the same as the area occupied at some point later
(for higher dimensions, replace area with hyper-volume).

We will make this statement more precise as we go on. In order to see this, we again look at this Hamiltonian
flow. Hamilton’s equations are a description/map of these positions in phase space to a later time. Let us
examine the properties of this map for a small time interval:

qi 7→ Qi = qi + q̇idt

pi 7→ Pi = pi + ṗidt

This is of course just a first-order Taylor expansion/linear approximation. Of course we can rewrite these
expressions using Hamilton’s equations:

qi 7→ qi +
∂H
∂pi

dt

pi 7→ pi −
∂H
∂qi

dt

The statement of Liouville’s theorem can then be made to say:

Vpq = dqdp = VPQ = dPdQ

What happens if we apply this transformation and compare? This is just a statement about a change of
variables. Let us recall what we did for integration. When switching integration variables x = x(u, v),
y = y(u, v), which of the following is correct?

Solution. We recall how we did coordinate transformations using the Jacobian:∫∫
f(x, y)dxdy =

∫∫
f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣dudv
Note that here

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ is the determinant of the 2x2 matrix containing the partial derivatives (the deter-

minant of the Jacobian), e.g.:

∂(x, y)

∂(u, v)
=

∂x∂u ∂x

∂v
∂y

∂u

∂y

∂v


Hence, returning to our discussion of the conserved volumes; we can write dPdQ as:

Vpq = dqdp = VPQ = dPdQ =

∣∣∣∣∣∂zt
∂z0

∣∣∣∣∣dpdq
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We can write this Jacobian as:

∂zt
∂z0

=


∂Q

∂q

∂Q

∂p
∂P

∂q

∂P

∂p

 =

1 + ∂2H
∂p∂qdt

∂2H
∂p2

dt

− ∂2H
∂p2

dt 1− ∂2H
∂p∂qdt


We have done this many times in the past, e.g. when transforming from cartesian to spherical coordinates.
The factor r2 sin θ in this coordinate transformation from cartesian to spherical is the determinant of the
Jacobian in that case. Here, we are just transforming from a system at time t = 0 to time t = t. Hence
taking the determinant, we have:∣∣∣∣∣∂zt

∂z0

∣∣∣∣∣ = 1−
(
∂2H
∂p∂q

)2

dt2 +
∂2H
∂p2

∂2H
∂q2

dt2 + · · ·

We note that there are no linear terms in dt. Hence, the time derivative of this object is zero. Hence,
the phase space volume does not change. Equivalently, dV

dt = 0. The fluid of phase space moves like an
incompressable fluid, keeping its volume.

26 Lecture 26

26.1 Lecture Notes - Liouville’s Theorem, Path to QM (Canonical Quantiza-
tion)

26.1.1 Review - Liouville’s Theorem

• The volume V of a region of phase space does not change in time.

• The phase space density N/V moving with the slow lines remains constant.

• The phase space density moves like an incompressible fluid.

• Vt =
∫
dzt =

∫ ∣∣∣∣∣∂zt
∂z0

∣∣∣∣∣dz0 = V0, abs
∂zt
∂z0

= 1

26.1.2 Liouville’s Theorem from Gauss’s (Divergence) Theorem

Recall the divergence theorem; for a vector field v, it holds that:∫
V

∇ · vdV =

∫
S

v · ndA

Now we consider the divergence of the phase space velocity, v:

v =

[
q̇
ṗ

]
=


∂H
∂p

− ∂H
∂q


The divergence is given by:

∇ · v =
∂ q̇

∂q
+
∂ ṗ

∂p
=

∂

∂q

(
∂H
∂p

)
− ∂

∂p

(
∂H
∂q

)
= 0

Where we use Hamilton’s equations and the equality of mixed partials. How do we interpret this? Consider
a surface in phase space that moves out with time. As the surface expands there will be a change in volume
covered by this propogating surface.
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Giving this a surface normal n, calculating the change in volume w.r.t. time we have δV = n · vδtdA and if
we integrate over the entire surface, we get teh total change. This yields ∆V =

∫
S

n · v∆tdA. And hence:

dV

dt
=

∫
S

n · vdA = 0

Where the RHS we set to zero by the divergece theorem. This concludes the proof, and is another way of
proving the theorem.

26.1.3 Poisson Brackets Revisited & The path to QM

Recall we could write:
dF

dt
= [F,H] +

∂F

∂t

where F is some function on phase space. By definition, we had:

[F,G] =
∑
i

∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

The fundamental poisson brackets of position and momentum were given by:

[qi, qj ] = [pi, pj ] = 0, [qi, pj ] = δij

We now connect this to QM, one of the defining theories of the 20th century.
Recall that in QM, measurements are operations. We perturb systems by measuring/observing them (e.g.
measure position of ball by shining light on it, but light carries momentum, so it will interact with the ball
in doing so.). Also recall that in qm, pq and qm are different, that is that operators do not (in general)
commute.

26.1.4 Non-Commutative Structure of Phase Space

Phase space functions become non-commutative operators (matrices). Consider four phase space functions,
F1, F2, G1, G2. Now, consider the object [F1F2, G1G2]. We pull this apart using the Leibniz product rule:

[F1F2, G1G2] = [F1, G1G2]F2 + F1[F2, G1G2]

we can also apply it on the second argument:

[F1F2, G1G2] = [F1F2, G1]G2 +G1[F1F2, G2]

Hence, we get the following expression if we apply hte product rule again:

[F1F2, G1G2] = [F1, G1](F2G2 −G2F2) = (F1G1 −G1F1)[F2, G2]
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If we have classical observables, the F,Gs are just numbers, they commute and the relation is obviously
satisfied (both sides are just zero!). But in QM, we want to consider arbitrary, non-commuting operators.
Hence, the condition for the above equation to be satified for arbitrary non-commuting operators is that:

[F1, G1] = F1G1 −G1F1

That is, we want the Poisson bracket to be a commutator. Furthermore, we will embellish this with an
imaginary unit i:

i[F1, G1] = F1G1 −G1F1

Which is there to ensure that the bracket of two Hermitian operators is again Hermitian. Recall that a
Hermitian operator O satisfies O† = O. Finally, we put a number ~ in front of the commutator as well:

i~[F1, G1] = F1G1 −G1F1

This now gives the quantum mechanics we know. This process is known as canonical quantization.

26.1.5 Canonical Quantization

There are two steps of going from classical mechanics to quantum mechanics:

(a) Phase space functions (numbers) turn into operators (non-commuting in general).

(b) [F,G]P 7→ 1
i~ [F,G], that is, we embellish the poisson bracket with a factor of i~ and turn it into a

commutator.

We can check the canonical commutation relations of quantum mechanics:

[qi, qj ] = [pi, pj ] = 0

[pi, pj ] = i~δij
From these relations, we can derive many fundamental results of quantum mechanics, such as the Heisenberg
uncertainty principle, that is, (∆q)(∆p) ≥ ~

2 . By making the Poisson bracket the commutator, we get this
quantized theory with uncertainty built into it. We may also look at the time evolution of operators. The
classical evolution equation is:

dF

dt
= [F,H]P +

∂F

∂t

the quantum version of this replaces the poisson bracket with a commutator; for a quantum mechanical
operator O, the time evolution of it is given by:

dO

dt
= − i

~
[O,H] +

∂O

∂t

Which is known as the Heisenberg equation of motion. This is the Heisenberg picture of QM, where you
move the idea of time-evolution from the states (the Schrodinger picture) to the operators. The canonical
quantization process takes us into the Heisenberg picture. Note that one can also do this on fields and get
Quantum Field Theory, but that is a story for another course.

27 Lecture 27

27.1 Lecture Notes - Scattering Theory

27.1.1 Motivation

Scattering Theory is very useful for probing information on atomic scales, in condensed matter/nuclear/atomic
physics. A familiar example is Rutherford scattering:
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Where α particles (Helium nuclei) were scattered off of gold atoms, and large deflections were observed.

27.1.2 Fundamental parameters

There are a couple quantities that are of relevance to consider. First, we have the impact parameter b, which
is the perpendicular distance from the incoming trajectory to the parallel axis through the center of the
target. Then, we have the scattering angle θ, which is the angle between the initial and final velocities. The
simplest possible interaction is the hard-sphere interaction:

Now, lets consider a beam of area A passing through a target of length L and number density of particles n.
Assume the target is larger in the cross sectional area than in the beam. What is the total number of target

92



particles in the beam?

Solution. Since n gives the volume number density, we have that AL gives the volume of the beam in the
target and hence the total number of target particles is given by nAL.

Next, the cross-section σ is defined as the effective area of target for interacting with the particle. For
hard spheres of radius R, we have that σ = πR2 (the cross-sectional area of a circle).

Now, given this cross section σ of a single target particle, what is the probability that any one projectile
makes a hit (assume the same scenario above with the beam of area A, the target of length L?)

Solution. By dimensional analysis, since probability is dimensionless, since n has units of inverse volume,
then L has units of length and σ has units of area and hence this works out. This makes sense as the
probability should scale with the cross-sectional area of a target particle, the length of the target, and the
number density of the target. A way to see that the area A of the beam drops out to see is that:

P (hit) =
Area of all targets

A
=
nσAL

A
= nσL

Given the beam has an incident rate Rinc of incoming particles per unit time, what is the scattered rate
(number of scattered particles per unit time?)

Solution. The rate would just be RincσnL, just multiply the scattering probability by the incoming rate.

27.1.3 Example: Scattering Neutrons on Aluminum Foil

TakeNinc = 10000. the alumnimum foil has thickness of 0.1mm. For neutrons, we have that σ = 1.5·10−28m2.
Since this is such a common unit in nuclear physics, this is often denoted with a new unit, the barn (1barn =

1× 10−28m2; i.e. σ = 1.5barns. For alumnimum, we have mass density ρAl = 2.7× 103kg/m
3

and we know
that mAl = 27u. Hence, the scattered number of particles is given by:

Nscatter = Ninc
ρAl

mAl
Lσ = 9
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27.1.4 Example: Scattering of Two Hard Spheres

In this case, we have effective scattering area of π(R1 +R2)2.

27.1.5 Example: Mean free path of air molecule

Air molecules can be approximated as hard spheres with R = 0.15nm. Define the quantity mean free path
λ as the average distance between two collisions. For sigma, we take (from the formula above):

σ = π(2R)2 = 4πR2

We have number density:

n =
N

V

The probability of a collision when travelling a distance dx is given by:

P (coll in dx) = nσdx

Hence the probability of having a first collision in x and x+ dx as:

P (first coll between in x and x + dx) = P (no coll in x) · nσdx

We can write this in another way as:

P (first coll between in x and x + dx) = P (no coll in x)− P (no coll in x + dx)

Turning this small dx into a differential, we have:

P (first coll between in x and x + dx) = − d

dx
P (no coll in x)

We call P (no coll in x) as P (x) for notations. Setting the two expressions equal to each other, we have:

d

dx
P (x) = −Nσ

V
P (x)

This has solution:

P (x) = exp

(
−Nσ
V
x

)
Then the mean free path can be calculated as the average value of x given this probaility distribution:

λ = 〈x〉 =

∫ ∞
0

xP (x)dx =

∫ ∞
0

xnσ exp

(
−Nσ
V
x

)
Note that the nσ is there as a normalization factor for the distribution. Taking this integral, we have:

λ =
1

nσ
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This makes sense intuitively; the larger the cross section and the larger the number density, the smaller the
mean free path between collisions. Dimensionally, this also has units of length, which is good! At STP, we
can calculate what this would be numerically:

λ =
Va

Na(4πR2)
≈ 130nm

27.1.6 Solid Angle

We are familiar with the normal angle, ∆θ = s
r , the ratio of the arc length to the radius. Generalizing this

to 3D, we have the solid angle, ∆Ω = A
r2 where A is the ”arc area” and r the radius. For a cone with polar

angles θ, θ + dθ, φ, φ+ dφ. The expression is therefore given by:

dΩ = sin θdθdφ

What is the integral of the solid angle increment dΩ over all possible solid angles (over the surface of a
sphere?)

Solution.
∫
dΩ = 4π (surface area of unit sphere). We could actually do the integral, or we could just

recognize that the surface area of a sphere is given as 4πr2 and divide this by r2.

27.1.7 Differential Cross Section

Typical scenario is we have that a detector covers some portion of a sphere around our target.

We must have that:

Nscatter(into dΩ) = Nincntargetdσ(into dΩ) = Nincntarget

(
dσ

dΩ
(θ, φ)

)
dΩ

The term dσ
dΩ (θ, φ) is the differential cross section. This can be measured in experiment, or predicted in

theory. We can also obtain the total cross section, which is the integral over all differnetial cross sections.

σtot =

∫
dσ

dΩ
(θ, φ)dΩ =

∫ π

0

sin θdθ

∫ 2π

0

dφ
dσ

dΩ
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For a beam with area A and total number of particles N , what is the total number of particles dN that
passes through the segment between b and b+ db and φ and φ+ dφ?

Solution. We know that the area of the segment is given by bdbdφ, and then dividing this by the total area
A we get the fraction of particles that would hit that area. Hence, dN = N

A bdbdφ.

Note that for the case with axial symmetry, we have:

But we will continue this discussion next day.
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28 Lecture 28

28.1 Lecture Notes - Differential Cross Section

28.1.1 Review

Cross section = area of ring of radius b and width db. Particles hitting the ring between b and b + db are
scattered by an angle between θ and θ+ dθ. Scattered onto a larger ring on a sphere with scallering nucleus
in center. The solid angle of the entire ring is:

dΩ =
2πR sin θRdθ

R2
= 2π sin θdθ

And the solid angle of a small area is given by:

dΩ =
dφR sin θRdθ

R2
= sin θdφdθ

This notion is useful as often our particle detectors cover a certain fraction of the area.

The ratio between the dσ of the first ring and the dΩ of the second ring is the the differential cross section,
which is:

dσ

dΩ
=

b

sin θ

∣∣∣∣dbdθ

∣∣∣∣
Where dσ = 2πbdb and dΩ = 2π sin θdθ. The task today is then to obtain b in terms of θ (b(θ)). Today, we
will consider the case where our target is fixed (i.e. a heavy target) and try to describe the trajectory of this
scenario. This is just the two body central force problem (as covered in PHYS 216), with the only difference
that the orbits are open and not closed.

28.1.2 Calculation of the differential cross-section - The Kepler Approach

We first remark that this chapter is interesting as not only is it highly relevant to research fields (e.g. particle
physics) but also puts something that we know (the two-body problem) into a new context. We now move
onto solving this two-body central force problem. The total energy of the system in polar coordinates is
given by:

E =
m

2

(
ṙ2 + r2φ̇2

)
+ U(r) = Const

Where U(r) is the scattering potential. Here the energy is conserved. Another quantity that is conserved is
the angular momentum:

L = mr2φ̇ = Const

97



From this, we can immediately write:

r2φ̇2 =
L2

m2r2

Hence sustituting this into the energy expression to obtain everything in terms of r, we have:

E =
m

2

(
ṙ2 +

L2

m2r2

)
+ U(r)

We can therefore solve for |ṙ|:

|ṙ| =
√

2E

m
− 2U(r)

m
− L2

m2r2

We have a two body problem, but it is effectively a one body problem. We may introduce an ”effective
potential”:

Ueff = U(r) +
L2

2mr2

Since we know that φ(t) is monotonic, we may write:∣∣∣φ̇∣∣∣ =
|L|
mr2

Dividing the φ̇ equation by the ṙ equation, we get:∣∣∣φ̇∣∣∣
|ṙ| =

∣∣∣∣dφdr

∣∣∣∣ =
|L|
mr2√

2E
m −

2U(r)
m − L2

m2r2

We can from this expression obtain the trajectory in the following way. The particle is incoming with impact
parameter b, and deflects off by angle θ. There is some closest point of approach rmin that divides the
trajectory into two pieces, that is, the trajectory is symmetric about rmin. Call the angle at this point
∆φ/2. This can be visualized as follows:

We therefore have that:

∆φ(r) = 2

∫ ∞
rmin

L
r2√

2m(E − U)− L2

r2

Note that we obtain rmin by solving for the turnaround point, i.e the energy equals the effective potential
(the kinetic energy is zero) so:

2m(E − U) =
L2

r2
min
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However, all of our equations are in terms of L and E; should recast these in terms of physical parameters.
Set:

E = T∞ =
m

2
v2
∞

and
L = |r× p∞| = mbv∞

Hence we may write:

∆φ = 2b

∫ ∞
rmin

dr

r2
√

1− 2U(r)
mv2∞

− b2

r2

So we have expressed the integral purely in terms of the mass, velocity, and impact parameter, which are
all measureable variables. Note that this solution isn’t really scattering; this is a very general solution to
the two-body problem. We can now apply it to some relevant scattering scenarios to obtain the differential
cross section.

28.1.3 Example - Hard Sphere Differential Cross-Section

In this case, rmin = R (closest point of approach is just the surface of the sphere), and V (r) = 0 for r > R
(the particles don’t see each other). For this case, we have:

∆φ = 2b

∫ ∞
R

dr

r2

√
1− b2

r2

The middle term is zero as the potential is zero in the region of interest. This integral is solvable analytically,
but we may very well just look this up instead of undergoing a tedious calculation:

∆φ = 2 arcsin

(
b

R

)
Rearranging, we get:

b = R sin

(
∆φ

2

)
According to the picture we have drawn, ∆φ+θ = π, so we can convert this to be in terms of θ, which works
out to be:

b = R cos

(
θ

2

)
= b(θ)

Now, all is left to do is to calculate the differential cross section:

dσ

dΩ
=

b

sin θ

∣∣∣∣dbdθ

∣∣∣∣ =
R cos

(
θ
2

)
sin θ

∣∣∣∣∣−R2 sin

(
θ

2

)∣∣∣∣∣ =
R2

2 sin θ
cos

(
θ

2

)
sin

(
θ

2

)
=

R2

2 sin θ

1

2
sin(θ) =

R2

4

Hence calculating σtot (total cross section) we have:

σtot =

∫
dσ

dΩ
dΩ =

∫
R2

4
dΩ = πR2

Which is a good sanity check, as it agrees with what we found on Monday!
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28.1.4 Example - Coloumb Potential Differential Cross-Section

In this case, we have that:

U = −β
r

Where β = −kqQ < 0 (repulsive). The procedure is exactly the same, but the integral is just harder.

∆φ = 2b

∫ ∞
rmin

dr

r
√
r2 + 2βr

mv∞
− b2

∆φ = 2 arccos

 1− mv2∞b2

β√
1 +

(
mv2∞b
β

)2


∣∣∣∣∣∣∣∣∣
∞

rmin

Evaluating at the bounds, we get:

∆φ = 2 arccos

 1√
1 +

(
mv∞b
β

)2


(this is the term at infinity, the term at rmin vanishes, as the value is 2 arccos(−1) = 2π and φ = φ + 2π).
Hence solving for b(θ) we have:

b(θ) =
1

mv2
∞

√
1

sin2( θ2 )
− 1

Using this, we find the differential cross section:

dσ

dΩ
=
k2q2

1q
2
2

16E2

1

sin4( θ2 )

Plotting the Rutherford cross section, we find:
Where we have a characteristic divergence at the origin and a rapid decrease, with a value of 1 at π.

Question: What is the total cross section?
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Solution. σ =
∫ dσ

dΩ
dΩ = ∞ due to the divergence at the origin. This can be traced back to the 1

r type

behavior of the Columb potential.

A remark: One could state that this (classical treatment) is nonsense and we require a quantum treat-
ment. Luckily, the classical treatment actually does work out in this case (due to the Coulomb potential in
particular) but for a full description we require a quantum formulation, which is something we can expect
to see in Graduate school QM. Next day we will look at the center of mass lab frame, and how we treat
scattering off of nuclei that are not infinitely heavy.

29 Lecture 29

29.1 Lecture Notes - Cross Sections in Different Frames

29.1.1 Main Result from Last Day

Rutherford Cross section of:
dσ

dΩ
=

q2
1q

2
2

16E2

1

sin6 θ
2

But so far, we have assumed that the scatterer is infinitely heavy/immobile. This is in general not the case,
the target can of course move if m1 is on the same mass scale as m2. Today we deal with this scenario.

29.1.2 CM vs Lab Frames

We have two coordinates in the COM frame:

r = r1 − r2 (Relative coordinate)

The relative coordinate moves like a single particle with reduced mass µ = m1m2

M where M = m1 +m2. The
Lagrangian in this frame is given by:

L = TCOM + Trel − U

L =
M

2
Ṙ2
COM +

µ

2
ṙ2 − U(r)

The generalized momentum p is given as:
p = µṙ

A question: What can we say of the momenta of the two particles in the COM frame?

Solution. In the COM frame, it must hold that p1 = −p2 as of course the total momentum must be zero.

We can also see the above fact if we write:

r1 = R +
m2

M
r, r2 = R− m1

M
ṙ

In the CM, Ṙ = 0, as the total momentum must be zero. Hence, taking the derivative of the above equations:

ṙ1 =
m2

M
ṙ =⇒ m1r1 =

m1m2

M
r = p
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ṙ2 = −m1

M
ṙ =⇒ m2ṙ2 = −m1m2

M
ṙ = −p

What can we say about the momenta of two particles in the COM frame before (unprimed) and after (primed)
an elastic collision?

Solution. After the collision, since energy is conserved, the length of these vectors are conserved; hence,

|p1| =
∣∣p′1∣∣, |p2| =

∣∣p′2∣∣
Velocities rotate, but remain colinear by momentum/energy conservation.

29.1.3 Differential Cross Section in COM Frame

In the COM frame, we just find dσ
dΩ as if a single particle of mass µ scatters off a fixed target. This is the

beauty of working in the COM frame. We then have

(
dσ

dΩ

)
COM

which we must convert to the laboratory

cross section. How do we do this? Consider the number of scattered particles in the center of mass frame:

NCOM
sc = NCOM

inc · σtotCM ·
Ntarget
A

This has to be the same in the lab frame, so:

NCOM
sc = N lab

sc = N lab
inc · σtotlab ·

Ntarget
A

Ntarget
A is also equal between the two expressions. Hence, we conclude that the total cross sections must be

the same, that is:
σtotCOM = σtotlab

What about the differential cross section? What must be true for the number of scattered particles in a
given solid angle to be the same in the COM and lab frames?

Solution. We require that σtotCOM = σtotlab so hence:(
dσ

dΩ

)
COM

dΩCOM =

(
dσ

dΩ

)
lab

dΩlab

This can be justified as:

Nsc(into dΩ) = Ninc
Ntarget
A

dσ

dΩ
dΩ

Where the boxed expression must be the same between two cases.
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Hence we may write:(
dσ

dΩ

)
lab

=

(
dσ

dΩ

)
COM

dΩCOM
dΩlab

=

(
dσ

dΩ

)
COM

∣∣∣∣d cos θCOM
d cos θlab

∣∣∣∣
Depicitions of the collision in the two frames is given by:

And we want to find the relationship between the two given angles. We start with:

pCOM1 = −pCOM2 = p

p′COM1 = −p′COM2 = p′

By the transformation from lab to COM coordinates:

r1 = R +
m2

M
r, r2 = R− m1

M
ṙ

In the lab frame, particle 2 is at rest, so:

R =
m1

M
ṙ =

µ

m2
ṙ =

p

m2

Hence we can write:
plab1 = m1ṙ1 = m1Ṙ = µṙ =

m1

m2
p + p

Calling λ = m1

m2
, we have that:

plab1 = λp + p

After the scattering:
p′lab1 = λp′ + p′

Drawing a picture, we know that p′ is just the original vector rotated by θCOM on a circle. But, plab1 is of
course larger than pCOM (see the expression above):

Then using some geometry, we draw a right triangle AFD:
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Hence we can write (using trigonometry):

tan θlab =
DF

AF
=

p sin θCOM
λp+ p cos θCOM

p cancels, giving us:

tan θlab =
sin θCOM

λ+ cos θCOM
In the case where m1 = m2 and hence λ=1, we have that:

θlab =
1

2
θCOM

Which, returning back to the problem we wished to solve:∣∣∣∣d(cos θCOM )

d(cos θlab)

∣∣∣∣ =
(1 + 2λ cos θCOM + λ2)3/2

|1 + λ cos θCOM |
The full diagram is given here:

29.1.4 Example: Hard spheres

Consider the example with hard spheres with m2 = 2m1. The differential cross sections can be calculated
as follows:

This concludes our discussion of scattering! It was interesting to see how much a conversion to the COM
frame can simplify our lives.
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29.1.5 Coming up

Next week, we move onto continuum mechanics, going from the discrete (photons) to waves. We recall from
the HW that we could model a rope as a chain of photons, write out the coupling matrices etc. But obviously
this gets very tedious and complicated if our system gets very large (we do not want to write down a coupling
matrix for 1000s of masses!) Instead, we can step back and just consider the mass as a continuum, and think
about the displacement of the string in space and time (the wave equation). Next week we will see how
we can make the jump from the discrete masses to the continuum limit of matter, where we no longer talk
about particles but macroscopic objects described by displacement fields. In doing so, we will talk about
wavelike motion/standing waves, as well as other ideas that come out of this framework. It turns out that
there is a lot of fundamental physics we can get to without having to know lots of microscopic information.
Finally, we will end the course with nonlinear dynamics after that.

30 Lecture 30

30.1 Lecture Notes - Continuum Mechanics

30.1.1 Setting Up The Continuum Limit

Recall HW5, where we considered an infinitely long chain of particles. Then, defining us to be the displace-
ment of the sth photon from the equilibrium position, we solved (by Newton’s law):

müs = mω2
0(us+1 + us−1 − 2us)

Where ω2
0 = k

m . The forces depend on the neighbouring interactions and displacements from equilibrium.
Now, it becomes a bit of a subtle issue to how we take limits to infinity without getting things to blow up.
We start with N masses which are separated by a distance l (chain of SHOs).

• We want to take N →∞ and l→ 0 at the same time. We do this in such a way that the total length
L = Nl of the string remains constant.

• As we increase the number of particles, they also get lighter, so we take m → 0 and l → 0 such that
the line mass density λ = m

l of the string also is a constant.

Question: When we double the number of masses and reduce the equilibrium length by a factor of 2, what
must happen with the spring constant k?

Solution. Since F = kx, if x 7→ x
2 , then k 7→ 2k in order to give the same force between the particles as the

original configuration.

• So another condition on our limit; we will take k →∞ and l→ 0 with kl held constant.

The idea is we will go from the position of a single particle us(t) and take it to the continuum limit of u(x, t),
now considering a field.
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30.1.2 Deriving the Wave Equation

Replacing the discrete positions with a continuous variable in the Newton’s law equation we had in the
section above, we have:

∂2u(x, t)

∂t2
= ω2

0

(
u(x+ l, t) + u(x− l, t)− 2u(x, t)

)
But there is an issue; ω2

0 = k
m diverges as k → ∞ and m → 0! How do we rescue this? We multiply the

above equation by 1 in a clever way, multiplying and dividing by l2:

∂2u(x, t)

∂t2
= ω2

0l
2

(
u(x+ l, t) + u(x− l, t)− 2u(x, t)

l

)
But this is quite convenient, as ω2

0l
2 = kl lm = kl

λ which is constant! Let us therefore denote ω2
0l

2 = c2 where
c si the speed of sound. We can therefore write the above equation in the following way:

∂2u(x, t)

∂t2
=
c2

l

[
u(x+ l)− u(x, t)

l
− u(x, t)− u(x− l, t)

l

]
We recognize that the two terms in the bracket are two first order spatial derivatives. Further taking another
derivative by considering the difference of the two first order derivatives by taking l→ 0, the RHS becomes
a single second order spatial derivative:

∂2u(x, t)

∂t2
= c2

∂2u(x, t)

∂x2

Which we recognize is a wave equation!

30.1.3 Wave equation Solutions and Dispersion Relation

One prime example of a solution to the wave equation is:

u(x, t) = A sin(kx− ωt)

Where k is the wavevector and ω the frequency. Plugging this into the wave equation, we immediately obtain
the (familiar) dispersion relation:

ω = ck

Recall that in HW5 we found a relation that was slightly more complicated, and was given as:

ω = 2ω0

∣∣∣∣∣sin
(
kl

2

)∣∣∣∣∣
Which graphically looks like:
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−πl 0 2π
L

π
l

k

ω

So if we consider the limit of this dispersion for kl� 1, we can Taylor expand the sine and get:

ω = 2ω0
kl

2
= ω0kl = ck

So we therefore have that the slope of the above graph for small k is equal to c. We then see that we can
recover the linear dispersion relationship that we obtained in the continuum limit!

30.1.4 Generalization to 3D

Suppose we work in three dimensions, and instead have P = p(x, y, z) (pressure, or some other variable).
We then have that:

∂2p

∂t2
= c2

(
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2

)
= c2∇2p

Where ∇2 is the laplacian.

30.1.5 Volume and Surface Forces

Since we now work with materials with a finite extension, we have more types of forces to consider. We first
have volume forces, which are proportional to dV . Typical examples are gravity and electrostatic forces:

Fg = ρ0gdV

Fe = ρeEdV

ρ0, ρe represent mass and charge densities repectively. These are in a sense ”boring” and just come from
external fields.
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Slightly more interesting are surface forces, which are proportional to dA. We then have Pressure, Tension,
and Shear forces, as pictured below. Already things become more complicated as they depend not just on
the magnitude of the force as well as the orientation of the body.

We could of course build up to something like torsion from combinations of the above ”elementary” surface
forces.
A question might be is where does this resistance to these surface forces come from? The answer is the
intermolecular forces between the atoms in the material.

30.1.6 Stress & Strain - Basic Definitions

• Stress = Force / Area = Pressure (Fluid)

• Stress = Tension / Area (Wire)

• Stress = Shear Force / Area (Shear)

• Strain = dV/V (Fluid)

• Strain = dl/l (Wire)

• Strain = dy/dx (Shear)

One can think of the stress as a pressure, and the Strain as a ”fractional deformation”/relative change.

30.1.7 Hooke’s Law for Solids (Linear Elasticity)

For small deformations, materials will also follow Hooke’s law. We start with the wire case. If we change
the wire by length dl, we have that the force dF is given by:

dF = k · dl

However, it is more useful to divide both sides by the area A and add a factor of l on the RHS, which gives:

dF

A
=
kl

A

dl

l
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Therein, the term on the LHS is the tensile stress, the rightmost term is the tensile strain (could be com-
pressive if dl < 0, but let us assume for now that dl > 0) and define:

lk

A
= Y

Which is Young’s modulus, which is a characteristic of the material/material property.
Next, we look at a change of pressure in a fluid. We then have:

dp = −BdV
V

Where if we pull/expand a fluid, the pressure decreases. The B is known as the bulk modulus, which tells
us the response to a volumetric change (the proportionality constant to the strain). Note that in general
liquids are non-compressible and hence B for something like water is extremely high (but not infinite!)
Finally, considering a shear, we have

F

A
= G

dy

dx

Where G is the shear modulus. As a visual, consider shearing a material by displacing it. The amount by
which we shear is dy. The amount of tilt is the shear strain, and the coefficient of the force that fights back
is the shear modulus.

30.1.8 The Stress Tensor

When we think of solids, we worry about two things; we both worry about the force (which has three
components) as well as the orientation of the surface in which we apply the force, as the material acts
differently depending along which surface we apply the force. The stress is specified by the direction of
action and the orientation of the surface. This yields 3 · 3 = 9 possible components, yielding the stress
tensor!
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Question: A fluid is an isotropic molecule that cannot sustain any shearing forces in equilibrium. What must
be true for the stress tensor of the fluid?

Solution. The tensor must be digonal (no shear forces) with one unique component (isotropic). The idea is if
we push, we feel the same pressure on all sides. There is only one scalar value which quantifies the response.
For the fluid, the stress tensor will have a simple form:

σ =

−P 0 0
0 −P 0
0 0 −P

 , σij = −Pδij

Note that this is not true of all liquids, e.g. with viscous liquids like honey we can expect shear forces when
we stir.

Next day we will look at the counterpart of the stress tensor, the strain tensor, and hopefully get to
equations of motion that describe the motion of objects with finite extension.

31 Lecture 31

31.1 Lecture Notes - The Strain Tensor and Hooke’s Law for Solids

31.1.1 The Stress Tensor

Recall we can write the vector area element as dA = n̂dA. What is then the stress tensor? We consider the
force on a surface element F(dA), which we can express using the stress tensor:

F(dA) = σdA

Where σ is the stress tensor, which is a 3x3 matrix. We could alternatively write this as:

Fi(dA) =

3∑
j=1

σijdAj

31.1.2 Stress Tensor Elements

Let
F1(On area dA normal toê1) = σ11dA

This is of course true for σ22 and σ33. σii is therefore ith component of the force ⊥ to the i-axis. These are
volumetric forces, and this tells us that the tensile and compressive forces correspond to the diagonal entries
of the stress tensor. Next, consider

F2(on area dA normal to ê1) = σ21dA

And similarly for σ31. These are clearly shearing forces, forces that act perpendicular to the plane.

31.1.3 Symmetry of the Stress Tensor

We said above that the stress tensor has 9 entries (3x3) but there is good news; it turns out that the tensor
is actually symmetric (i.e. just 6 components to worry about!). To see this, consider the following geometry:
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We now apply a force in the 1 direction, perpendicular to the 2 direction, i.e. Fa = σ12dA. We can also
apply a force in the 2 direction, perpendicular to the 1 direction, which gives Fb = σ21dA. It is clear to see
that these forces induce a torque. WE can also apply the same forces at the opposite corner, on the opposite
direction (of equal magnitude):

The torque is then given by:
τ = Fbl − Fql = (σ21 − σ12)ldA = Γ3

(this torque is in the 3-direction). Furthermore, we have that:

Γ3 =
dL3

dt

We now argue that Γ3 is zero (and hence that σ21 = σ12. To see that this is the case, consider shrinking all
sides of the square by a factor λ. If I change l by λl, I pick up a factor of λ, and the area picks up a factor
of λ2, for a total scaling of:

Γ3 7→ λ3Γ3

Then, what happens to the angular momentum? We pick up λ2 from the r × p, and then integrating over
the plane, we have that we pick up a λ2, so it follows that:

λ3Γ3 = λ4 dL3

dt

But this is ture for all λ, so it follows that Γ3 must be zero, and hence σ21 = σ12. An identical argument
shows that σij = σji in general.
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31.1.4 Displacements

We now have a measure of force on the system, but we also need a measure of deformation. In general, we
can write down a vector r from the origin to any position in the original configuration, and we change this
r to a new vector r + u(r) where u is the displacement from the reference to the current position.

This displacement vector in general depends on the position, not all points in the object will move the same
amount. One might ask why do we want r+u(r) and not just u by itself; consider that u itself would change
during a constant translation (u(r) = u0) of the entire object, and hence is not a good measure of the strain.
We need to look at distortions. A general way to write down/pick up these distortions:

dui =
∑
j

∂ui
∂rj

drj

Or we can write this vectorially:
du = Ddr

Where:

D =


∂u1

∂r1

∂u1

∂r2

∂u1

∂r3
∂u2

∂r1

∂u2

∂r2

∂u2

∂r3
∂u3

∂r1

∂u3

∂r2

∂u3

∂r3


And this matrix contains the rate of change of the displacement. This is nice, as evidently this is now
insensitive to any constant translations. The gradient of the constant translation will be zero, which is what
we want as we should not have to pay any energy just by moving our rigid body back and forth.

31.1.5 The Strain Tensor

But there is another wrinkle to consider; rotating the body should also not change the energy of the body/the
energy should not depend on the orientation. What do we then do about rotations? COnsider that for a
small rotation:

θ = θu

About an axis u. To see this,
v = ω × r

So we can use this to write:
u(r) = vdt = ωdt× r = θ × r

Then we have that the displacement gradient has the form:

D =

 0 θ3 −θ3

−θ3 0 θ1

θ2 −θ1 0


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Which we can see is an antisymmetric matrix. The antisymmetry means that:

DT = −D

We need to get rid of this; we dont want a measure that picks up these rotations. We can construct this by
remembering that any matrix can be decomposed into a symmetric and antisymmetric part. So, we write:

D =
1

2
(D− DT ) +

1

2
(D + DT )

Where the first term is by construction anti-symmetric, and the second term is by construction symmetric.
Hence, we will just keep the second term, and use this as the measure of strain. The first term corresponds
to the vorticity/curl part, but here we only want to keep the symmetric part. Hence, we can define the
small-strain tensor as:

ε =
1

2

(
D + DT

)
Which we can see is symmetric by construction;

εij =
1

2

(
∂ui
∂rj

+
∂uj
∂ri

)

31.1.6 Example: Thin/thick plate in xy plane

Consider a thin plate subject to in plane (xy) tensile, compressive, or shear forces. Are σzz and εzz zero?
nonzero?

Solution. σzz = 0 and εzz 6= 0. For the first point, we can recognize that pulling on the plate in the xy plane
induces no stress on the plane in the z direction. For the second point, we consider a sheet of rubber which
changes in thickness as we pull it.

What if we ask the same question, but this time the plate is thick?

Solution. If we compare the thick to the thing plate, any length change from the contraction effect would be
very very small as the rod is tall. Hence, if we elongate it a little bit, then to first order, there is no strain.
But, there can be a stress, as the system would like to contract.

The first case (thin plate) corresponds to a plane stress condition. There is no stress in the z-axis, but
if we pull, we get an appreciable change in the thickness of the plate and hence a nonzreo strain. On the
other hand, we have the plane strain condition, where there is no strain in the z axis (rod is so tall such that
the strain in the z-direction is negligeble/the rod does not change thickness when we pull) but we could still
have a stress in the z-axis.
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31.1.7 Hooke’s Law for Isotropic and Homogenous Solids

Consider a decomposition of strain tensor. Consider the quantity of average dilation:

e =
1

3
(ε11 + ε22 + ε33) =

1

3
Tr(ε)

Which is a measure of how much the system is compressed/pulled. The last equality we just write the
expression as the trace of the strain tensor. Then, decomposing we have:

ε = eI + εdev = Vol(ε) + Dev(ε)

Where the first term is the spherical term (the term that couples to the volume changes) and the second
term is the deviatoric part (everything else, e.g. shear). Then, Hooke’s Law says that:

σ = f(ε)

Where f is a linear function. Then, we write (Without proof) that in the linear case, we can use this
decomposition to obtain:

σ = 3BVol(ε) + 2GDev(ε)

Where B, G are the bulk and shear moduli. We can alternatively write this as:

σ = 2µε+ λTr(ε)I

Where µ = G and λ = B − 2
3µ. What is important to realize is that this is true for an isotropic and

homoegnous solid, in which case only two elastic moduli are sufficient to characterize this response (we only
need to know the bulk and shear moduli). Of course in something like an anisotropic metal, this would be
more complicated.

32 Lecture 32

32.1 Chaos and Nonlinear Dynamics

32.1.1 What is chaos?

Chaotic systems can be described as systems with extreme sensitivity to initial conditions. Nonlinearity is
a necessary condition, but not sufficient (not all nonlinear systems are chaotic).

32.1.2 Driven Damped Pendulum

We recall the setup of the driven damped pendulum:
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This has the equation of motion:

mL2φ̈ = −bL2φ̇−mgL sinφ+ LF (t)

Where F (t) = F0 cos(ωt). Our standard technique for this course has been to linearize the equation, but
here we want to look at the full behavior. This is where numerical simulations can come in useful. Rewriting
this equation of motion slightly, we have:

φ̈ = − b

m
φ̇− g

L
sinφ+

F0

mL
cos(ωt)

Define the damping parameter 2β = b
m , the natural frequency ω2

0 = g
L , and the driving force γ = F0

mLω2
0
.

This yields the equation:
φ̈+ 2βφ̇+ ω0 sinφ = γω2

0 cos(ωt)

Our analytical analysis of this equation ends here (as it is nonlinear), so we turn to simulations to study the
behavior.

A simulation can be found here:

http://galileoandeinstein.physics.virginia.edu/more stuff/Applets/DampedDrivenPendulum/dampdrivPend 1.html

For a driving strength of 0.9, looking at φ it looks quite smooth/sinusoidal. However, looking at φ̇, the
graph is no longer sinusoidal, but quite spiky (sawtooth). Since the system is chaotic, the solutions are not
just simple sine functions. Let’s then move to a stronger driving of 1.05. Then, we see an initial very strange
jump in the motion, before the pendulum reaches a steady state. As we drive more strongly, there is an
initial transience, which eventually settles to more regular looking periodic motion.

Increasing the driving to 1.06, we see that the transient period increases even further:

Further increasing it to 1.07, this transient period continues to increase. If one follows the values of the
high/low amplitudes (or by tracking the red line of fixed amplitude, we notice that they do not immediately
repeat:
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In particular, we can see that the period doubles; period doubling is a prelude to chaos. This is not higher
harmonics, but rather subharmonics.

Going further to a driving strength of 1.077, the motion really does not look particularly sinusoidal any
longer (the strange looking motion we noticed in the transient part for weaker strengths keeps going). But
by changing the initial condition, the motion changes drastically:

Now, we increase the playing time and fast forward the system, to see when the transients die out, and we
get a sequence of period doubling:

We could also drive the pendulum very hard (1.4) and we see that hte pendulum goes wild; it swings over
the top frequently. But, the motion becomes periodic; we dont see the period doubling phenomena:
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Note that in general, chaos is not random (all of this has been deterministic), it just never repeats.

32.1.3 Period Doubling and Bifurcations

n period γm
1 1 to 2 1.0663
2 2 to 4 1.0793
3 4 to 8 1.0821
3 8 to 16 1.0827

We see the spacings between period doubling gets narrower. Note as γm → γl = 1.0829, we have chaos.
Note that this relates to a constant;

γn+1 − γn =
1

δ
(γn − γn−1)

And taking n→∞ we have:
δ = 4.6692016

Which is Feigenbaum’s number. This is a unviersal constant for chaotic systems. We will explore chaos in
further detail Friday.

33 Lecture 33

33.1 Lecture Notes - Lyapunov Exponents, Bifurcation Diagrams, State-Space
orbits, and Poincare Sections

33.1.1 Period doubling cascade - ”Route to Chaos”

Period doubles each time the driving strength of the driven damped pendulum is increased past γn:

δ = lim
n→∞

γn−1 − γn−2

γn − γn−1
= 4.6692016 . . .

This is the universal ”Feigenbaum number”.

33.1.2 The driven damped pendulum revisisted

We return to the driven damped pendlum from last day. Giving two pendulums driving strengths of γ =
1.503, and one with initial phase of φ0 = 0 and the other with φ0 = 0.005, we can see that after time, the
trajectories begin to diverge significantly.
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With a driving strength of 1.077, and an initial phase shift of −28, we see that there is definitely a divergence
in the two trajectories, but it looks periodic.

With ∆φ = −27, the difference is different from ∆φ = −28 but still periodic. With ∆φ = −29, we see that
we actually reach a constant difference:

With a slightly different driving strength, we see:
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We recognize that we are slightly further into the chaotic regime; looking at the difference between the two
pendulums, we see that there is no repeated pattern (there are slight differneces between cycles, so there
doesn’t appear to be periodic/perfect repetition).

33.1.3 Sensitivity to Initial Conditions & Lyapunov Exponents

Φ(t) = Φ2(t) − Φ1(t) os the difference between two solutions with slightly different initial conditions. For
linear oscillations,

∆Φ(t) = D exp(−βt) cos(ωt− δ)
In general:

∆Φ(t) ∼ K exp(λt)

λ is the Lyapunov exponent, with periodic motion when it is negative and chaotic motion when it is positive.
It is often best to plot log

∣∣∆Φ(t)
∣∣ ∼ λt+ Const. to see what happens with time.Doing so, we should either

see a line with a positive or negative slope, depending on whether the trajectory is divergent (chaotic) or
convergent (periodic) respectively. Plotting this for our two driven damped pendulums, we see:

The peaks follow the linear trend, and the dips correspond to when ∆Φ becomes negative. For driving of
1.07 (higher), we se that we still have convergence, but the Lyapunov exponent is less negative; it takes
longer for the difference between the two osicllators to vanish.
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Ramping it up to a driving strength of 1.105, we get into the Chaotic regime, where the overall slope is
positive:

But bringing it up to 1.13, we actually go back to the non-chaotic regime:

33.1.4 Bifurcation Diagrams

It gets quite confusing as to when the motion is chaotic, or not! A nice way of visualizing this is with a
bifurcation diagram. We plot the driving strength on the x axis and φ(t) on the y axis:
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Here, we only plot the phase at specific times. If the motion is periodic and we take pictures at specific
intervals, we always end up at the same point (e.g. before γ1). However, past γ1, we get period doubling and
hence taking snapshots of the pendulum at the original period, we will now see two periods. Past γ2, we see
4 different values, and so on. Past γ = 1.0845 we get into the chaotic regime. There is one more subtlety;
once we increase the driving strength past a certain point, the pendulum can roll over the top, so the angle
can go to infinity; this is a bit inconvenient! Although we could make the phase 2π periodic, another fix is
to just plot the velocity as a function of the driving strength:

We can see distint regions of periodicity and chaos; the circled part of a was the period doubling we were
studying earlier, b is chaotic, then c goes back to regular/periodic motion, then it gets chaotic for a while d,
then we have regular motion for a while e and so on. These diagrams can be quite useful to see these regions
of chaos and regularity.

33.1.5 State Space Orbits

Very similar to phase space diagrams we did with Hamiltonian mechanics, but now we plot φ̇ versus φ.
Looking at this plot letting it run for a little while, we can see that there are four different cycles. (4
different trajectories); we are in a period 4 scenario.
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Going to 1.0826, we see that after the initial transience, looking very carefully we have a period 8 scenario:

And for 1.087 we get period 16 and so on.

As we increase the driving strength even further, the motion becomes truly aperiodic.But, increasing it back
to 1.1, we get back to a periodic region (where the pendulum starts to roll over):
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And increasing it further, the motion gets chaotic again:

33.1.6 Poincare Sections

We can plot a point per cycle to get a Poincare section:
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So for the 4-period case, we expect to see 4 dots, which is indeed the case (though two are close together in
the below plot):

Pictured below is a strange attractor:

This is actually a fractal; fractals have scale invariance/self-similarity.

33.1.7 The Logistic map

The logistic map is defined as xt+1 7→ rxt(1−xt), describing the reproduction and starvation of a population.
Looking a the bifurcation diagram as we vary r, we see a similar development of chaotic behavior as the
pendulum, due to the nonlinearity:
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34 Lecture 34

34.1 Lecture Notes - Course Review I

34.1.1 Quiz II Recap

Solution. L and and I both change; there is a net torque. L is parallel to ω when the rotation is about
a principal axis, which is not the case here. Here, there are off diagonal elements in the inertia tensor. L
changes in time (r×p changes in time) and hence there must be a net torque Γ and the inertia tensor must
change as well.
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Solution. All of them! The first is the definition. The last two are Hamilton’s equations. The last two are
less obvious, but can be checked by differentiating the expression. Taking the derivative, we have:

dH
dt

=
∑
i

∂H
∂qi

q̇i +
∂H
∂pi

ṗi +
∂H
∂t

Where the first two terms are zero by Hamilton’s equations. We also have that:

H =
∑
i

piq̇i(q, p, t)− L

So taking the derivative:
∂H
∂t

= p
∂q̇

∂t
− ∂L
∂q̇

∂ q̇

∂t
− ∂L
∂t

And the first two terms cancel using the Euler-Lagrange equation.
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Solution. The first is false (no reason it should be!) The second is true as the moment of inertia tensor is
symmetric by construction. The third is true by definition of the diagonal elements. The fourth is false. The
last one is tricky:

λ1 + λ2 = ρ

∫
(x2 + y2)dV + 2ρ

∫
z2dV ≥ ρ

∫
x2 + y2dV = λ3

Solution. From the definition R = 1
M

∑
i rimi, we see that the x component is immediately zero by symmetry.

We could calculate the y component the pedestrian way by adding up all the contributions, or we can use
a neat trick. If we complete the pentagon, then we have a center of mass at zero. Hence, we can imagine
calculating the center of mass of the pentagon plus an ”anti-mass” at the top vertex of the pentagon, which
gives the easy result of Y = −R4 .
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Solution. This question is somewhat deceptive; its tempting to use H = T+U , but this does not hold here,
as the coordinate transformation is not natural. Hence, we have to return to the definition H =

∑
i piq̇i−L.

Doing so, we realize the answer is:

H =
p2

2m
− m

2
ω2x2

Explicitly working it out step by step, we have that:

L = T − U = T =
m

2
(ẋ@ + x2θ̇2)

There is no potential as we just rotate in a plane. Here we have that θ̇2 = ω2, and in fact there is an explicit
time dependence so the coordinate transformation is not natural. Hence:

L =
m

2
(ẋ2 + x2ω2)

And deriving p we have that:

p =
∂L
∂ẋ

= mẋ

And furthermore:
dotx =

p

m

Then, we have that the Hamiltonian is given by:

H = p
p

m
− L =

p2

m
− 1

2

p2

m
− m

2
x2ω2 =

m

2
(ẋ2 + x2ω2)
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34.1.2 Euler Angles

R1(φ) =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1


R2(θ) =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


R3(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


This is the convention for successive rotations to obtain the orientation of a rigid body. The first step is a
rotation by φ about the ẑ axis. The second step is a rotation by angle θ about the new ê′2 axis. Finally, we
rotate by ψ about the ê3 axis.

34.1.3 Symmetric Top

A classic application of the Euler angles is the symmetric top, where we want the angular momentum in the
body frame. Using the rotations, we derived ω in terms of the Euler angles and in terms of the unit vectors
in the body frame:

~ω = (−φ̇ sin θ cosψ + θ̇ sinψ)ê1 + (φ̇ sin θ sinψ + θ̇ cosψ)ê2 + (ψ̇ + φ̇ cos θ)ê3

Using this, we found the kinetic energy:

T =
1

2
L · ω =

1

2

(
λ1ω

2
1 + λ2ω

2
2 + λ3ω

2
3

)
Of course, the kinetic energy is the same whether calculated in the body frame or lab frame; the product
of vectors is invariant of frame, though the vectors themselves may change. We then assumed λ1 = λ2

(symmetric top) and from this we derived the Lagrangian:

L =
1

2
λ1

(
φ̇2 sin2 θ + θ̇2

)
+

1

2
λ3(ψ̇ + φ̇ cos θ)2 −MgR cos θ
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34.1.4 What if the tip is free to slide?

If this is the case, then we modify the Lagrangian, using the fact that we can always decouple the translational
and rotational motions of the rigid body:

L =
1

2
M
(
Ẋ2 + Ẏ 2 + Ż2

)
+

1

2
λcm

1

(
φ̇2 sin2 θ + θ̇2

)
+

1

2
λcm

3 (ψ̇ + φ̇ cos θ)2 −MgR cos θ

Which we see is just the kinetic energy of the COM 1
2M

(
Ẋ2 + Ẏ 2 + Ż2

)
plus the rotational terms we

determined earlier. If we have steady precession, then θ = Const and hence ż = −R sin θθ̇ = 0 (as z =
R cos θ). One subtlety is we have to relate the center of mass moments to the moments when we had the tip
fixed. Using the parallel axis theorem, we have that:

λtip1 = λCOM1 +MR2

λtip3 = λCOM3

So we can relate these terms very quickly. We recall the formula for the precession frequency:

Ω =
λ3ω3

λ1 cos θ

In the case of free precession. In the two situations where the tip is fixed vs free, we consider:

Ωtip =
λtip3 ω3

λtip1 cos θ
< ΩCOM

So it actually precesses slower if we let the tip freely move!
Next day, we will look at canonical transformations.

35 Lecture 35

35.1 Lecture Notes - Course Review II

35.1.1 Examples of Canonical Transformations

Only transformations in which new coordinates obey Hamilton’s equations of motion are canonical. Suppose
we have our generalized position q that maps to a new variable Q = p and our generalized momentum p that
maps to a new variable P = −q. The original coordinates satisfy Hamilton’s equations, so:

q̇ =
∂H
∂p

, ṗ = − ∂H
∂q

We therefore have that:

Q̇ = ṗ = − ∂H
∂q

= − ∂H
∂(−P )

=
∂H
∂P
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So the first equation of motion is satisfied. Playing the same game with Ṗ , we have:

Ṗ = −q̇ = − ∂H
∂p

= − ∂H
∂Q

So this also works out. Checking the (fundamental) Poisson brackets, we have that:

[Q,Q] = [p, p] = 0

[P, P ] = [−q,−q] = [q, q] = 0

[Q,P ] = [p,−q] = −[p, q] = −(−[q, p]) = [q, p] = 1

So we have checked that this is a canonical transformation in a completely equivalent way. Recall that we
can come up with generating functions F which link the old and new variables. One example (in the HW)
was:

F1(q,Q) = qeQ

Now we can calculate the momenta:

pi =
∂F1

∂qi
, Pi = − ∂Fi

∂Qi

A second example is:
F2(p,Q) = −(eQ − 1)2

Where:

qi = − ∂F2

∂pi
, Pi = − ∂F2

∂Qi

The significance of all of this is that there is a subclass of transformations, where due to the Jacobian
determinant being equal to 1, the metric of phase space is preserved (this relates to a fundamental symmetry).

35.1.2 Practice Problem

Two equal masses are connected by a string of length l that runs through the tip of a cone. One mass is free
to move inside, the other moves without friction on the surface.

(a) Set up suitable generalized coordinates.

Solution. It is most natural to use spherical. For m1 we use coordinates (r, θ, φ). For m2 we have
coordinates (l − r, π − α, β). We have 6 variables, 4 independent, and two constrains. We put origin
at the top of the cone. Take r, θ, φ, β as our generalized coordinates.

(b) Find the Lagrangian and the equations of motion. Are there cylical coordinates?
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Solution. Velocities are given by:
m1 : (ṙ, rθ̇, rφ̇ sin θ)

m2 : (−ṙ, 0, (l − r)β̇ sin(π − α))

L =
m

2

[
2ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ + (l − r)β̇2 sin2(π − α)

]
−mgr cos θ +mg(l − r) cosα

To find the equations of motion, we use the Euler Lagrange equations. We notice that the Lagrangian
has no dependence on φ or β and hence these coordinates are cyclic.

(c) Find the Hamiltonian.

Solution. For the cyclic coordinates, we have:

pφ = mr2 ˙phi sin2 θ = Const.

pβ = m(l − r)2β̇ sin2(π − α) = Const.

For the r equations, we have:

2r̈ − r(θ̇2 + φ̇2 sin2 θ) + (l − r)β̇2 sinα+ g(cos θ + cosα) = 0

For the θ equation we have:
rθ̈ + 2ṙθ̇ − rφ̇2 =

(d) What is the angular velocity of the particle on the outside if it moves in a circular orbit?

Solution. We already calcualted pφ and pθ which were constant. Calculating the other two, we have:

pr =
∂L
∂ṙ

= 2mṙ

pθ =
∂L
∂θ̇

= mr2θ̇

The Hamiltonian is given by:
H = pr ṙ + pθ θ̇ + pφφ̇+ pβ β̇ − L

Hence:

H =
p2
r

2m
+

p2
θ

2mr2
+

p2
φ

2mr sin2 θ
+

p2
β

2m(l − r)2 sin2 α
+mgr cos θ −mg(L− r) cosα

Here we see that the Hamiltonian is just H = T + U as the transformation is indeed natural. Moving
onto solving the question, in a circular orbit r = Const., so we can therefore solve for:

β̇ =
p2
β

2m(l − r)2 sin2 α

36 Formula Sheet

This section lists most of the important formulas used throughout the year, albeit without explanation; it
will likely be most helpful as a quick reference when doing homework problems of when studying. They are
written in the order in which material was covered in the course.
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36.1 The Variational Principle and Lagrangian Mechanics

Newton’s Law
n∑
i=1

Fi(t) = mr̈(t) (1)

Generalized Coordinates:
qi = qi(r1, r2, . . . , rn) (2)

Action & Hamilton’s Principle:

S[q1, . . . , qn] = S[q1(t), . . . , qn(t)] =

∫ t2

t1

L(q1, q̇1, . . . , qn, q̇n, t)dt is stationary for the true path (3)

The Lagrangian:
L = T − U (4)

Euler-Lagrange equations:

∂f

∂y
− d

dx

∂f

∂y′
= 0 Where f is the function being minimized (5)

Lagrange equation of motion:
∂L
∂q

=
d

dt

∂L
∂q̇

(6)

Generalized Force:
dL
dq

(7)

Generalized Momenta:
dL
dq̇

(8)

Center of Mass Coordinates:

R =
m1r1 +m2r2

m1 +m2
, r = r1 − r2 (9)

Holonomic constraints:
f(ri, t) = 0 (10)

Lagrange equation of motion with non-conservative force correction:

∂L
∂q

+ Fnoncons =
d

dt

∂L
∂q̇

(11)

Lorentz Force Law:
mr̈ = q(E + ṙ×B) (12)

Lagrangian for charged particle in EM field:

L = T − U ′ = T − (qV − qṙ ·A) (13)

Generalized momentum for charged particle in EM field:

p = mṙ + qA (14)

Relativistic spatial momentum:
p = m0γv (15)
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Noether’s Theorem:

d

dt

n∑
j=1

(
∂L
∂ ˙̃qj

∂q̃j
∂α

)∣∣∣∣∣∣
α=0

=
d

dt
I(q1, q̇1, . . . t) = 0 (16)

Hamiltonian:
H =

∑
j

pj q̇j − L (17)

Lagrange Multipliers:

∂L
∂qi

+

m∑
k=1

λk
∂fk
∂qi

=
d

dt

∂L
∂q̇i

for a system with m holonomic constraints (18)

36.2 Coupled Oscillators

General solution to simple harmonic oscillator:

x(t) = A cos(ω0t− δ), ω0 =

√
k

m
(19)

Damped Oscillator ODE:

ẍ+ 2βẋ+ ω2
0x = 0, β =

b

2m
(20)

Overdamped Solution:

x(t) = C1 exp(r1t) + C2 exp(r2t) = C1 exp

((
−β +

√
β2 − ω2

0

)
t

)
+ C2 exp

((
−β −

√
β2 − ω2

0

)
t

)
(21)

Critically Damped solution:
x(t) = C1 exp(−βt) + C2t exp(−βt) (22)

Underdamped Solution:

x(t) = A exp(−βt) cos

((√
ω2

0 − β2

)
t− δ

)
(23)

Damped Driven Oscillator ODE:
z̈ + 2βż + ω2

0z = f0 exp(iωt) (24)

Amplitude of solution C exp(iωt):

C =
f0

−ω2 + 2iβω + ω2
0

= A exp(iδ) (25)

Amplitude squared and phase:

A2 = CC∗ =
f2

0

(ω2
0 − ω2)2 + 4β2ω2

, δ = arctan

(
2βω

ω2
0 − ω2

)
(26)

General solution to ẍ+ 2βẋ+ ω2
0x+ f0 cos(ωt):

x(t) = A cos(ωt− δ) + C1 exp(r1t) + C2 exp(r2t) = xperiodic(t) + xtrans(t) (27)

Q factor:

Q =
ω0

2β
(28)
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General Coupled Oscillator Matrix equation:

Mẍ = −Kx (29)

Eigenfrequency characteristic equation:

det
(
K− ω2M

)
= 0 (30)

Eigenmodes:

(K− ωM)

[
A1

A2

]
= 0 (31)

Normal coordinates:

q(t) =

n∑
i=1

aiξi(t), such that ξ̈i + ω2
i ξi = 0 (32)

36.3 Mechanics in Non-Inertial Frames

Newton’s law for linearly accelerating frame:

mr̈ = F−mA (33)

Newton’s Law with tidal force:

mr̈ = Fg + Ftidal = mg −GMm

(
d̂

d2
− d̂0

d2
0

)
(34)

Velocity in rotating frames
v = ṙ = ω × r (35)

Addition of angular velocities:
ω31 = ω32 + ω21 (36)

Time derivatives in non-inertial frames:(
dQ

dt

)
S0

=

(
dQ

dt

)
S

+ Ω×Q (37)

Newton’s Law in Rotating Frame:

mr̈ = F + Fcor + Fcent + Feuler = F + 2mṙ×Ω +m(Ω× r)×Ω +mr× Ω̇ (38)

36.4 Rigid Body Mechanics

Position of COM:

R =
1

M

∑
α

mαrα (39)

Momentum of COM:
P = MṘ =

∑
α

mαṙα (40)

External force:
Fext = MR̈ (41)

Angular momentum of spinning rigid bodies:

L =
∑
α

(R×mαṘ) +
∑
α

(r′α +mαṙ′) = Lorbital + Lspin (42)
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Potential energy:

U = Uext + Uint = Uext +
∑
i<j

Uij(rij) (43)

Kinetic energy:

T =
1

2

∑
α

mαṙ
′α
2 (44)

Angular momentum for rotation about z axis:

L =

LxLy
Lz

 =
∑
α

(rα ×mαvα) =
∑
α

(rα ×mα(ωẑ× rα)) =
∑
α

mαω

 −zαxα−zαyα
x2
α + y2

α

 =

IxωIyω
Izω

 (45)

Inertia Tensor:

L = Iω =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

ω (46)

Inertia Tensor entries (discrete):

I =
∑
α

mα

(y2
α + z2

α) −xαyα −xαzα
−yαxα (z2

α + x2
α) −yαzα

−zαxα −zαyα (x2
α + y2

α)


Inertia Tensor entries (continuous)

I =

∫
dV ρ(x, y, z)

y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2


Inertia Tensor entries (index notation):

Iij =

∫
dV ρ(x, y, z)

(
r2δij − rirj

)
(47)

Parallel Axis Theorem:
Jij = Iij +M(a2δij − aiaj) (48)

Principle Axis:

L =

λ1 0 0
0 λ2 0
0 0 λ3

ω1

ω2

ω3

 =

λ1ω1

λ2ω2

λ3ω3

 (49)

Torque:
Γ = L̇ (50)

Euler’s Equations:

Γ1 = λ1ω̇1 − (λ2 − λ3)ω2ω3

Γ2 = λ2ω̇2 − (λ3 − λ1)ω1ω3

Γ3 = λ3ω̇3 − (λ1 − λ2)ω1ω2

(51)

Rotation matrices:

Rx =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 , Ry =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 , Rz =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (52)

Euler Angles:
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1. First, rotate around z-axis by φ.

2. Next, rotate around the new y-axis by θ.

3. Then, rotate around the new z-axis by ψ.

Angular velocity vector with Euler Angles:

ω = φ̇ẑ + θ̇ê′2 + ψ̇ê3 (53)

Angular velocity vector solely in terms of rotated basis vectors

ω = (θ̇ sinψ − φ̇ sin θ cosψ)ê1 + (θ̇ cosψ + φ̇ sin θ sinψ)ê2 + (φ̇ cos θ + ψ̇)ê3 (54)

Kinetic energy for symmetric rigid body with λ1 = λ2:

T =
1

2

(
λ1ω

2
1 + λ2ω

2
2 + λ3ω

2
3

)
=
λ1

2
(θ̇2 + φ̇2 sin2 θ) +

λ3

2
(ψ̇ + φ̇ cos θ)2 (55)

Lagrangian of spinning top:

L =
1

2

[
λ3

(
ψ̇ + φ̇ cos θ

)2

+ λ1

(
φ̇2 sin2 θ + θ̇2

)]
−mgR cos θ (56)

Conserved L3:

L3 = pψ =
∂L
∂ψ̇

= λ3(ψ̇ + φ̇ cos θ) = λ3ω3 (57)

Conserved Lz:

Lz = pφ =
∂L
∂φ̇

= λ1φ̇ sin2 θ + λ3(φ̇ cos θ + ψ̇) cos θ (58)

Total energy:

E =
λ1

2
θ̇2 + Ueff (θ) (59)

Effective Potential:

Ueff (θ) =
(pφ − pψ cos θ)2

2λ1 sin2 θ
+

p2
ψ

2λ3
+mgR cos θ (60)

Oscillatons about the minimum/nutation:

φ̇ =
pφ − pψ cos θ

λ1 sin2 θ
(61)

36.5 Hamiltonian Mechanics

Hamiltonian Definition (again):

H =
∑
i

piq̇i − L =
∑
i

∂L
∂q̇i

q̇i − L (62)

Hamilton’s equations of motion:
∂H
∂pi

= q̇i,
∂H
∂qi

= −ṗi (63)

Canonical transformation to H 7→ K, qi 7→ Qi, pi 7→ Pi must satisfy:

∂K

∂Pi
= Q̇i,

∂K

∂Qi
= −Ṗi (64)

Poisson Bracket:

[F,H] =
∑
j

∂F

∂qj

∂H

∂pj
−
∑
j

∂F

∂pj

∂H

∂qj
(65)

Poisson bracket properties:
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(a) Anti-symmetry [F,G] = −[G,H], from which we obtain [F, F ] = 0.

(b) Bilinearity [aF + bG,H] = a[F,H] + b[G,H] and [H, aF + bG] = a[H,F ] + b[H,G]

(c) Leibniz’ Rule [FG,H] = [F,H]G+ F [G,H]

(d) Jacobi Identity [F, [G,H]] + [G, [H,F ]] + [H, [F,G]] = 0

Canonical relations:
[qi, qj ] = 0, [pi, pj ] = 0, [qi, pj ] = δij (66)

Canonical transformation to H 7→ K, qi 7→ Qi, pi 7→ Pi must satisfy:

[Qi, Qj ] = 0, [Pi, Pj ] = 0, [Qi, Pj ] = δij (67)

Jacobian determinant: ∣∣∣∣∂(x, y)

∂u, v

∣∣∣∣ = det

∂x∂u ∂x

∂v
∂y

∂u

∂y

∂v

 (68)

A transformation is canonical if: ∣∣∣∣∂(Q,P )

∂(q, p)

∣∣∣∣ = 1 (69)

Liouville’s Theorem:
dV

dt
= 0 where V is the phase space volume (70)

Canonical quantization:

[F,G]P 7→
1

i~
[F,G] (71)

Heisenberg equation of motion:
dO

dt
=

1

i~
[O,H] +

∂O

∂t
(72)

36.6 Scattering Theory

Number of Scattered Particles
Nsc = NincP (hit) = NincntargetσL (73)

Scattering Area of Hard Spheres:
π(R1 +R2)2 (74)

Mean Free path of air molecules:

λ =
1

nσ
(75)

Solid Angle:

∆Ω =
A

r2
(76)

Infinitesimal Solid angle:
dΩ = sin θdθdφ (77)

Differential cross section dσ
dΩ and how it relates to scattered particle number:

Nsc(into dΩ) = Nincntarget

(
dσ

dΩ
(θ, φ)

)
dΩ (78)
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Differential Cross section:
dσ

dΩ
=

b

sin θ

∣∣∣∣dbdθ

∣∣∣∣ (79)

Expression for ∆φ (for solving for diff. cross section):

∆φ(r) = π − θ = 2b

∫ ∞
rmin

dr

r2
√

1− 2U(r)
mv2∞

− b2

r2

(80)

Hard Sphere Differential Cross Section:
dσ

dΩ
=
R2

4
(81)

Coloumb Potential Differential Cross Section:

dσ

dΩ
=
k2q2

1q
2
2

16E2

1

sin4
(
θ
2

) (82)

Relating lab differential cross section to COM differential cross section:(
∂σ

∂Ω

)
lab

=

(
∂σ

∂Ω

)
COM

∣∣∣∣∣d(cos θCOM )

dcos θlab

∣∣∣∣∣ (83)

Where: ∣∣∣∣∣d(cos θCOM )

dcos θlab

∣∣∣∣∣ =
(1 + 2λ cos θCOM + λ2)3/2

|1 + λ cos θCOM |
(84)

36.7 Continuum Mechanics

1-D Wave equation:
∂2u(x, t)

∂t2
= c2

∂2u(x, t)

∂x2
(85)

3-D generalization:
∂2p

∂t2
= c2∇2p (86)

Volume Forces:
F = kAdV (87)

Stress and Strain:

• Stress = Force / Area = Pressure (Fluid)

• Stress = Tension / Area (Wire)

• Stress = Shear Force / Area (Shear)

• Strain = dV/V (Fluid)

• Strain = dl/l (Wire)

• Strain = dy/dx (Shear)
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Young’s Modulus:

Y =
lk

A
(88)

Bulk Modulus:

dp = −BdV
V

(89)

Shear Modulus:
F

A
= G

dy

dx
(90)

Stress Tensor:
F(dA) = σdA (91)

Displacement Tensor:

D =


∂u1

∂r1

∂u1

∂r2

∂u1

∂r3
∂u2

∂r1

∂u2

∂r2

∂u2

∂r3
∂u3

∂r1

∂u3

∂r2

∂u3

∂r3

 (92)

Strain Tensor:

ε =
1

2

(
D + DT

)
(93)

Hooke’s Law for Isotropic Solids:

σ = 2µε+ λTr(ε)I, µ = G,λ = B − 2

3
µ (94)

36.8 Chaos Theory

Driven Damped Oscillator:
φ̈+ 2βφ̇+ ω0 sinφ = γω2

0 cos(ωt) (95)

Universal Feigenbaum Number:

δ = lim
n→∞

γn−1 − γn−2

γn − γn−1
= 4.6692016 . . . (96)

Logistic Map:
xt+1 = rxt(1− xt) (97)
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