
PHYS 502 (Condensed Matter I) Notes
Rio Weil

This document was typeset on December 8, 2022

Introduction:
This is a set of lecture notes taken from UBC’s PHYS 502 (Graduate Condensed Matter I) course, taught
by Dr. Marcel Franz. The course covers second quantization notation, electrons in solids, boson systems,
electrons in periodic potentials, semiclassical theory of metallic conduction, electron-phonon interactions,

and elements of superconductivity. The course textbook is “Solid State Physics” by Ashcroft and
Mermin. If any errors are found in the notes, feel free to email me at ryoheiweil@phas.ubc.ca.
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1 Solids as Interacting Quantum Many-Body Systems

In this class we will largely discuss the theory of solids. A solid is anything that is rigid, but specifically
we will discuss solids as ions arranged in a regular lattice plus electrons.

+ + + + +

+ + + + +

+ + + + +

-

-

-

1

Figure 1.1: A cartoon visualization of a solid, here a square regular lattice with free electrons.

1.1 A Condensed Matter Theory of Everything

Consider the Hamiltonian:

H = ∑
i

P2
i

2M
+

(Ze)2

2 ∑
i,i′

1
|Ri − Ri′ |

+ ∑
j

p2
j

2m
+

e2

2 ∑
j,j′

1
|ri − ri′ |

− Ze2 ∑
i,j

1
|Ri − rj|

. (1.1)

First term is ion KE, second term is ion-ion Coulomb interaction, third term is electron KE, fourth term is
electron-electron Coulomb interaction, fifth term is ion-electron Coulomb interaction. This is in principle
the theory of everything, which encompasses all that there is need to know in a solid. Note that spin is
missing here; we should add two copies of everything (spin up, spin down) and relativistic effects (spin
orbit coupling) but for most solids these are relatively small corrections. However, there is a large problem;
this is a largely intractable problem. The main problem is that N (the number of electrons in a given solid)
is extremely large; N ∼ 1023. Let’s consider some cases of N.

• N = 1 is the hydrogen atom; this has been solved by Schrodinger (and in undergraduate QM)
exactly.

• N = 2 is the Helium atom; already there exists no exact solution. But there are approximate methods
that work well (e.g. variational principle for finding the ground state energy)

• N = 1 − 100 is the whole of chemistry; there are more sophisticated approximation techniques here.

• N ∼ 1023 is the theory of solids.

The key issue of the problem is the size of the corresponding Hilbert space is enormous. It’s even hard
to estimate how large, as position and momentum are continuous. But just to illustrate the size of H for
N = 1023, let’s consider a simpler setting where we only consider spin and ignore all of the motional
degrees of freedom. For spin, there are two states; ↑ and ↓ per electron. So the total number of basis
states is 2N = 21023 ≈ 101023/3. There is no computer possible that can store this much information! In
fact as an amusing comparison, there are only 3.8 × 1050 atoms on Earth, 1.2 × 1057 atoms on the sun, and
1.3 × 1079 atoms in the visible universe; our brute force method is destined to fail. Our conclusion is that
drastic approximations are required in order to make progress in any valid description of solids. And note
that they may be drastic, but these approximations turn out to be quite good; there is some simplicity that
emerges from what seems to be a hopelessly large and complex Hilbert space. We can achieve a very good
understanding of many things; e.g. the physics necessary to construct the device on which this document
was written.
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1.2 The Born-Oppenheimer Approximation

The Born-Oppehnheimer, or adiabatic approximation was originally developed as an approximation
method to describe complex molecules; however it applies to our current discussion of solids. It is
based on the observation that M ≫ m (where M is the ion mass and m the electron mass), namely
m
M ∼ 10−3 − 10−5. We imagine that in a complicated system of electrons and ions we have equipartition
of energy1; because the energy scales of electrons and ions are comparable, the electrons will be moving
much faster. Therefore it is possible to decouple the problem of electrons and phonons, by solving the
electron motion on a static background of ions.

One can deduce that vion ∼
(

m
M

)3/4
vF ∼ 10−2 − 10−3vF. Also, vF ∼ 3 × 106m/s ∼ 10−2c so the

physics we consider is non-relativistic (and we can add corrections to the order of 1%). There are various
supposedly intuitive arguments for why we have a power of 3/4 on m

M , but most are not at all obvious or
really reasonable; we will derive it after going further into our discussion of solids.

We explore the consequences of vion ≪ vF for solutions of the Schrodinger equation:

Hψ(r, R) = Eψ(r, R) (1.2)

where r =
{

rj

}
j

and R = {Ri}i. We make the ansatz:

ψ(r, R) = ∑
n

ϕn(R)ψe,n(r, R) (1.3)

where ψe,n are solutions to the electron problem at fixed ion positions. In other words:

(Te + Vee + Vei)ψe,n(r, R) = Ee,n(R)ψe,n(r, R) (1.4)

This in itself is an intractable problem, but it will be useful for our analysis to assume a solution of this
form. Let us substitute our ansatz into the SE. We then obtain:

(Ti + Te + Vii + Vee + Vei)ψ = Eψ.

We can rewrite this as:

(Ti + Vii)ψ + ∑
n

ϕn(Te + Vee + Vei)ψe,n = Eψ

But the term in brackets of the sum if the electronic part, so:

(Ti + Vii)ψ + ∑
n

Ee,n(R)ψe,n(r, R) = Eψ (1.5)

We can not multiply by ψ∗
e,m(r, R) and integrate over r. We then have many simplifications that arise from

orthonormality (namely in the second term and the RHS). But the first term on the RHS is nontrivial as Ti
contains ∇R. In any case, we are left with:

∑
n

∫
drψ∗

e,m(r, R)Tiϕn(R)ψe,n(r, R) + (Vii + Ee,m(R)− E)ϕM(R) = 0. (1.6)

where we have used the orthonormality of ψe,n to collapse most of the terms. Let us now analyze the

troublesome term. We rewrite this as ∑i⟨em| P2
i

2M ϕn(R)|en⟩. P2
i is a second derivative, so we end up getting

1Equipartition is a result from classical physics, but it applies suprisingly well.
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three terms; one term where both derivatives act on ϕn, a term where one acts on ϕn and the other on |en⟩,
and the last where both act on |en⟩. Explicitly, we can write it as:

∑
i
⟨em| P2

i
2M

ϕn(R)|en⟩ = − h̄2

2M ∑
i

∫
drψ∗

e,m(r, R)
[
(∇2

Ri
ϕn(R)) + 2(∇Ri ϕn(R))∇Ri + ϕn(R)∇2

Ri

]
ψe,n(r, R).

(1.7)
The first term can be evaluated (as before) using orthonomality. The other two are not as convenient, but
in the B-O approximation we may neglect the other two terms (and we will discuss shortly why this is a
good idea).

We obtain the following equation:

[Ti + Vii + Ee,n(R)]ϕn(R) = Enϕn(R) (1.8)

Note we can solve Eq. (1.4) assuming the ions are static/in fixed positions. From there we obtain
Ee,n(R) which allows us to solve Eq. (1.8) (which is known as a phonon equation), which allows us
to obtain En and ϕn(R), which gives us the solution of the whole problem. We have decoupled one very
complex problem into two connected but separately solvable equations. Ee,n(R) is called the effective ionic
potential; without it a crystal would blow apart (via repulsive interaction), but it holds things together.

As a last step, we must still demonstrate that the two neglected terms in (1.7) make negligible contri-
butions. One can show that:

1. The first term is order
(

m
M

)1/2
ϵF.

2. The second term is order
(

m
M

)3/4
ϵF.

3. The third term is order
(

m
M

)
ϵF.

However these estimates are for now opaque; we will confirm them later by further analysis. For
now though, we recall that m

M ∼ 10−3 − 10−5 so the second/third terms tend to be at least an order of
magnitude smaller than the first (and can be neglected to first order). However, some important properties
of crystalline solids are actually derived from these terms. For example if we analyze how electron motion
couples to lattice vibration, then we have to start to worry about them. Additionally, the terms also
contribute to resistivity of metals (phonon-electron scattering, especially important at high temperatures;
why resistivity drops at lower temps)

So to start, we will study the electron and lattice degrees of freedom separately, but as we go further
into our study we will have to revisit these coupling terms. Next week,
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2 Second Quantization

2.1 Motivation

The goal is to re-state the familiar Schrodinger equation:

ih̄
∂

∂t
ψ(x1, . . . , xN , t) = Hψ(x1, . . . , xN , t). (2.1)

in a more convenient format for N ∼ 1023. Second quantization is a bit of a misnomer; we will not
quantize any further, but we will just recast the SE into a more convenient basis. Here we will give a
summary of the derivation, and the gory mathematical details left to self-study; refer to the Chapter 1
handout of Fetter and Walecka.

We will consider the following Hamiltonian as an example:

H =
N

∑
k=1

T(xk) +
1
2

N

∑
k<l

V(xk, xl) (2.2)

where we have the single-particle operator T (kinetic energy) and the two-particle operator V (interaction;
e.g. Coulomb).

2.2 The Central Idea

The problem is that the number of variables that this wavefunction depends on is absolutely astronomical.
The key will be that any two electrons are fundamentally indistinguishable; instead of keeping track of
N ∼ 1023 positions, it is sufficient to specify how many particles occupy a given single-particle state. To
this end we choose a basis of single particle states ψEk (xk) where Ek represents a complete set of single-
particle quantum numbers2 (e.g. momentum p for spinless bosons in a 3d box, or n, l, m, sz for an electron
in a hydrogen atom). We then write the many-body wavefunction in this basis as:

ψ(x1, . . . , xN , t) = ∑
E1,...,EN

C(E1, . . . , EN , t)ψE1(x1) . . . ψEN (xN) (2.3)

We must distinguish two possible cases for these particles; namely they can either be bosons or fermions
i.e. take care of the “exchange statistics”. This is encoded in the many body wavefunction as a property
of how the wavefunction behaves under exchange of any two particles:

ψ(. . . , xi, . . . , xj, . . . , t) = ±ψ(. . . , xj, . . . , xi, . . . , t) (2.4)

with + corresponding to bosons and − corresponding to fermions. This has far-reaching consequences
for the nature of many-body states. If this wavefunction rule is obeyed, the coefficients must obey the
same rule:

C(. . . , Ei, . . . , Ej, . . . , t = ±C(. . . , Ej, . . . , Ei, . . . , t). (2.5)

Bosons are a bit easier, so we discuss them first.

2.3 The Boson Case

For the sake of simplicity, we will imagine that the Ejs are represented by integers, namely Ej ∈ N.
Suppose we have coefficient C(12134115 . . . , t). Since we are free to exchange any of the integers as we
like, we may arrange it as:

C(12134115 . . . , t) = C(1111 . . . 2222 . . . 333 . . . . . . , t)

2Ek does not represent energy
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where we have n1 1s, n2 2s, n3 3s and so on. It should be immediately clear that it is not necessary to keep
track of all 1023 numbers, but just the number of particles in each state (each number). We then define:

C(1111 . . . 2222 . . . 333 . . . . . . , t) ≡ C̄(n1, n2, . . . , n∞, t). (2.6)

In analogy, when we think about our bank account, we do not care about the individual dollars or what
they look like; we only care about the total number of dollars in each of our accounts. We can then write
the wavefunction in terms of C̄, and then massage the resulting expressions to obtain convenient equations
(as is done in the text).

2.4 Many-Body Hilbert Space, Creation/Annhilation Operators

We introduce a many-body Hilbert space and creation/annhilation operators that act on states in the
space. States in the space look like. These states are orthonormal and complete:

⟨n′
1n′

2 . . . n′
∞|n1n2 . . . n∞⟩ =

∞

∏
i=1

δni ,n′
i

∑
n1,n2,...,n∞

|n1n2 . . . n∞⟩⟨n1n2 . . . n∞| = 1.
(2.7)

We then define the creation/annhilation operators by defining their commutation relations. For bosons,
we have:

[bk, b†
k′ ] = δkk′

[bk, bk′ ] = 0

[b†
k , b†

k′ ] = 0

(2.8)

where b†
k is said to create a boson in state ψEk (x). We record the notation:

|n1n2 . . . n∞⟩ = |n1⟩ ⊗ |n2⟩ ⊗ . . . ⊗ |n∞⟩. (2.9)

We can now use the commutation relations to count the number of particles, as well as create and
annhilate them:

b†
k bk|nk⟩ = nk|nk⟩
bk|nk⟩ =

√
nk|nk − 1⟩

b†
k |nk⟩ =

√
nk + 1|nk + 1⟩.

(2.10)

and if there is no boson to destroy (i.e. we have the vacuum state |0⟩), we have the special case of:

bk|0⟩ = 0.

Most of the states of interest in CM physics is low-temperature states where there are limited number
of states with large occupancies. E.g. Bose-Einstein condensation, where all particles go into the single-
particle ground state (n1 is huge, ni for i > 1 are zero). When you heat up this condensate a little, n1 will
still be large, and the excited states will start to be occupied.

2.5 Second Quantization Result

With these definitions, one can show (see F&W) that Eq. (2.1) becomes:

ih̄
∂

∂t
|ψ(t)⟩ = H|ψ(t)⟩

H = ∑
i,k
⟨i|T|j⟩b†

i bj +
1
2 ∑

ijkl
⟨ij|V|kl⟩b†

i b†
j blbk .

(2.11)
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Note the order of blbk above. This does not matter for bosons (as the two are seen to commute via the
commutation relations), but it will matter for fermions, as we will soon see. As a reminder, |ψ(t)⟩ lives in
the many-body Hilbert space:

|ψ(t)⟩ = ∑
n1n2 ...n∞

f (n1, n2, . . . , n∞, t)|n1n2 . . . n∞⟩.

In second quantization, the important quantities of interest to calculate will be the matrix elements of T
and V with respect to the chosen multi-particle basis.

2.6 The Fermion Case

For fermions, the anti-symmetry under exchange implies the Pauli exclusion principle; that is, at most one
fermion can occupy a given state. To see this in terms of the coefficients C, we have the relation:

C(11 . . .) = −C(11 . . .) (2.12)

where we have interchanged the 1s. The only way this can be satisfied is if C(11 . . .) = 0. So for the
coefficient to be nonzero, all of the fermions must be in different states. In second quantization, this is
implemented by the anti-commutation relations of creation and destruction operators:

{cs, c†
s′} = δkk′

{cs, cs′} = 0

{c†
s , c†

s′} = 0

(2.13)

Where {A, B} = AB + BA is the anticommutator. We can derive the following properties:

1. {c†
s , c†

s } = 2c†
s c†

s = 0, so:
c†2

s = 0 =⇒ c†2
s |0⟩ = 0 (2.14)

this is a restatement of the Pauli principle. We cannot create two fermions in the same state. Analo-
gously, c2

s = 0.

2. We have the number operator (as in the boson case) of n̂ = c†c. We then have that:

(n̂)2 = (c†c)2 = c†cc†c = c†(1 − c†c)c = c†c = n̂ (2.15)

where in the second-to-last equality we use the anticommutation relation and for the last equality
we use that c†2 = 0. So, the number operator has the property of idempotency. From this we can
conclude that n̂ has eigenvalues of 0 and 1 (as these are the only values that square to 1). This
again is consistent with the Pauli exclusion principle; either we have zero or one fermions in a given
quantum state.

3. It is easy to deduce:

c†|0⟩ = |1⟩ c|1⟩ = |0⟩
c†|1⟩ = c†c†|0⟩ = 0
c|1⟩ = cc|0⟩ = 0

(2.16)

A note with bookkeeping; because of the anti-commutation rules, it becomes necessary to track signs
in many-body states. We have the following many-particle state which we apply cs to:

|n1n2 . . . n∞⟩ = (c†
1)

n1(c†
2)

n2 . . . (c†
∞)n∞ |0⟩.

cs|n1n2 . . . n∞⟩ = (−1)ss(c†
1)

n1(c†
2)

n2 . . . (csc†
s ) . . . (c†

∞)n∞ |0⟩
(2.17)
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where ss = ∑s−1
i=1 ni; the sign has been accumulated by pushing the cs through. This implies the following

rules for many-body fermion states:

cs|. . . ns . . .⟩ =
{
(−1)ss

√
ns|. . . ns − 1 . . .⟩ if ns = 1

0 if ns = 0

c†
s |. . . ns . . .⟩ =

{
(−1)ss

√
ns + 1|. . . ns + 1 . . .⟩ if ns = 0

0 if ns = 1

c†
s cs|. . . ns . . .⟩ = ns|. . . ns . . .⟩.

(2.18)

Note however the quantities in square roots are always one, so we can just forget about them.
Similar to bosons, we can rewrite Eq. (2.1) as:

ih̄
∂

∂t
|ψ(t)⟩ = H|ψ(t)⟩

H = ∑
rs
⟨r|T|s⟩c†

r cs +
1
2 ∑

rstn
⟨rs|V|tu⟩c†

r c†
s cuct.

(2.19)

where we again note the order of the annhilation operators.

2.7 Field Operators

It is often convenient to create a particle at a point x To this end, we define field operators:

ψ̂(x) = ∑
k

ψk(x)ck, ψ̂†(x) = ∑
k

ψ†
k (x)c

†
k (2.20)

These can be viewed as a kind of Fourier transform, or more generally as a change of basis. As an example,
consider spin-1/2 fermions. We can label them by the momentum k and the spin sz. The index k can be
thought as k = (k, sz). Then, ψk(x) can be thought of as two-component spinors, where:

ψk(x) =

(
ψk(x)1
ψk(x)2

)
(2.21)

which can be thought of the wavefunctions for the spin up and down projections. We can easily deduce
commutation (and anti-commutation) relations for the field operators:

[ψ̂α(x), ψ̂†
β(x

′)]± = ∑
k

ψk(x)αψk(x
′)∗β = δαβδ(x − x′).

[ψ̂α(x), ψ̂β(x′)]± = [ψ̂†
α(x), ψ̂†

β(x
′)]± = 0

(2.22)

Similarly, the Hamiltonian can be written as:

H =
∫

d3xψ̂†(x)T(x)ψ̂(x) +
1
2

∫
d3xd3yψ̂†(x)ψ̂†(y)V(x, y)ψ̂(y)ψ̂(x). (2.23)

and we invite the reader to check that this is indeed the case. Note that in general there should always
be the same number of creation and annhilation operators; except towards the end of the course when we
will look at superconducting systems, where there will be more creation than annhilation (and we will
think about how to understand this). There are other operators that can be discussed in the same way.
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1. The current operator. The form of the operator in first and second quantization is given below:

J(x) =
N

∑
i=1

J(xi)

Ĵ = ∑
rs
⟨r|J|s⟩c†

r cs =
∫

d3x ∑
rs

ψ†
r (x)J(x)ψs(x)c†

r cs =
∫

d3xψ̂†(x)J(x)ψ̂(x)
(2.24)

We see why the second quantization notation is so useful/economical; we simply take the first-
quantized operator, sandwhich it between field operators, and integrate.

2. The number operator. This follows much of the same logic as the current operator above. The first
expression gives the number density, and the second the total particle number (which is obtained by
integrating the number density over all space).

n̂(x) = ∑
r,s

ψ†
r (x)ψs(x)c†

r cs = ψ̂†(x)ψ̂(x)

N̂ =
∫

d3xn̂(x) =
∫

d3xψ̂†(x)ψ̂(x).
(2.25)
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3 Degenerate Electron Gas

The office hours for this course will be Monday 4-5pm with Marcel, and 4-5pm on Tuesday with Oguzhan.

3.1 Introducing the Degenerate Electron Gas

L

L

1
Figure 3.1: A cartoon depiction of the degenerate electron gas model. We consider a fixed, finite number
of electrons N in a three-dimensional box with side length L and periodic boundary conditions. The
electrons feel a uniformly distributed background of positive charge.

Also known as the “Jellium Model”, we consider a gas of electrons moving in a uniformly distributed
background of positive charge. We begin with a 3d box of size L, and then take the thermodynamic limit
of L → ∞.

We will use periodic boundary conditions, so if an electron leaves the box from one side, it comes in
from the other. This is convenient as then the model admits plane waves solutions. We could use hard
boundaries, and the description should agree in the L → ∞ limit, but this set of boundary conditions is
harder to work with; we would have cosine and and sines instead of plane waves.

The plane-wave basis will be a natural choice given the periodic BCs. Explicitly, we can write this as:

ψk,λ(x) =
1√
V

eik·xηλ (3.1)

with λ = (↑, ↓) is the spin index. We have the spinors:

η↑ =

(
1
0

)
, η↓ =

(
0
1

)
(3.2)

The momentum is given by:

k = (kx, ky, kz), ki =
2π

L
ni (3.3)

where ni ∈ Z. The Hamiltonian is given by:

H = Hel + Hb + Hel−b

Hel =
N

∑
i=1

p2
i

2m
+

1
2

e2 ∑
i ̸=j

e−µ|ri−rj |

|ri − rj|

Hb =
1
2

e2
∫

d3xd3x′
n(x)n(x′)e−µ|x−x′ |

|x − x′|

Hel−b = −e
N

∑
i=1

∫
d3x

n(x)e−µ|x−ri |

|x − ri|
.

(3.4)

Hel is just the kinetic energy of the electrons and the point-charge on point-charge interactions. Hb is the
electrostatic interaction of the background field with itself. And Hel−b is the electrostatic interactions of
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the electrons with the background field. N is the number of electrons, V = L3 is the volume, n = N/V is
the electron density, and µ is a convergence factor which we send µ → 03.

3.2 Simplifying the background terms

We want to rewrite this in second quantization notation. Only He will have nontrivial structure in the
second quantization notation, but nevertheless the other terms are necessary for the stability of the system.

Let us start with the second term, which is the simplest. We deal with a uniform background density,
namely n(x) = n = N/V. Hb then becomes a simple integral:

Hb =
1
2

e2
(

N
V

)2 ∫
d3x

∫
d3x′

e−µ|x−x′ |

|x − x′| .

=
1
2

e2
(

N
V

)2 ∫
d3x

∫
d3z

e−µz

z

=
1
2

e2

(
N2

V

)
4π

µ2

(3.5)

Where in the second equality we use z = x′ − x in order to make the integrals independent, and evaluate
the integrals in the third equality (the inner integral evaluating to 4π

µ2 , the outer to V). We can see why it

was useful to introduce the e−µ; the integral would have diverged otherwise due to the long-range nature
of the Coloumb interaction. Note also that we performed the integral assuming µ−1 ≪ L. We can similarly
calculate Hel−b:

Hel−b = −e
N
V

N

∑
i=1

∫
d3x

e−µ|x−ri |

|x − ri|

= −e
N
V

N

∑
i=1

∫
d3z

e−µz

z

= −e2 N
V

N
∫

d3z
e−µz

z

= −e2 N2

V
4π

µ2

(3.6)

We note the partial cancellation of the Hb and the Hel−b terms of the Hamiltonian; we will see another
cancellation later.

A reasonable question is why the µ−1 ≪ L assumption is necessary. It boils down to the the fact
that we have periodic boundary conductions, and we do not want the electric field of a given electron to
interact with itself (or at least, not in a way that is exponentially insignificant and hence ignorable). See
Fig. 3.2 below for a visual demonstration of the importance of this assumption.

With these simplifications,

H = −1
2

e2 N2

V
4π

µ2 + Hel (3.7)

Note that all of the interesting physics is contained in Hel , but we need Hb + Hel to get a finite theory;
we can see that if we took µ → 0 now, the energy would diverge; presumably there will be some sort of
cancellation that occurs with Hel that will regularize the theory.

3In nuclear physics this has significance as the Yukawa potential; here we just use it as a convenient trick to remove some diverging
integrals
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1
Figure 3.2: Comparisons of “spheres of interaction” of electrons when µ−1 ≪ L (left) and µ−1 ∼ L (right).
We can see that in the former case, the electron does not interact with itself through the periodic boundary
condition (beyond a negligeble exponentially small contribution), and so the system is physically sound.
In the latter case, the electron does have a nontrivial interaction with its own electric field, as seen through
the overlap of the sphere of interaction; this is not physical. Hence in our analysis of the Jellium model,
we make the assumption that µ−1 ≪ L.

3.3 Second Quantization of the Electron Term

Let us now transform the Hel term into second quantized notation.

(i) We start with the kinetic energy term:

⟨k1λ1|T|k2λ2⟩ =
1

2mV

∫
d3xe−ik·xη†

λ1
(−h̄2∇2)eik2·xηλ2

=
h̄2k2

2
2mV

δλ1λ2

∫
d3xe−ix·(k1−k2)

=
h̄2k2

2
2m

δλ1λ2 δk1k2

(3.8)

where we use that
∫

d3xe−ix·(k1−k2) = Vδk1k2 . Wee therefore obtain:

T̂ = ∑
k,λ

h̄2k2

2m
c†

kλckλ. (3.9)

(ii) We now look at the potential term:

⟨k1λ1k2λ2|V|k3λ3k4λ4⟩ =
e2

V
δλ1λ3 δλ2λ4 δk1+k2,k3+k4

4π

(k1 − k3)2 + µ
. (3.10)

See F&W for details; there is nothing conceptually new in the calculation above, it is only slightly
more annoying at there are four plane wave terms.

We therefore obtain:

Ĥ = T̂ − 1
2

e2N2

V
4π

µ
+

e2

2V ∑
k,λ

δλ1λ3 δλ2λ4 δk1+k2,k3+k4

4π

(k1 − k3)2 + µ
c†

k1λ1
c†

k2λ2
ck4λ4 ck3λ3 . (3.11)

Now we have to think a little bit; we have three delta functions, two for spin, one for momenta. We can
explicitly two summations over λ and one over momentum. Instead of doing so blindly, we will find it
useful to make the following change of variables:

(
k1 = k + q k3 = k
k2 = p − q k4 = p

) (
λ1 = α
λ2 = β

)
(3.12)
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We may notice that we express the four momenta in terms of three, but this is ok; we have the extra
constraint on the momentum already, and it was designed to satisfy this constraint. Substituting, the
potential term becomes:

e2

2V ∑
kpq

∑
αβ

4π

q2 + µ2 c†
k+qαc†

p−qβcpβckα. (3.13)

We now want to send µ → 0. Note that we can do this for any term in the sum for which q ̸= 0. The only
singular term is q = 0, so let us study that term:

e2

2V ∑
kp

∑
αβ

4π

µ2 c†
kαc†

pβcpβckα =
e2

2V ∑
kp

∑
αβ

4π

µ2 c†
kα(ckαc†

pβ − δkpδαβ)cpβ

=
e2

2V
4π

µ2 (N̂2 − N̂)

=
e2

2
N2

V
4π

µ2 − e2

2
N
V

4π

µ2

(3.14)

where in the first equality we have commuted the ckα between the two c†s (being careful to respect the
commutation relations), in the second equality we have used the definition of the number operator, and
in the third equality we used the fact that we work with a system with a finite, fixed number of electrons
and hence we can replace the operators N̂ with the number of particles N.

We see that the first term in Eq. (3.14) and the second term in Eq. (3.11) cancel. We argue that the
second term in Eq. (3.14) is vanishingly small in the thermodynamic limit. We argue this as follows; since
N/V (the number density) is constant with the system size, the term is constant with the system size;
however ⟨H⟩ is extensive, and scales with the system size (⟨H⟩ ∼ V ∼ N). Hence we may choose to
ignore it. So let us conclude by stating our final Hamiltonian:

Ĥ = ∑
kα

h̄2k2

2m
c†

kλckλ +
e2

2V

′
∑
kpq

∑
αβ

4π

q2 c†
k+qαc†

p−qβcpβckα (3.15)

where the prime on the summation denotes that we do not include the q = 0 term.

3.4 Rescaling the Hamiltonian

It is possible to gain important insights by introducing “natural” dimensionless variables. We define the
inter-electron spacing r0 as the radius of the sphere corresponding to the volume per electron. We then
define the dimensionless quantity rs as the ratio of r0 with the Bohr radius a0:

V
N

=
4
3

πr3
0

a0 =
h̄2

me2

rs =
r0

a0
≈ 2 − 6 for metals

(3.16)

The above are very good things to remember; there will be questions about them on the midterm and
final! Based on these, let us define:

V̄ = V/r3
0, k̄ = kr0 (3.17)

So our rescaled Hamiltonian can be written as:

Ĥ =
e2

a0r2
s


∑̄

kα

k̄2

2
c†

k̄λ
ck̄λ +

e2

2V̄

′
∑̄
kp̄q̄

∑
αβ

4π

q̄2 c†
k̄+q̄α

c†
p̄−q̄βcp̄βck̄α


 (3.18)
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where e2

a0
≈ 13.6eV is the Rydberg constant/hydrogen binding energy. This result shows that in the rs → 0

(high density) limit, the electron-electron interaction becomes weak. This is very counterintutive; in clas-
sical physics, the electron-electron interaction would dominate! Another thing to note; starting from the
high-density limit, we can solve an easy problem (one that just contains the kinetic energy of the elec-
trons) and then treat the electron-electron interactions as a small perturbation (can be reasonably treated
in perturbation theory, expanding in powers of rs). The actual series for the ground-state energy reads:

EG =
Ne2

a0r2
s

(
a + brs + cr2

s log(rs) + dr2
s + · · ·

)
(3.19)

the log(rs) term is perhaps a bit peculiar, but indeed if we do the perturbation expansion diligently we
can confirm that it shows up. In the following, we will find a and b. We also remark that c may be
similarly obtained, but d and higher powers require more advanced techniques, namely Green’s function
techniques4. We now proceed with the perturbation theory.

3.5 Perturbation Theory (High Density)

We return to our non-rescaled Hamiltonian so as to avoid having to write bars all the time. We split the
Hamiltonian into two parts (the kinetic energy term and the perturbing electron-electron term):

Ĥ0 = ∑
kα

h̄2k2

2m
c†

kλckλ

Ĥ1 =
e2

2V

′
∑
kpq

∑
αβ

4π

q2 c†
k+qαc†

p−qβcpβckα

(3.20)

3.5.1 Zeroth Order

The ground state of Ĥ0 can be written as:

|F⟩ = ∏
|k|<kF

c†
k↑c†

k↓|0⟩. (3.21)

For N electrons, the Fermi momentum is determined by:

N = ⟨F|N̂|F⟩ = ∑
kλ

⟨F|nkλ|F⟩ = ∑
kλ

θ(kF − |k|) = 2V
∫ d3k

(2π)3 θ(kF − |k|) = 2V
(2π)3

(
4
3

πk3
F

)
=

V
3π2 k3

F

(3.22)
We have therefore obtained kF defined by electron density. In the above we have used the standard
perscription:

1
V ∑

k
→
∫ d3k

(2π)3 (3.23)

and the step function:

θ(x) =

{
1 x > 0
0 x < 0.

We can now solve for kF:

kF =

(
3π2N

V

)1/3

=

(
9π

4

)1/3
r−1

0 ≈ 1.92r−1
0 (3.24)

4Green’s functions give us a way to do a more formalized version of perturbation theory. With them, the expansion has been
computed to seventh order; but the computation becomes much more difficult as we add higher order terms.
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which tells us that kF is (up to a factor of order unity) equal to the inverse of r0. One can use the above to
relate conduction bands and kF to the lattice spacing, among other useful applications. So now doing the
ground state energy calculation, we have:

E(0) = ⟨F|Ĥ0|F⟩ =
h̄2

2m ∑
k,α

⟨F|nkα|F⟩k2 =
h̄2

2m ∑
k,α

k2θ(kF − |k|) = h̄2

2m
2

V
(2π)3

∫
d3kk2θ(kF − k)

=
3
5

h̄2k2
F

2m
N

=
3
5

ϵF N

=

(
e2

2a0

)
N

2.21
r2

s

(3.25)

where in the fourth equality the factor of 2 comes from the summation over spin, and the integral is
performed by going into spherical coordinates. Again e2

2a0
= 13.6eV is the Rydberg constant. This tells us

that for metals (i.e. rs ≈ 2 − 6), the energy of electrons is on the order of eV.

3.5.2 First Order

To first order, we simply calculate the expectation value:

E(1) = ⟨F|Ĥ1|F⟩ =
e2

2V

′
∑
kpq

∑
αβ

⟨F|c†
k+qαc†

p−qβcpβckα|F⟩. (3.26)

The above is more complicated; we must deal with the four-fermion operator acting on the ground state.
We can do this the hard way; we can substitute in the ground state and use commutation relations amongst
the operators. Or, we can give a slick argument that does the same job but with less writing; let’s do it
this way. We start with a Fermi sphere filled with electrons. The annhilation operators can only remove
two electrons from inside the spheres, and the creation operators can either create electrons where they
are removed, or create them elsewhere. If they are created elsewhere, the state we end up with will be
orthogonal to the ground state |F⟩. So, the only nonvanishing constributions will come from the terms
where the annhilation operators remove electrons from inside the sphere, and the creation operators fill
back in the holes (giving us back |F⟩, up to some prefactor).

×

×

or
×

×

1
Figure 3.3: Action of the 4 fermion operators on the ground state |F⟩. The two annihilation operators
remove some pair of fermions within the Fermi sphere. The creation operators can then create fermions
elsewhere (left), in which case the final state is orthogonal to |F⟩ and does not contribute to the expectation
value. Alternatively, the creation operators can fill the holes created by the annhilation operators (right),
in which case the final state is proportional to |F⟩ and hence does contribute to the expectation value.

There are two pairings of the creation/annhilation operators for which the above can occur. The first
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possibility is: (
k + q, α = k, α
p − q, β = p, β

)
or

(
k + q, α = p, β
p − q, β = k, α

)
(3.27)

If we look at the first possibility, we immediately obtain the constraint that q = 0. However, we have
already removed all such terms in our sum (note the prime); so the only the second possibility contributes.
We call this the “exchange term”, because the spins are exchanged. The conclusion of this argument is
that the terms of the sum are only nonzero when the exchange conditions of k+ q = p, α = β are satisfied.
We can now use this to compute the first order correction to the GS energy:

E(1) =
e2

2V

′
∑
kpq

∑
αβ

δk+q,pδαβ⟨F|c†
k+qαc†

p−qβcpβckα|F⟩
4π

q2

=
e2

2V

′
∑
kpq

∑
αβ

δk+q,pδαβ⟨F|c†
k+qαc†

kαck+qαckα|F⟩
4π

q2

= − e2

2V

′
∑
kq

∑
α

⟨F|n̂k+qαn̂kα|F⟩
4π

q2

= − e2

2V

′
∑
kq

∑
α

4π

q2 θ(kF − |k + q|)θ(kF − k)

= − e2

2
4πV
(2π)6

∫
d3k

∫
d3q

1
q2 θ(kF − |k + q|)θ(kF − k)

(3.28)

We make a change of variables k → p = k + 1
2 q. This yields:

E(1) = −4πe2V
(2π)6

∫
d3q

1
q2

∫
d3 pθ(kF − |p +

1
2

q|)θ(kF − |p − 1
2

q|) (3.29)

This integral is much more symmetric; if we think about this geometrically, we are looking at the overlap
of spheres when we calculate the inner integral over q:

q
2

−q
2

kFkF

1
Figure 3.4: Visualization of the integral I(q) =

∫
d3 pθ(kF − |p + 1

2 q|)θ(kF − |p − 1
2 q|). The two step

functions correspond to the two spheres shown above, and the overall integral calculates their overlap in
volume.

The integral is a standard exercise in multivariable calculus. One finds:
∫

d3 pθ(kF − |p +
1
2

q|)θ(kF − |p − 1
2

q|) = 4π

3
k3

F

(
1 − 3

2
x +

1
2

x2
)

θ(1 − x), x =
q

2kF
. (3.30)

where the θ function is there to account for the fact that when q is sufficiently large the spheres do
not touch. We now calculate the outer integral. We make the observation that in spherical coordinates,
d3q → 4πq2dq and so the q2 in the denominator cancels. All we have to do is just an integral of a
polynomial; child’s play. We are left with:

E(1) = − e2

2a0

N
rs

(
9π

4

)1/2 3
2π

= − e2

2a0
N

0.916
rs

. (3.31)
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3.5.3 Combining Results

In summary, the total ground state energy (to first order) is:

E
N

=
e2

2a0

1
r2

s
(2.21 − 0.916rS + . . .) (3.32)

We identify the first term as the free Fermi gas energy, and the second term as the exchange energy.
A comment: We have done perturbation theory in rs which we have treated as “small”, but really rs is

2 − 6 for metals so it is not really small. It surprisingly works fairly well, anyway.

3.6 The Variational Viewpoint

We now switch perspectives a little bit, and find that we can learn something more interesting about the
calculation we just did. We viewed it as a perturbation theory expansion in rs. But we can view it instead
as a variational calculation.

Recall the variational principle:

EGS ≤ ⟨ψ|H|ψ⟩

where H is a Hamiltonian, |ψ⟩ is any state, and EGS is the ground state energy of H. In our case, we
have calculated ⟨F|Ĥ0 + Ĥ1|F⟩, which can also be viewed as a variational energy parametrized by electron
density rs. Taking our result from Eq. (3.32), we can plot an energy landscape as a function of rs:

2 4 6 8 10

−0.15

−0.1

−5 · 10−2

5 · 10−2

0.1

rs

E/N High density
Low density

1
Figure 3.5: Plot of the variational energy landscape for. E/N is in units of e2/2a0, and we plot in a range
of typical rs for metals. In red we plot the first-order perturbation expansion for E/N in the high-density
limit (Eq. (3.32)). In blue we plot the first-order perturbation expansion for E/N in the low-density limit
(Eq. (3.33)). We can find the rs that minimizes E/N to approximate the true ground state energy (i.e. the
binding energy per electron in metals).

We find that the rs that minimizes this energy is (rs)min = 4.83 and Emin/N = −0.095 e2

2a0
≈ −1.29eV.

For comparison, the binding energy per electron in sodium (found experimentally) is rs = 3.86 and
E/N = −1.13eV. Even this very simple calculation gets us the correct order of magnitude.
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3.7 Perturbation Theory (Low Density)

It turns out that we can do perturbation theory also in the large rs/low-density limit, where we take:

Ĥ0 =
e2

2V

′
∑
kpq

∑
αβ

4π

q2 c†
k+qαc†

p−qβcpβckα

Ĥ1 = ∑
kα

h̄2k2

2m
c†

kλckλ

i.e. we exchange which is the dominant and which is the perturbing Hamiltonian. In this limit, we find
(though the calculation is more difficult):

E
N

=
e2

2a0

1
rs

(
−1.79 +

2.66√
rs

+ . . .

)
(3.33)

This is plotted as the dashed line in the figure above. This is the controversial “Wigner crystal”; it is
not known if this actually applied, as the crystallization of electrons has never been observed in three
dimensions.

Next class, we will look at the Hartree-Fock approximation.
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5 The Hartree-Fock Approximation

Note: Section 4 is not missing, but rather Degenerate Electron Gases spanned two lectures.

5.1 Motivation and Main Idea

The Hartree-Fock, or mean-field approximation is useful when we have an intractable 4-fermion term in
the Hamiltonian, for example the Coulomb interaction term.

The idea is quite simple. We approximate the full Hamiltonian H = H0 + H1 by the “best possible”
approximation of the form:

HHF = ∑
k,α

ϵMF
α (k)c†

kαckα. (5.1)

This looks like H0 from before, but the modified dispersion relation allows for a tractable calculation.

5.2 Heuristic Approach

We first go for an intuitive approach, and then proceed with an approach that casts the problem in a
variational setting (placing it on better footing). We consider:

H0 = ∑
kα

ϵ0(k)c†
kαckα

H1 =
1
2 ∑

kpqαβ

V(q)c†
k+qαc†

p−qβcpβckα

(5.2)

Next, we “decouple” H1 using the operator identity:

AB = A ⟨B⟩+ ⟨A⟩ B − ⟨A⟩ ⟨B⟩+ (A − ⟨A⟩)(B − ⟨B⟩) (5.3)

This is useful as if we just focus on the last term, this is just the fluctuation of operator A around its mean
field value time the fluctuation of B around its mean field value. The idea of mean-field theory is to say
that the product of (small) fluctuations is small, and we therefore can neglect it. The central idea of the
mean-field approach is to replace such products with the first three terms in the above operator identity.

Remark: in some sense, we assume that the fluctuations are small before we know what the solutions
are, so we do not necessarily a priori know this will be the case. However, in practice this approach is
greatly successful for the majority of problems in CM physics (the remaining 1% of problems for which it
fails tend to be interesting research problems).

Looking at our interaction term H1, we have two ways to pair up our operators (A = 13 and B = 24 or
A = 14 and B = 23). Let’s go ahead with trying this simplification for our Hamiltonian.

HMF
1 =

1
2 ∑

kpqαβ

V(q)
[

c†
k+qαckα

〈
c†

p−qβcpβ

〉
+
〈

c†
k+qαckα

〉
c†

p−qβcpβ −
〈

c†
k+qαckα

〉 〈
c†

p−qβcpβ

〉

− c†
k+qαcpβ

〈
c†

p−qβckα

〉
−+

〈
c†

k+qαcpβ

〉
c†

p−qβckα +
〈

c†
k+qαcpβ

〉 〈
c†

p−qβckα

〉] (5.4)

Why do we include both pairings (the other pairings are dropped, but are zero in the Fermi sea)? Aren’t
we overcounting? In fact we are not (and careful thought shows this is not the case); this will become
clearer when we do this variationally.

This looks intimidating, but there are some nice simplifications; we have two terms that come out:
for example, (s):

〈
c†

p−qβcpβ

〉
= δq=0

〈
c†

pβcpβ

〉

〈
c†

p−qβckα

〉
= δαβδp−q=k

〈
c†

pβcpβ

〉 (5.5)
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where the delta shows up as the product vanishes unless we are looking at the same spin with the same
momentum. The first line is the direct, or Hartree term. The second line is the exchange, or Fock term.
Taking into account these simplifications, the mean field for the Hartree-Fock Hamiltonian takes the form:

HMF = ∑
kα


ϵ0(k) + V(0)∑

pβ

〈
c†

pβcpβ

〉
− ∑

p
V(p − k)

〈
c†

pαcpα

〉

 c†

kαckα. (5.6)

So we have that:

ϵMF
α (k) = ϵ0(k) + V(0)∑

pβ

〈
c†

pβcpβ

〉
− ∑

p
V(p − k)

〈
c†

pαcpα

〉
= ϵ0(k) + ϵdir + ϵex(k)

where the second term is the Hartree term and the third term is the Fock term.

5.3 Applying Hartree-Fock to Coulomb

Let’s work this out for the Coulomb interaction:

V(q) =
e2

V
4π

q2

Note that there is no Hartree term as q ̸= 0. We work out the exchange term:

−ϵex(k) =
4πe2

V ∑
p

θ(kF − p)
(p − k)2 = 4πe2

∫ d3 p
(2π)3

θ(kF − p)
(p − k)2

=
e2

2π2 2π
∫ kF

0

∫ π

0
dθ sin θ

1
p2 + k2 − 2pk cos θ

=
e2

2π

∫ kF

0
p2dp

∫ 1

−1

dz
p2 + k2 − 2pkz

.

=
e2

kπ

∫ kF

0
dpp

[
ln|k − p| − ln|k + p|

]

=
e2kF

π

[
1 +

k2
F − k2

2kFk
ln
∣∣∣∣
k + kF
k − kF

∣∣∣∣

]

(5.7)

where we use the cosine rule in the second line, and make the substitution cos θ = z in the third. So, we
can write the final result as:

HMF = ∑
kα

ϵ(k)c†
kαckα

ϵ(k) = ϵ0(k)−
2e2

π
F(

k
kF

)

F(x) =
1
2
+

1 − x2

4x
ln
∣∣∣∣
1 + x
1 − x

∣∣∣∣

(5.8)

F is plotted in Fig. 5.1.
We also recall the dispersion relation for free electrons:

ϵ0(k) =
h̄2k2

2m
.

We can plot the two dispersion relations side-by-side to compare them; this is done in Fig. 5.2.
Note that at k = kF, there is an unphysical divergence in ∇kϵ(k). See HW1Q3 for more discussion

of this problem, and how it can be remedied; namely, the source of the issue is the long-range Coulomb
interaction. If we take into account screening, the problem goes away.

23
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F(x)

1
Figure 5.1: Plot of the function F(x) = 1

2 + 1−x2

4x ln
∣∣∣ 1+x

1−x

∣∣∣ which appears in the mean-field Hamiltonian

dispersion relation. Note the divergence of F′ at x = 1 (k = kF).

0.5 1 1.5 2

−2

−1

1

2

3

4

k

ϵ(k)/ϵF

ϵ0(k)
ϵMF(k)

1
Figure 5.2: Plot of the free electron dispersion relation and the mean-field Hamiltonian dispersion relation.
For the sake of plotting, we set kF = 1.
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5.4 Hartree-Fock as a Variational Bound

Let us try to find the best possible ϵ(k) through the variational principle. We will look for ϵ0(k) + ηαk
with ηαk the variational parameter such that ⟨H⟩MF field is minimized. This expectation value is with
respect to the ground state of the mean-field Hamiltonian.

This seems strange; we normally fix a Hamiltonian and then pick states over which we conduct an
energy minimization. Here, the parameters appear in the mean-field Hamiltonian, but then the MF hamil-
tonian is sufficiently simple such that we know what the ground state is. So, the variational parameters
directly determine the ground state of HMF which is the state we look at the expectation values for.
Explicitly:

⟨H0⟩MF = ∑
kα

ϵ0(k)
〈

c†
kαckα

〉
MF

= ∑
kα

ϵ0(k)nkα (5.9)

⟨H1⟩MF =
1
2 ∑

kpqαβ

V(q)
[〈

c†
k+qαckα

〉
MF

〈
c†

p−qβcpβ

〉
MF

−
〈

c†
k+qαcpβ

〉
MF

〈
c†

p−qβckα

〉
MF

]

=
1
2 ∑

kpqαβ

V(q)
[
δq=0nkαnpα − δk+q=pδp−q=kδαβnkαnpβ

]

=
1
2


V(0)

(
∑
kα

nkα

)2

− ∑
kpα

V(k − p)nkαnpα




(5.10)

We get these pairings via the same “destroy an electron in the Fermi sphere and then recover it” argument
we covered when discussing the second quantized form of the Jellium model. We now wish to minimize
these expectation values w.r.t. our variational parameter η. One must remember that η is implicitly hidden
inside of the ns. We minimize via a chain rule:

0 =
∂ ⟨H⟩MF

∂ηqλ

= ∑
q′λ′

∂ ⟨H⟩MF
∂nq′λ′

∂nq′λ′

∂ηqλ
(5.11)

and from this we obtain:

∑
kα


e0(k) + V(0)∑

pβ

npβ − ∑
p

V(k − p)npα


 ∂nq′λ′

∂ηqλ
= 0 (5.12)

To solve this, consider:
∂ ⟨HMF⟩MF

∂ηqλ

= nqλ + ∑
kα

[
ϵ0(k) + ηkα

] ∂nq′λ′

∂ηqλ
(5.13)

So substracting (5.13) from (5.12), we obtain:

∑
kα


−ηkα + V(0)∑

pβ

npβ − ∑
p

V(k − p)npα


 ∂nkα

∂ηqλ

= nqλ − ∂ ⟨HMF⟩MF
∂ηqλ

(5.14)

The solution is:

ηkα = V(0)∑
pβ

npβ − ∑
p

V(k − p)npα

nqλ =
∂ ⟨HMF⟩MF

∂ηqλ

=
〈

c†
qλcqλ

〉
MF

(5.15)

It is easy to lose sight of what is being done through the many lines of writing, but one notices with the
result that we have obtained the heuristic result using a very different method!

25



One way of justifying why the two approaches coincide; if we assume that the Hamiltonian takes the
simple variational form, then the product of fluctuations that we have neglected in the heuristic approach
exactly vanish; the operator approximation becomes exact.

We will not use this result immediately, but when we discuss tight-binding models and superconduc-
tivity, these approaches will be exceedingly useful.

Next time, we will discuss screening; when a test charge is put into an electron gas, there will be no
long range interactions as the Coulomb force is screened by the cloud of electrons. Please by Wednesday
read p.337-339 of A&M; this is the “Screening (General)” section.
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6 Screening

6.1 General Definitions and Setup of Problem

For definitions and general discussion, see Ashcroft and Mermin p.337-339.

+
−−−−−−

−−

1
Figure 6.1: Cartoon of electron screening; when a positive test charge is placed in a cloud of negative
charge, the negative charges are attracted to the positive charge. This has the net effect of screening out
the positive charge, as it gets neutralized to some capacity.

If we place a (positive) test charge in an cloud of negative charge, then it attracts negative charges
around it, which results in a net screening of the positive charge.

We have the potentials ϕext, ϕ and the charge densities ρext, ρ, ρind = ρ − ρext.

ϕ(q) =
1

ϵ(q)
ϕext(q)

ρind(q) = χ(q)ϕ(q)

ϵ(q) = 1 − 4π

q2 χ(q)

(6.1)

where ϵ(q) is the dielectric function and χ(q) is the dielectric susceptibility.
Today, we will go through two different calculations of the susceptibility.

6.2 Thomas-Fermi Theory

We have the second-quantized Hamiltonian:

Ĥ =
∫

d3xψ̂†(x)T(x)ψ̂(x)

T(x) =
h̄2∇2

2m
− eϕ(x)

(6.2)

we neglect e − e interactions (including them makes this much more difficult). Of course electrons will see
the total screened potential rather than the bare test charge potential, which this formula accounts for (ϕ
vs. ϕext).

For ϕ(x) = ϕ0 a constant, we can solve the problem exactly. The Hamiltonian becomes:

H = ∑
k

(
h̄2k2

2m
− eϕ0

)
c†

kck = ∑
k

ϵkc†
kck. (6.3)

Thomas-Fermi theory assumes that ϕ(x) varies slowly on the scale k−1
F ; therefore in a semiclassical ap-

proximation, it is appropriate to write:

ϵk → h̄2k2

2m
− eϕ0 (6.4)
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We will calculate the local electron density at r. It will be given by:

ρ(r) = −e
〈

ψ̂†(r)ψ̂(r)
〉

= −2e ∑
kk′

〈
ψ̂†

k(r)ψ̂k′(r)c†
kck′

〉

= −2e ∑
kk′

ψ̂†
k(r)ψ̂k′(r)

〈
c†

kck′
〉

= −2e ∑
kk′

ψ̂†
k(r)ψ̂k′(r)δkk′ f (ϵk(r))

= −2e ∑
k
|ψk(r)|2 f (ϵk(r))

(6.5)

where the factor of 2 comes from counting the two possible spin states, f (ϵk(r)) is the Fermi-Dirac dis-
tribution (which comes from the fact that at any temperature, the expectation value of the number of
fermions of any state at a given energy is given from stat mech to be the FD distribution; previously
we denoted this as nk. For bosons next week it will be the BE-distribution), and in the last equality
we use the Kronecker delta to perform the last of the summations. For the plane wave basis, we have
ψk(r) = 1√

V
e−ik·r, so:

ρ(r) = −2e
V ∑

k

1
eβ(ϵk(r)−µ)+1 + 1

= −en0(µ + eϕ(r))
(6.6)

where β = 1
kBT as usual, and we define:

n0(µ) =
∫ d3k

4π3
1

eβ( h̄2k2
2m −µ)+1 + 1

. (6.7)

We can now write the induced charge density as:

ρind(r) = −e
[
n0(µ + eϕ(r))− n0(µ)

]
≈ −e2ϕ(r)

∂n0

∂µ
. (6.8)

which is just the difference between the total charge density and the average charge density in the sample
(with no test charge), and we make the approximation that not only is ϕ slowly varying, but in itself small,
allowing us to take the first-order Taylor approximation to ρind and neglect the higher-order terms.

Now, comparing Eqs. (6.1) and (6.8), we can read off the dielectric susceptibility (and the function):

χ(q) = −e2 ∂n0

∂µ

ϵ(q) = 1 +
4πe2

q2
∂n0

∂µ

(6.9)

this is the main result of Thomas-Fermi theory of electron screening.

6.3 Implications of Thomas-Fermi Theory

Some housekeeping; Eq. (6.9) is often stated in the form:

ϵ(q) = 1 +
k2

TF
q2 , kTF = 4πe2 ∂n0

∂µ
. (6.10)
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kTF is called the Thomas-Fermi momentum, and gives us a length scale for which the test charge is
screened out. We illustrate the significance of kTF by considering the screened potential of a point charge:

ϕext(r) =
Q
r
→ ϕext(q) =

4πQ
q2 (6.11)

ϕ(r) =
1

ϵ(q)
ϕext(q) =

4πQ
q2 + k2

TF
(6.12)

In real space, this becomes:

ϕ(r) =
∫ d3

(2π)3 eiq·r 4πQ
q2 + k2

TF
=

Q
r

e−kTFr (6.13)

where the integral can be done by going into spherical coordinates. This is a very important result
which tells us how screening acts in our simple Thomas-Fermi theory (though it is true more generally).
This is known as the screened Coulomb, or Yukawa potential (often used in nuclear physics, though its
origin is not electrostatic but nuclear). The presence of electrons exponentially supresses the test charge
with distance, in particular the potential rapidly vanishes at distances r > k−1

TF = λTF which we call the
screening length.

We may recall that we found a singularity in the derive in the effective dispersion when we covered
Hartree-Fock theory. This was due to the long range interactions; but if one accounts for the screen-
ing/exponential suppression, then this singularity goes away.

As a last step, let us estimate the size of λTF in a metal. We have that:

∂n0

∂µ
= −

∫ d3k
4π3

∂

∂µ

[
1

eβ(ϵk−µ) + 1

]
−→T→0

∫ d3k
4π3 δ(ϵk − µ) = g(µ) =

mkF

h̄2π2
(6.14)

where the last quantity is just the density of states at the Fermi level in 3-D. Sticking this into the result
for kTF, we get:

k2
TF
k2

F
=

4
π

me2

h̄2kF
=

4
π

1
a0kF

=

(
16

3π2

)3/2
rs =⇒ kTF = 0.815kF

√
rs =⇒ λTF ≈ k−1

F =

√
rs

2.95
A◦ (6.15)

This tells us that in a metal (where rs = 2− 6), the Coulomb interaction is screened at very short distances,
comparable to the ionic spacings.

A comment: We have made the semiclassical assumption that ϕ varies slowly; but it does not vary
slowly on the given length scale. It’s not valid in real materials, but it is still a useful result.

6.4 Lindhard Theory

In the Lindhard theory, we assume that ϕ(r) is small and can be treated as a perturbation:

H =
h̄2∇2

2m
− eϕ(r) (6.16)

where the first term is H0 and the second is H1. This approximation is almost always valid. We calculate
the charge density using Eq. (6.5). We will need to find the correction to ψk(r) due to perturbation. This
correction looks like:

ψk(r) = ψ0
k(r) + ∑

k′

⟨ψ0
k′ | − eϕ(r)|ψ0

k′⟩
ϵk − ϵk′

ψ0
k′(r) + . . . (6.17)

Now, since:

ψ0
k(r) =

1√
V

eik·r, ϵ0
k =

h̄2k2

2m
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we have:
⟨ψ′0

k | − eϕ(r)|ψ0
k⟩ = − e

V

∫
d3re−ik′ ·rϕ(r)eik·r = − e

V
ϕ(k − k′) (6.18)

where in the last equality we recognize the operation being carried out as a Fourier transform. We now
have:

ψk(r) = ψ0
k(r)−

e
V ∑

k′

ϕ(k − k′)
ϵ0

k − ϵ0
k′

ψ0
k′(r) (6.19)

We then substitute ψk(r) into Eq. (6.5) and retain terms up to first order in ϕ(k − k′). This yields:

ρ(r) = −e


∑

k
fk|ψ0

k|2 −
e
V ∑

k

(
fkψ0∗

k ∑
k′

ψ0
k′

ϵ0
k − ϵ0

k′
ϕ(k − k′) + c.c.

)
 (6.20)

Where the first term is ρ0(r) and the second term is ρind(r). fk is the Fermi-dirac distribution for
energy ϵk. We can evaluate this integral using the substitution:

(k, k′) → (k +
1
2

q, k − 1
2

q)

We then obtan:

ρind(r) = − e2

V ∑
q

eiq·r


∑

k

fk+ 1
2 q − fk− 1

2 q

ϵ0
k+ 1

2 q
− ϵ0

k− 1
2 q


 ϕ(q) (6.21)

we can therefore conclude that ρind(q) = χ(q)ϕ(q), where:

χ(q) = − e2

V ∑
k

fk+ 1
2 q − fk− 1

2 q

ϵ0
k+ 1

2 q
− ϵ0

k− 1
2 q

(6.22)

This is our final result, the Lindhard susceptibility function. WE note that χ(q) looks different from the
Thomas-Fermi case, and there is an explicit dependence of χ(q) on q.

6.5 Limits of the Lindhard Results

We look at two limits. At low T and small q, the numerator is small unless |k| ≈ kF (we subtract two
near-step functions in the numerator, and the difference is only nonzero for |k| ≈ kF). Therefore we can
expand:

fk± 1
2 q ≈ fk ± h̄2

2
k · q

m
∂ fk
∂µ

+ O(q2) (6.23)

so we get:

χ(q) ≈ − e2

V ∑
k

∂ fk
∂µ

(6.24)

we recover the TF result! This makes sense, as the small q limit is the large-wavelength limit, i.e. ϕ varies
slowly.

At T = 0, the k integral can be evaluated exactly:

χ(q) = −e2
(

mkF

π2h̄2

)[
1
2
+

1 − x2

4x2 ln
∣∣∣∣
1 + x
1 − x

∣∣∣∣

]
(6.25)
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where x = q/2kF. This is the same function that appeared in our discussion of Hartree-Fock, and it is
non-analytic at x = 1. Because the dielectric function ϵ(q) = 1 − 4π

q2 χ(q) is non-analytic at q → 2kF, it is
possible to show that the screened potential of a point charge contains a term:

ϕ(r) ≈ 1
r3 cos(2kFr) (6.26)

for r ≫ k−1
F . This is known as the “Friedel”, or “RKKY” oscillation (so to recap, we have an exponetially

decaying term, and we also have a power-law decaying oscillatory term). It is observable experimentally,
using STM.

Why is this? Electrons come in to screen the test charge, but “overscreen”, creating a region of high
negative charge density. So then the electrons go away from this region to compensate, and this leads to
this oscillatory effect.

Next class, we study bosonic excitations in solds.
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7 Bosons, Bose-Einstein Condensation, and Helium-4

7.1 Housekeeping

Reading assignment: Fermi liquid theory in Aschroft and Mermin p345-357. We don’t have quite the
mathematical tools to explain it, but the excerpt above gives a short qualitative introduction.

Midterm and Final: MT on First week of November. Both exams have the same structure; short in
class portion (10-15 minutes), questions concerning things we are expected to know (e.g. rs = 2 − 6 in
metals, or temperature resistivity in Fermi liquid theory is T2 etc.). Then there is a takehome portion with
homework-level questions.

7.2 Boson types and statistics

But now we switch gears from fermions to bosons. There are two types of bosonic particles we consider
in our discussion:

(a) “Real” (number-conserving): 4He, Rb, Na, K, . . .

(b) “Emergent”: Phonons (quanta of lattice vibrations), Magnons, . . .

The main difference is that for the first class, the number of particles is conserved; the number of Helium
atoms in a closed container is fixed. On the other hand, phonons can be created and destroyed out of thin
air, so to speak. So there is no conservation law for them.

An important distinction between bosons and fermions is the type of statistics they obey. Mathemati-
cally, this is based on commutation relations; in terms of second quantization, bosons obey the commuta-
tion relations:

[a†
k, ak′ ] = δkk′

[a†
k, a†

k′ ] = [ak, ak′ ] = 0.
(7.1)

Recall the Pauli exclusion principle for fermions (which could be derived from the anticommutation re-
lations); no such principle exists for bosons, of which any number are free to occupy the same quantum
state. These commutation relations give rise to the BE distribution function:

n̄k =
1

eβ(ϵk−µ) − 1

where compared to the FD distribution, the sign in the denominator has flipped.

7.3 Deriving the Bose-Einstein Distribution

Let’s review how this distribution function comes about. Consider a non-interacting system:

H = ∑
k
(ϵk − µ)a†

kak (7.2)

The thermal average of any operator Ô is given by:

〈
Ô
〉

β
=

1
Z ∑

j
⟨j|Ô|j⟩e−β(Ej−µN)

Z = ∑
j

e−β(Ej−µN).
(7.3)
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where the matrix elements of Ô are weighted by the boltzmann factor, of which the partition function Z
is the sum of: Note we use the grand canonic ensemble so we have the µN. We then have:

⟨n̂k⟩ =
1
Z ∑

j
⟨j|a†

kake−β(Ĥ−µN̂)|j⟩

=
1
Z

Tr(a†
kake−β(Ĥ−µN̂))

=
1
Z

Tr(ake−β(Ĥ−µN̂)a†
k)

=
1
Z

Tr(aka†
ke−β(Ĥ−µN̂)e−β(ϵk−µ))

=
1
Z

Tr((1 + a†
kak)e−β(Ĥ−µN̂)e−β(ϵk−µ))

= (1 + ⟨n̂k⟩)e−β(ϵk−µ)

(7.4)

where in the first line, we take advantage of the fact that when Ĥ acts on its eigenstate, it gives back
the eigenvalue. So we can pull the constant into the matrix element and convert the energy into the
Hamiltonian. The second line we cast this expression as a trace. In the third line we use the cyclicity of
the trace. In the fourth line we skip some math (but it can be done in detail) but this can be viewed as
creating a single boson with energy ϵk. In the fifth line we use the bosonic commutation relations. In the
sixth line we evaluate the expression. We can then solve for ⟨n̂k⟩ to obtain:

⟨n̂k⟩ =
1

eβ(ϵk−µ) − 1
. (7.5)

Note that a similar derivation can be done for Fermions to get the Fermi-Dirac distribution.

7.4 Bose-Einstein Condensation

BE Condensation occurs in real (or number conserving) bosons, most famously Helium-4 at low temper-
ature. The easiest way to see this occurs is to consider the total number of bosons N:

N = ∑
k

n̄k = ∑
k

1
eβ(ϵk−µ) − 1

, ϵk =
h̄2k2

2m
(7.6)

Note that for real bosons µ ≤ 0; otherwise we would have n̄k < 0 for some k which is forbidden. This
implies that:

eβ(ϵk−µ) ≥ eβϵk

For this reason, we can bound the total number of bosons from above:

N ≤ ∑
k

1
eβϵk − 1

= N0 +
Ω

(2π)3

∫ ∞

0
dk

4πk2

eβh̄2k2/2m − 1

(7.7)

where we have separated the sum into two terms; the k = 0 term (which is problematic as it formally di-
verges; it only comes about as we have discarded the chemical potential) and the rest of the sum rewritten
as an integral, which we call N′(T). Ω here is the volume. We leave the N0 term for now and evaluate the
N′(T) by substitution. We let x = β h̄2k2

2m and dx = β h̄2

m kdk so:

N′(T) =
Ω

(2π)3 4π
√

2

(
m

βh̄2

)3/2 ∫ ∞

0+

√
xdx

ex − 1
= CΩT3/2 (7.8)

33



The actual integral on the right is a finite constant (formally it can be evaluated by considering the Riemann
zeta function), but we are really only interested in the temperature dependence, so we’ve lumped things
into a constant C. It’s also important that N′(T) is extensive/grows proportionally to the system volume.
Now we look at how BE condensation comes about from this. We rewrite the inequality as:

N ≤ N0 + N′(T)

We plot N′(T) as a function of T. N is fixed. There is some Tc for which N′(T) intersects N; above TC,
we have N0 = 0, and below Tc we have N0 > 0. We have an extensive number of bosons in the k = 0
state. This is what is known as BE condensation. In particular as we take T → 0 all of the bosons occupy
the ground state. This is not surprising; in the view of QM, if we try to minimize the energy of a set of
bosons, we can just cram them all into the ground state (there is nothing preventing us from doing this;
no Pauli exclusion)! However in terms of classical physics this phenomena was unusual.

∼ T3/2

T

N′(T)

N

Tc

N0

N0 > 0 N0 = 0

1
Figure 7.1: Plot of the upper bound of excitated state bosons N′(T) as a function of temperature T. Above
some Tc, we have zero bosons in the ground state and so N0 = 0. Below some Tc, we have that N0 > 0
and so an extensive number of bosons occupy the k = 0 ground state; we therefore have Bose-Einstein
condensation.

7.5 Bogoliubov Theory of Helium-4

This is a classic theory; 1946 (but still valid to this day)! Helium-4 was interesting from the early days of
physics at it had interesting superfluid properties. Bogoliubov started off this explanation, and Landau
later would give an argument for why Helium-4 is superfluidic (which we cover next lecture).

We consider weakly interacting (spinless) bosons described by the Hamiltonian:

H = ∑
k

ϵka†
kak +

1
2 ∑

kpq
Vqa†

k−qa†
p+qapak (7.9)

where Vq is a Fourier transform of a short-range interatomic potential; it is a short range interaction that

dies off quickly outside of the Helium atom (on the order of an Angstrom). As usual, ϵk = h̄2k2

2m . We
assume (following Bogoliubov) that Vq is weak and T ≪ Tc. Then we expect the ground state to be close
to a perfect BEC, where:

|ΦN
0 ⟩ = (a†

0)
N |0⟩ (7.10)

Now we perform the following approximation:

a†
0a0 →

〈
a†

0a0

〉
= N0 ≈ N

a†
0a†

0 → N0

(7.11)
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The first line: whenever we see the number operator, we take it to be its average value, which is large/close
to the total number. The second line is less obvious, but consider a†

0a†
0|ΦN

0 ⟩ =
√
(N0 + 1)(N0 + 2)|ΦN+2

0 ⟩
and we can then take

√
(N0 + 1)(N0 + 2) ≈ N0 for N0 large. The assumption being made is that the

Hamiltonian is always acting on a state close to the perfect BEC ground state, so we can approximate
these operators as we have above. In the interaction term, we split all sums as:

∑
k

= ∑
k=0

+
′

∑
k

and retain only terms containing at least only one power of N0. This is a bit of a mess (as we have 8 sums
to work with... ); we will not go through it explicitly, but we justify this approximation by saying that since
N0 is large, all terms without powers of N0 are relatively small and hence can be neglected. The result is
as follows:

H ≈ ∑
k

ϵka†
kak +

1
2

N2
0 V0 + N0V0

′
∑
k

a†
kak + N0

′
∑
q

Vqa†
qaq +

1
2

N0

′
∑
q

Vq(aqa−q + a†
qa†

−q) (7.12)

The first (kinetic energy) term remains unchanged. The second term comes from k = vq = p = 0, The
third term comes from p = q = 0 or k = q = 0 and so on. To simplify, we define:

ηk = N0Vk

h̄Ωk = ϵk + ηk.
(7.13)

Notice also that N0 + ∑′
k a†

kak ≈ N. where N0, N ≫ N′ = ∑′
k a†

kak. With this, let us combine some terms:

1
2

N2V0 =
1
2

V0

[
N2

0 + 2N0

′
∑
k

a†
kak + . . .

]
(7.14)

Hence we can write the entire Hamiltonian as:

H ≈ 1
2

N2V0 + ∑
k

[
h̄Ωka†

kak +
1
2

ηk(aka−k + a†
ka†

−k)

]
(7.15)

We draw our attention to the last term(s); these are “anomalous terms”, which do not conserve particle
number. This is a consequence of the Bogoliubov approximation. Physically, aka−k represent bosons
(k,−k) “disappearing” into the condensate. The number of bosons in the condensate is so large that you
do not have to keep track of the bosons in the condensate itself; we only need to keep track of the other
particles as they disappear and appear out of it.

7.6 Bogoliubov Transformations and Quasiparticle Spectrum

Bogoliubov also developed a theory of how to treat such Hamiltonians. They can be diagonalized by
means of Bogoliubov transformations:

ak = µkαk + νkα†
−k|αk = µkak − νka†

−k

a†
k = µkα†

k + νkα−k|α†
k = µka†

k − νka−k
(7.16)

where we have the forwards transformations on the left and the inverse transformation on the right. Here,
αk are our new bosonic “quasiparticle” operators and (µk, νk) are real coefficients. We want this to be a
canonical transformation, so we want these new α operators to satisfy the same commutation relations as
the as. This is important as it will place constraints on the µk and νk. Let’s see what happens:

[αk, α†
k′ ] = [µkak − νka†

−k, µk′ a†
k′ − νk′ a−k′ ]

= µkµk′ [ak, a†
k′ ] + νkνk′ [a†

−k, a−k′ ]

= (µ2
k − ν2

k)δkk′

(7.17)
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where we have used the known commutation relations for the as. So we obtain the constraint:

[αk, α†
k′ ] = µ2

k − ν2
k = 1. (7.18)

A comment: we want to find (µk, νk) such that the resulting H is diagonal, that is:

H = ∑
k

h̄ωkα†
kαk + E0. (7.19)

So to this end we compute:

α†
kαk = (µka†

k − νka−k)(µkak − νka†
−k)

= µ2
ka†

kak + ν2
ka−ka†

−k − µkνk(aka−k + a†
ka†

−k)
(7.20)

Comparing this with the form of the Hamiltonian, we can see we are on the right track. The only terms to
seem to not appear there are the a−ka†

−ks but we recognize the sum to run over all k and so we can make
a substitution there. We make an assumption that ωk = ω−k and ν2

k = ν2
−k (we can check later that this is

consistent) then:

∑
k

h̄ωkα†
kαk = ∑

k
h̄ωk(µ

2
k + ν2

k)a†
kak + ∑

k
h̄ωkν2

k − ∑
k

h̄ωkµkνk(aka−k + a†
ka†

−k) (7.21)

Comparison with the original Hamiltonian (Eq. (7.15)) implies:

h̄ωk(µ
2
k + ν2

k) = h̄Ωk

−2h̄ωkµkνk = ηk
(7.22)

To solve for ωk we square both equations and subtract:

(h̄ωk)
2
[
(µ2

k + ν2
k)

2 − 4µ2
kν2

k

]
= (h̄Ωk)

2 − η2
k

but on the LHS We have (µ2
k − ν2

k)
2 = 1 and so the dependence on µ/ν drops out and we have:

h̄ωk =
√

h̄2Ω2
k − η2

k =
√

ϵk(ηk + 2NVk) (7.23)

which is one of the main results of Bogoliubov theory, the “spectrum of quasiparticle excitations”. This
spectrum will have interesting implications; among other things, it will be the basis for superfluidity in
liquid He-4 according to the Landau argument. Let us discuss some special cases of this spectrum.

7.7 Quasiparticle Spectrum - Special Cases

7.7.1 Non-Interacting

If the bosons are noninteracting, then Vk = 0 and so:

h̄ωk =
√

ϵ2
k =

h̄2k2

2m

so we indeed reproduce our prior result for free bosons.
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7.7.2 Contact Repulsion

We take V(r) = Uδ(r) (i.e. the bosons repel when they are on top of each other). Since the FT of a dirac
delta is just a constant, we have:

Vk =
U
Ω

for all k. We then have:

h̄ωk =
√

ϵk(ϵk + 2(NU/Ω)) =

{√
ϵkE0 ∼ |k|, ϵk ≪ E0 (long wavelength = sound-like dispersion)

|ϵk| ∼ k2, ϵk ≫ E0 (short wavelength = particle-like dispersion)
(7.24)

where we define 2(NU/Ω) = E0. So the weak interactions of Helium modify the dispersion from particle
like to sound-like at long wavelengths with linear dispersion relation.

7.7.3 Typical Helium-4 Interaction

The Fermi velocity for a typical interaction in Helium-4 scales with the wavevector as:

vk

|k|a−1
0

1
Figure 7.2: vk vs. |k| for a typical Helium-4 interaction.

From this we obtain a dispersion relation that looks as follows:

ωk

|k|

∼ k

∼ k2

1
Figure 7.3: Dispersion relation for a typical Helium-4 interaction. The dispersion scales as k for small |k|
and as k2 for large |k|. The minima present in between the two regimes is known as the roton minimum.

This concludes the Bogoliubov theory of Helium-4 in a nutshell. In the next assignment we will
explicitly calculate the coefficients in the Bogoliubov transformation and other fun exercises.

7.8 Landau Argument for Superfluidity

To conclude, we cover Landau’s argument for superfluidity for Liquid Helium 4. At the time, it was
a known experimental fact that liquid Helium-4 would flow in a tube without friction. Experiments
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were also done where one would start spinning a bucket of Helium-4 at temperature above Tc, then the
friction would cause it to rotate; then if one cooled the bucket down, the Helium would continue to rotate
indefinitely.

Landau considered the following scenario. He considered a vessel of liquid Helium-4 and an object
of large mass M ≫ m moving with velocity v. The question Landau asked was can the object relax its
energy and momentum by emitting quasiparticle excitations?

M v

k

1
Figure 7.4: Setting of the Landau argument for the superfluidity criterion. A heavy object with mass M
travels through a vessel of liquid Helium-4 with velocity v; can it relax its energy/momentum by emitting
a quasiparticle of wavevector k?

We will show that it is impossible to conserve both energy and momentum and for the particle to
relax so long as the object does not exceed a critical velocity vc. Energy conservation and momentum
conservation tell us that:

1
2

Mv2 =
1
2

Mv′2 + h̄ωk

Mv = Mv′ + h̄k
(7.25)

These are the two equations we must satisfy if this process is allowed. Squaring the second equation, we
have:

M2v′2 = M2v2 + h̄2k2 − 2Mh̄k · v

We can divide out by 2M and combine the two conservation equations to find:

h̄v · k =
h̄2k2

2M
+ h̄ωk (7.26)

We consider M ≫ m. and so we can neglect the h̄2k2

2m term. Further we can let v · k = |v||k| cos θ (where θ
is the angle between the velocity and the wavevector of the emitted quasiparticle) and so:

h̄|v||k| cos θ = h̄ωk (7.27)

For low enough velocities, the LHS will always be less than the RHS.
The graphical solution shows that slow moving objects cannot dissipate energy and momentum in

liquid Helium-4. We therefore have dissipationless motion, or superflow.
Note that one can solve for a critical velocity:

vc = min
k

(
ωk
|k|

)
≈ 1cm s−1 in Helium-4 (7.28)

Note that the actual critical velocity is 10 times slower, due to neglected effects such as the creation of
vortex rings etc. but nevertheless Landau’s argument is an argument that provides some nice explanatory
power!

Question: Why does argument not predict superfluid flow in general life situations? This is left as an
exercise for the reader. . .
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ωk

|k|

RHS

LHS = vk cos θ

1
Figure 7.5: Since cos θ ≤ 1, for all θ the LHS (h̄vk cos θ) of Eq. (7.27) will be less than the RHS (h̄ωk).

8 Lattice Vibrations & Phonons

8.1 Phonons in One Dimension

We consider a simple monoatomic chain: We label the atoms by index l and the displacements from

M

ul ul+1ul−1

. . . . . .

1
Figure 8.1: A monoatomic chain. The atoms are of mass M and are labelled with index l, with ul denoting
the lth-atoms’ displacement from equilibrium.

equilibrium for the lth atom by ul . We assume we have a crystal lattice with individual atoms oscillating
around equilibrium positions. The general Hamiltonian we can write for this system is:

H = ∑
l

p2
l

2M
+ V(u1, u2, . . .)

pl = −ih̄
∂

∂ul

[ul , pl′ ] = ih̄δll′

(8.1)

Where we take the momentum to be canonically conjugate to the displacement and hence it satisfies the
canonical commutation relation. We assume that the potential has a minimum for ul = 0 for all l. We
expand V in a Taylor series about these minima:

V(u1, u2, . . .) = V(0, 0, . . .) + ∑
l

ul

[
∂V
∂ul

]

u1=u2=...=0

+
1
2! ∑

l,l′
ulul′

[
∂2V

∂µl∂µl′

]

u1=u2=...=0

+
1
3!

. . . (8.2)

The first term can be eliminated by suitable choice of energy zero (a constant in the Hamiltonian changes
none of the physics). The second term vanishes by virtue of u1 = u2 = . . . = 0 being a minimum of V. We
are left with just the second-order term, and so:

H ≈ ∑
l

p2
l

2M
+

1
2 ∑

l,l′
ulVll′ul′ (8.3)

where Vll′ =
[

∂2V
∂µl∂µl′

]
u1=u2=...=0

is the dynamical matrix. We neglect all higher order terms in Eq. (8.2)

which amounts to a harmonic approximation.
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8.2 Diagonalizing the Potential

We next diagonalize the V-term. To this end, we define a vector of displacements:

Y =




µ1
µ2
...




and then we have:

V =




V11 V12 . . .

V21
. . .

...




We now write that the V-term is:

YTVY = YTU†UVU†UY = (YTU†)(UVU†)(UY) = Ỹ†ṼỸ = ∑
q

Ỹ†
q ṼqqỸq (8.4)

where U is the unitary matrix that diagonalizes V. This is of course nothing more than a change of basis.
Since it is diagonal in the new basis, we can index it with a new index q.

It is easy to see that this transformation leaves the kinetic energy unchanged (i.e. it remains diagonal!).
To this end we consdier:

pl = −ih̄
∂

∂µl
= −ih̄ ∑

q

∂µ̃q

∂µl

∂

∂µ̃q
= −ih̄ ∑

q
Ulq

∂

∂µ̃q
= ∑

q
Ulq(−ih̄

∂

∂µ̃q
) (8.5)

or in other words: P̃ = U−1P. Therefore:

∑ p2
l = PT P = (UP̃)†(UP̃) = P̃†U†UP̃ = P̃†IP̃ = P̃† P̃ = ∑

q
p̃†

q p̃q (8.6)

So the kinetic energy remains diagonal! An important remark; in our canonical representation, P is a
Hermitian operator. But the transformed P may no longer have this property, so we keep the p̃†

q in the last
expression (instead of assuming it will be equal to p̃q). In the new coordinates, the Hamiltonian reads:

H = ∑
q

(
1

2M
p†

q pq +
1
2

Mωqµ†
qµq

)
(8.7)

where we define ω2
q = Vq/M (and dropped the ∼s so we don’t have to keep writing it; the new coordinates

are distinguished via their index). So our H is diagonal! Let us also note that the unitary transformation
preserves the commutation rules (Check!), so:

[µq, pq′ ] = ih̄δqq′ . (8.8)

Eq. (8.7) is seen to describe a collection of decoupled harmonic oscillators; we can solve this by the
usual raising and lowering operator method. For each mode we define:

aq =
1√

2Mh̄ωq

(
Mωqµq + ip†

q

)

a†
q =

1√
2Mh̄ωq

(
Mωqµ†

q − ipq

) (8.9)
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these satisfy the usual algebra of raising and lowering operators:

[aq, a†
q ] = δqq′ .

In this representation the Hamiltonian acquires a simple form:

H = ∑
q

h̄ωq

(
a†

q aq +
1
2

)
(8.10)

Often the goal is to know what the ωq is; this will give us the spectrum of excitations and how they
depend on q. We will comment on this shortly when we do an example. In principle this is not difficult
as ωq = Vq/M, and we can get Vq from transforming the dynamical matrix.

8.3 Translation-Invariant Systems

This entire discussion so far was quite general; however since most solid-state systems are translation
invariant, we can now consider such systems to analyze. In particular, this has the effect that the dynamical
matrix depends only on differences l − l′:

Vll′ = Vl−l′ (8.11)

This is useful as we can guess immediately what the transformation will be; a Fourier transform!

Uql =
1√
N

eiql (8.12)

therefore:

Ṽqq′ = [U†VU]qq′ =
1
N ∑

ll′
e−iqlVl−l′ e

iql′ =

(
1
N ∑

l′
e−il′(q−q′)

)(
∑

l
e−iqlVl

)
= δqq′Vq (8.13)

where in the third equality we make the substitution l → l + l′. In the fourth equality the δ comes from
basic Fourier analysis (one can imagine the oscillations exactly cancelling if q ̸= q′, and exactly adding up
if q = q′).

We will now see what are the consequences we can draw from this. One thing to specify before we go
on: let us use periodic boundary conditions, so that the last atom in the chain of atoms is connected back
to the first chain. Mathematically, this is expressed as:

µl+Na = µl

where in the above l represents a distance rather than an index. Note that this implies eiql = eiq(l+Na).
This further implies a restriction on the form of the qs, namely:

1 = eiqNa =⇒ q =
2πn
Na

, n ∈ Z. (8.14)

From this we have:
µq =

1√
N

∑
l

e−iqlµl , pq =
1√
N

∑
l

eiql pl (8.15)

It follows that:
µq+G = µq, pq+G = pq, with G =

2π

a
. (8.16)

Therefore; momentum is only defined in the “1st Brillouin zone” with q ∈ (−π
a , π

a ) and there are only N
distinct values,

q =
2πn
Na

, n = −N
2
+ 1, . . .

N
2

. (8.17)
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Much like the case with electrons in a periodic potential, for phonons everything happens in the first
Brillouin zone.

One more comment before proceeding with an example. It also holds that:

µ†
q = µ−q, p†

q = p−q

further accenting that the transformed µ/ps are not Hermitian, unlike their canonical counterparts? Tak-
ing into account ω−q = ωq, Eqs. (8.9) can be inverted as:

µq =

√
h̄

2Mωq
(a†

−q + aq)

pq = i

√
Mh̄ωq

2
(a†

−q − aq)

(8.18)

This is not profound (it is just an inversion) but will be quite useful when we proceed to calculate expec-
tation values of operators.

8.4 Example 1 - Monoatomic chain

We consider again a monoatomic chain as in Fig. 8.1; a system of masses M connected by springs of spring
constant K with periodic boundary conditions. The potential energy (and from it the dynamical matrix) is
given by:

V = ∑
l

1
2

K(µl − µl+1)
2 = ∑

l

1
2

K
(

2u2
l − 2ulul+1

)

=⇒ Vll′ =





2K if l = l′

−K if l = l′ ± 1
0 otherwise

(8.19)

note there is no factor of 2 in front of the −K because there are two entries in the matrix; one above/below
the diagonal. The fourier transform gives:

Vq = 2K − K(eiqa + e−iqa) = 2K(1 − cos(qa)) = 4K sin2 qa
2

(8.20)

from this we can read off the spectrum of normal modes:

ωq =

√
Vq

M
= 2

√
K
M

|sin
qa
2
| ≈

√
K
M

|qa| for |qa| ≪ 1 (8.21)

so the dispersion is linear (for small qa), signifying a sound-like or acoustic mode. This should be true,
because sound propogates through solids! Let us now sketch the spectrum, as a function of q; known as
the “phonon dispersion” of the “phonon energy spectrum”. We often focus on a phonon of a particular
wavenumber q and specific energy; and this is indeed something that is experimentally measurable! (E.g.
by neutron scattering).
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q

ωq
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√

K
M

0−π
a

π
a

q

1
Figure 8.2: Dispersion relation for the monoatomic chain.

8.5 Example 2 - Diatomic Chain

M1 M2K

Unit cell ul1 ul2

. . . . . .

1
Figure 8.3: A diatomic chain. We have alternating atoms of mass M1/M2 joined by springs of spring
constant K. We index the displacement of the M1 atoms with ul1 and the M2 atoms as ul2 . A unit cell
contains one atom of each type and two springs.

We now consider a diatomic chain. We now have two different types of atoms in our chain; mass M1
and mass M2. The springs between them are still of spring constant K. The unit cell contains one atom of
each type and two of the springs. We denote the displacement of the M1 atoms as ul1 and the M2 atoms
as ul2 .

Similar analysis as before gives the momentum space dynamical matrix (Check!):

Vq =

(
2K −K(1 − eiqa)

−K(1 + e−iqa) 2K

)
(8.22)

The Hamiltonian that follows from this is:

H = ∑
q

(
p†

q1
pq1

2M1
+

p†
q2

pq2

2M2

)
+

1
2 ∑

q

(
µ†

q1
µ†

q2

)
Vq

(
µq1
µq2

)
(8.23)

this is typical for a more complicated chain, where N different atoms would give an N × N Vq matrix
in momentum space. Another complication is that M1 ̸= M2, and so it is not immediate to read off ωq;
we need to get rid of unequal masses in the kinetic energy term. This is done through the rescaling of
momenta:

pq1 → pq1

(
M1

M2

)1/4
pq2 → pq2

(
M2

M1

)1/4
(8.24)

This implies a corresponding scaling of the displacements:

µq1 → µq1

(
M2

M1

)1/4
µq2 → µq2

(
M1

M2

)1/4
(8.25)

so the Hamiltonian becomes:

H = ∑
q

p†
1q p1q + p†

2q p2q

2
√

M1M2
+

1
2 ∑

q

(
µ†

q1
µ†

q2

)



2K
√

M1
M2

−K(1 + eiqa)

−K(1 + e−iqa) 2K
√

M2
M1



(

µq1
µq2

)
(8.26)
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the normal modes are given by eigenvalues of Ṽq (the matrix in the potential energy term above):

0 = det(Ṽq − ω
√

M1M2) = M1M2ω4 − 2K(M1 + M2)ω
2 + 2K2(1 − cos qa) (8.27)

This is just a quadratic equation in ω2, so:

ω2
12 =

2K
M1M2

(
(M1 + M2)±

√
(M1 + M2)2 − 2M1M2(1 − cos qa)

)
(8.28)

If we sketch the dispersion realtion, we have:

q

ωq

0−π
a

π
a

ω1

acoustic

ω2

optical
Spectral gap

1
Figure 8.4: Dispersion relations for diatomic chain. Note the presence of two different branches/phonon
modes, and the spectral gap between them.

The acoustic branch is linear and the basis of sound waves inside of the material. The optical branch is
excited by shining light on the material. If we shine waves of an intermediate energy in the spectral gap
(in between hte two branches), none will propagate!

Next class, we will discuss phonons further; in particular how they behave in 3D, and thermodynamic
properties of vibrating crystals.
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9 Phonons in Three Dimensions

9.1 Review - The Real and Reciprocal 3D Lattice

We consider atoms located at positions R of a Bravais lattice in 3D space. Such a Bravais lattice can be
written via:

R = n1a1 + n2a2 + n3a3 (9.1)

where ni ∈ Z and ai are primitive vectors.
The corresponding reciprocal lattice vectors G are defined by eiR·G = 1, which implies:

G = m1b1 + m2b2 + m3b3. (9.2)

Where mj ∈ Z and bj are primitive vectors of the reciprocal lattice, satisfying the usual relation:

ai · bj = 2πδij. (9.3)

We will also need a relation:
∑
R

eiR·q = N ∑
G

δqG = N∆(q) (9.4)

9.2 Writing down the 3D Hamiltonian

The Hamiltonian for the 3d lattice with the harmonic approximation can be written as:

H = ∑
R,i

(pi
R)

2

2M
+

1
2 ∑

R,R′
µi

RVij
RR′µ

j
R′ (9.5)

This is the expected generalization from 1D, where we see that the atoms can move and vibrate in three

dimensions; i, j ∈
{

x, y, z
}

. Vij
RR′ (as before) is the dynamical matrix Vij

RR′ =
∂2V

∂µi
R∂µ

j
R′

∣∣∣∣∣
µ=0

. We define the

displacement/momenta at each lattice site as:

YR =




µx
R

µ
y
R

µz
R




PR =




px
R

py
R

pz
R




(9.6)

And therefore the Hamiltonian becomes:

H =
1

2M ∑
R

PT
RPR +

1
2 ∑

R,R′
YT

R




Vxx
RR′ Vxy

RR′ Vxz
RR′

Vyx
RR′ Vyy

RR′ Vyz
RR′

Vzx
RR′ Vzy

RR′ Vzz
RR′


YR (9.7)

note that due to the definition of the dynamical matrix elements, the matrix appearing in the above
expression is a real symmetric matrix.
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9.3 Translation Invariant Solution

With the assumption of translation invariance, we obtain the condition Vij
RR′ = Vij

R−R′ . As we did for the
1D case, we will use a fourier transform:

Yq =
1√
N

∑
R

e−iq·RYR, Pq =
1√
N

∑
R

eiq·RPR (9.8)

As in 1D, we also have the periodicity:

Yq+G = Yq, Pq+G = Pq (9.9)

This defines the 3D Brillouin zone B as the fundamental domain of q. The Inverse FT gives:

YR =
1√
N

∑
q∈B

eiq·RYq, PR =
1√
N

∑
q∈B

e−iq·RPq (9.10)

The Hamiltonian reduces to:

H = ∑
q∈B




1
2M

P†
qPq +

1
2

Y†
q




Vxx
q Vxy

q Vxz
q

Vyx
q Vyy

q Vyz
q

Vzx
q Vzy

q Vzz
q


Yq


 (9.11)

where the 3N × 3N matrix in the original basis has now reduced to a 3 × 3 matrix. The matrix elements
in this basis are:

Vij
q = ∑

R′
eiq·(R−R′)Vij

RR′

To complete this solution, we have to diagonalize the 3 × 3 dynamical matrix. It is a Hermitian matrix
and thus has three orthogonal vectors s1, s2, s3 belonging to eigenvalues v1

q, v2
q, v3

q. In this basis defined
by these three orthogonal vectors, we have:

H = ∑
q,µ=1,2,3


 pµ†

q pµ
q

2M
+

1
2

Vµ
q µ

µ†

q µ
µ
q


 (9.12)

where µ
µ
q = µq · sµ and pµ

q = pq · sµ.
The 3 directions described by sµ(q) define phonon polarization. In addition, for q along a high-

symmetry axis, we typically have s ∥ q which is a “longitudinal phonon” and s ⊥ q which is two
“transverse phonons”.

Why a high symmetry axis? If we take an arbitrary q pointing in some random direction in reciprocal
space, in general none of the s will be parallel to q or orthogonal to it. But when the phonon propogates
along a high symmetry axis, we do typically see this separation.

Phonon frequencies are given by:

ωqµ =

√
Vµ

q

M
(9.13)

and the corresponding raising/lowering operators are:

aqµ =
1√

2Mh̄ωqµ
(Mωqµµ

µ
q + ipµ†

q ), a†
qµ = . . . (9.14)

which leads to:
H = ∑

q,µ
h̄ωqµ(a†

qµaqµ +
1
2
) (9.15)
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One more comment before moving onto the next topic; this was all for a simple Bravais lattice. This is
the simplest possible type of crystal structure where you have one type of atom periodically repeating in
space. Most solids are not quite so simple and have a larger unit cell, such as Sodium Chloride. Things
would work out exactly the same in this case, there would just be an additional index labelling the position
of the atom inside the unit cell (of which there are nb). The 3 × 3 matrix would become a larger 3nb × 3nb
matrix with 3nb eigenvalues/eigenvectors, which describe the internal degrees of freedom in the unit
cell. Previously, we had 3 polarizations for the one atom type. Now we have 3 polarizations per atom
type, so there is a more complex structure with more modes (e.g. different atoms can vibrate in different
directions). Of these, 3 will be acoustic modes (frequency goes to zero as q → 0/λ → ∞), and 3(nb − 1)
will be optical modes.

 

a

Figure 9.1: Plot of the phonon dispersion curves for a complex 3d solid. We have 3 acoustic modes (1
longitudinal mode and 2 degenerate transverse modes) and 3(nd − 1) optical modes.

9.4 Debye Model, Specific Heat of Phonons

This was one of the main puzzles in solid-state physics before the advent of QM! Let’s figure out how to
calculate this. The internal energy in lattice vibrations is given by:

U = ⟨H⟩β = ∑
qµ

h̄ωqµ(
〈

a†
qµaqµ

〉
+

1
2
) (9.16)

Where
〈

a†
qµaqµ

〉
= n̄qµ = 1

eβh̄ωqµ−1
is the bose-einstein occupation factor. It will actually be easier to go

straight to the heat capacity:

CV =
dU
dT

=
1

kBT2 ∑
q,µ

(h̄ωqµ)2eβh̄ωqµ

(eβh̄ωqµ − 1)2
(9.17)

to evaluate the sum we would need to know the form of ωqµ, and even then there usually does not exist
a closed-form solution for the summation.

To evaluate Eq. (9.17), it is useful to define the phonon density of states:

D(ω) = ∑
q,µ

δ(ω − ωqµ) (9.18)
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This implies:

CV =
1

kBT2

∫ ∞

0
dωD(ω)

(h̄ω)2eβh̄ω

(eβh̄ω − 1)2
(9.19)

The Debye model assumes ωqµ = cµ|q|, approximating the acoustic modes as straight lines. It should be
accurate at low T when only low frequency acoustic phonons are thermally excited. For simplicity, we
further assume equal velocities cµ = c for µ = 1, 2, 3 (but this is not essential, and the calculation can still
be done). We then get:

D(ω) =
3V

(2π)3

∫
d3qδ(ω − cq)

=
3V

(2π)3 4π
∫

q2dqδ(ω − cq)

=
3V
3π2

ω2

c3 .

(9.20)

where the 3 comes from the 3 directions summed over and we evaluate the integral by going into spherical
coordinates.

9.5 Debye Frequency, Momentum, Temperature

There is one more constraint for us to accomodate. The density of states has the property that if we
integrate over it, we should get the total number of modes in the entire system (which in this case should
be 3N; N particles moving in three dimensions). Therefore, the above expression cannot go on forever;
and this is evident from the acoustic spectra where we see there are no states above some energy. So, we
introduce a Debye frequency ωD:

D(ω) =

{
3V
2π2

ω2

c3 Ω < ωD

0 ω > ωD
(9.21)

where ωD is determined by:
∫ ωD

0
D(ω)dω = 3N =⇒ ω3

D = 4π2c3 N
V

(9.22)

’
This notion of a Debye frequency turns out to be very useful. It also defines Debye momentum:

kD =
ωD

c
=

(
6π2 N

V

)
∼ 4

a
(9.23)

where a is the lattice spacing. It also defines the Debye temperature:

ΘD =
h̄ωD
kB

∼ 74K − 1800K (9.24)

where 74K corresponds to Pr and 1800K corresponds to diamond. On average it is on the order of a few
hundred Kelvin. These are all characteristic scales of phonons. Of all of them, Debye temperature tends to
be the most useful as it is in the most tangible units. It distinguishes a low and high temperature regime
for phonon excitations (i.e. the frequency for which below it the acoustic approximation is reasonable)
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Figure 9.2: Plot of a realistic/experimentally measured phonon density of states (red) and our approximate
calculated value (blue). We cut off the ω2 prediction for the density of the states at the Debye frequency
ωD such that the area under the curve (i.e. the total number of modes) is 3N (and the same for the two
plots). It may seem like we neglect a lot of structure in making our approximation, but since we are
itnerested in the heat capacity CV , this complex structure generally gets smeared out regardless; hence
our approximation can give reasonable predictions for heat capacity.

9.6 Back to Heat Capacity

We have:

CV =
3Vh̄2

2π2c2kBT2

∫ ωB

0
dω

ω4eβh̄ω

(eβω̄ − 1)2

= gNkB

(
T

θD

)3 ∫ θD/T

0
dx

x4ex

(ex − 1)2

(9.25)

where we have made the substitution x = βh̄ω. We call the integral f (θD/T) = f (xD) the Debye function.
We now analyze some consequences. In principle we can solve the integral numerically, but we can

also start by studying the integral analytically in two limits.

9.6.1 Low T behavior

In this limit we have T ≪ θD and hence xD = θD
T ≫ 1. We can therefore write:

f (xD) =
∫ ∞

0

x4ex

(ex − 1)2 −
∫ ∞

xD

x4ex

(ex − 1)2 ≈ 4π4

15
−
∫ ∞

xD

x4e−x ≈ 4π4

15

where we have evaluated the first term analytically (calculus exercise) and the second integral we have
that x ≫ 1 over the rande of integration and we may therefore approximate x4ex

(ex−1)2 ≈ x4e−x. Since this is
an exponentially small term, we can drop it. The specific heat then becomes:

CV ≈ 12π4

5
NkB

(
T

θD

)3
(9.26)

so for T ≪ θD we find CV ∼ T3. This is obeyed in many solids.
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9.6.2 High T behavior

In this limit, we have T ≫ θD and so xD ≪ 1. We therefore may expand ex to leading order in the
integrand. This yields:

f (xD) ≈
∫ xD

0
dx

x4

(1 + x − 1)2 =
∫ xD

0
dxx2 =

1
3

x3
D

where in the numerator we have approximated ex ∼ 1 and in the numerator we have approximated
ex ∼ 1 + x.

So plugging this back into our specific heat expression:

CV ≈ 3NkB (9.27)

so for T ≫ θD we find that CV is independent of temperature. This is the Dulong-Petit law; this is the heat
capacity of a harmonic crystal in classical theory (i.e. no quantum effects). If we recall the equipartition
theorem, we have N atoms oscillating in 3 directions, so 3 vibrational degrees of freedom and 3 kinetic
degrees of freedom and so 6N degrees of freedom in total. Equipartition associates 1

2 kBT per energy per
degree of freedom and so we have U = 6N · 1

2 kBT = 3NkBT of energy and hence CV = 3NkB specific
heat. This of course in some sense makes sense as at high temperatures we expect quantum effects to be
washed out and the system behaves basically classically (though an interesting point to note here - the
quantum effect of the suppression of specific heat persists up to room temperature, as θD is on the order
of hundreds of Kelvin; we do not have to cool our system to very low temperature for the quantum effects
to become significant). This was known before QM was invented, but disagreed with experiment, where
the specific heat went to zero at zero temperature (though it described the high-T behavior well). With
quantum mechanics, we are able to obtain a prediction that described experimental results very well.

 

Cr

Nt

O Id T
Figure 9.3: Specific heat for phonons as a function of temperature T. At low T we see CV ∼ T3 behavior.
At high T we see that CV tends to a constant of 3NkB.

9.7 Einstein Model

Is a model suitable for the study of optical phonons. We replace the dispersion relation for an optical
phonon with an average ω0.
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Figure 9.4: Dispersion relation for acoustic and optical modes of phonons, and Einstein’s approximation
for replacing the optical mode dispersion relation with a straight line at the average ω0.

We consider an approximate phonon density of states:

D(ω) = Nδ(ω − ω0)

and from this we can calculate contribute to the heat capacity:

CV =
1

kBT2

∫ ∞

0
dω

(h̄ω)2eβh̄ω

(eβh̄ω − 1)2
D(ω) =

N
kBT2

(h̄ω0)
2eβh̄ω0

(eβh̄ω0 − 1)2
(9.28)

At low T, we have βh̄ω0 ≫ 1 and so:

CV ≈ NkB

(
h̄ω0

kBT

)2
e−

h̄ω0
kBT (9.29)

so we have “exponentially activated behavior” here.
Interestingly, if we compare the two plots for the specific heat, they agree pretty well. Some differences

at the very low T limits, however. For the low T einstein model at very low temperatures we do not even
have one quantum of energy to excite, and so we have CV = 0. Conversely, for the acoustic modes we are
able to excite things at even very low temperatures (so long as the temperature is not zero).

9.8 Anharmonic Effects and Phonon Interactions

We take a step back and regard a solid (metal) as a collection of electrons (fermions) and phonons (bosons).
At low T, both the electrons and phonons contribute to thermodynamic (and other) properties, e.g.

specific heat:

Cph
V ≈ 6T3 (Debye)

Cel
V ≈ aT (Sommerfield)

both are crucially quantum mechanical; if we forget quantum mechanics then these become temperature
dependent constants. The total specific heat is the sum of the two:

CV = Cel
V + Cph

V ≈ aT + bT3
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Figure 9.5: Plot of the low-T specific heat as calculated by the Einstein model. We see the exponentially
activated behavior, where past h̄ω0 the specific heat sharply spikes.

or:
CV
T

≈ a + bT2 (9.30)

and many (most) metals behave in this way. This is a huge success of quantum theory and modern
solid-state physics.

However, there are some significant failures of this model:

1. Thermal expansion (Within the harmonic expansion, you can prove this does not occur)

2. Thermal conductivity (Phonons to not carry heat in this model)

3. Sound attenuation (Sound attenuates forever)

but whenever our theories fail, we can look back to what approximations we have made, and see what
things to improve. These three failures can be understood by incorporating anharmonic effects. In the
harmonic approximation, we threw away all terms past the second derivative, but we could consider
successive terms of order:

H3 =
1
3! ∑

RR′R′′ijk
µi

Rµ
j
R′µ

k
R′′V

ijk
RR′R′′ (9.31)

where:

Vijk
RR′R′′ =

∂3V

∂µi
R∂µ

j
R′∂µk

R′′

∣∣∣∣∣∣
µ=0

(9.32)

Note that the inclusion of these third-order terms is sufficient to describe thermal expansion and sound
attenuation. To obtain thermal conductivity from the model, one needs to go to fourth order.

In translation-invariant systems, this can be expressed as:

H3 =
1

6
√

N

(
h̄

2M

)3/2

∑
qq′q′′ijkµνλ

Si
µSj

νSk
λ

(ωqµωq′νωq′′λ)1/2 Vijk
qq′q′′∆(q+q′+q′′)(a†

−qµ + aqµ)(a†
−q′ν + aq′ν)(a†

−q′′λ + aq′′λ)

(9.33)
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This looks absolutely terrible, but people have come up with clever ways to analyze such Hamiltonians,
namely through the graphical means of Feynman diagrams. Each of the product of three terms contains
an annhilation and creation operator. If we were to multiply them out, we would get six terms, which
could be represented as follows:

mhm omfg hymns hey

Figure 9.6: The four Feynman diagrams for three phonon interactions that come up in the third order
term. In each diagram time runs from left to right. The leftmost diagram represents the creation of three
phonons. The second diagram represents the destruction of one phonon and creation of two phonons.
The third diagram represents the destruction of two phonons and creation of one phonon. Finally, the
fourth diagram represents the destruction of three phonons.

we can then assign a mathematical quantity to each of these diagrams, and thus evaluate each of their
contributions in a clever way.

Without writing down the Hamiltonian, we can also look at the diagrams that arise in the fourth-order
Hamiltonian H4. We would have a product of four terms, which creates a sum with four phonons. Again,
each of these diagrams could be assigned a mathematical quantity to evaluate their contribution.

Mjf min

Figure 9.7: Feynman diagrams for four phonon interactions that come up in the fourth order term. In each
diagram time runs from left to right. The leftmost diagram represents the most dominantly contributing
interaction, which is the scattering of two phonons. There are other interactions that also contribute, for
example the destruction of one phonon and creation of three phonons as depicted in the right diagram.

9.9 Thermal Conductivity

In Drude theory, electrons contribute:

κel =
1
3

Cel
V vFl (9.34)
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with Cel
V the electronic specific heat, vF the Fermi velocity, and l is the mean-free path - this is where many

different details and factors come in (and generically very hard to calculate); this is where anharmonic
effects enter. An electron that travelled forever would contribute an infinite conductivity - this does not
happen so there must be features in our metal that slow it down, e.g. impurities. For phonons, we have
(analogously)

κph =
1
3

Cph
V cl′ (9.35)

and again l′ the mean free path is where anharmonic effects enter (e.g. collisions of phonons with elec-
trons).
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10 Magnons

Magnons occur as excitations in spin Hamiltonians describing magnetic systems.

10.1 The Heisenberg Model

J > 0, FM

J < 0, AFM

j − δ j j + δ

B

1
Figure 10.1: Cartoon depiction of the 1-D Heisenberg chain. For J > 0 we have a ferromagnet with aligned
spins. For J < 0 we have an antiferromagnet with alternating spins. Nearest neighbour spins are coupled,
and there is an external magnetic field that affects each spin.

Here, we will discuss the simplest such Hamiltonian describing a magnetic system, the Heisenberg
model. It is written as:

H = −J ∑
j,δ

Sj · Sj+δ − 2B ∑
j

Sz
j (10.1)

Where the first term represents the coupling between spins, parameterized by a coupling constant J (where
J > 0 gives rise to a ferromagnet and J < 0 to an antiferromagnet), and the second term represents the
contribution from an external magnetic field with strength B. Note that this Hamiltonian is completely
invariant under the choice of z-axis; more formally, it is invariant under SU(2) rotations.

Note that Sj = (Sx
j , Sy

j , Sz
j ) is a spin operator at site j that obeys:

[Sα
i , Sβ

j ] = iδijϵ
αβλSλ

j (10.2)

The second property is that Sj · Sj has eigenvalues s(s + 1) where s = 1
2 , 1, 3

2 , . . .. Note that despite its
simple form, the Heisenberg Hamiltonian is generally not solvable; it is only analytically solvable (in a
difficult method; Bethe ansatz) in 1D and treatable via approximate methods in higher dimensions. In our
class, we will solve the 1D chain approximately

10.2 Magnon Variables

We will proceed with the approximate solve by transforming into “magnon variables” using the Holstein-
Primakoff transformation. Recall the raising/lowering operators:

S±
i = Sx

i ± iSy
j

In Holstein-Primakoff, these operators are expressed using bosonic operators:

S+
j =

√
2S(1 − nj/2s)1/2aj

S−
j =

√
2Sa†

j (1 − nj/2s)1/2
(10.3)

with [aj, a†
k ] = δjk and nj = a†

j aj the number operator. This seems like a strange, nonlinear transformation,
but in fact is necessary to satisfy the SU(2) algebra. Raising/lowering operators allow for raising/lowering
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the states to infinity, but spins have a finite number of states. For certain eigenvalues, nj = 2s and so we
get zero, i.e. we cannot raise the spin state beyond its maximal value. We have S+, S−, and to finish the
set we have:

Sz = s(s − 1)− (Sx)2 − (Sy)2 = s(s − 1)− 1
2
(S+S− + S−S+) = S − a†

j aj (10.4)

Note that the transformations Eqs. (10.3), (10.4) is exact in that it satisfies the original spin algebra5

Eq. (10.2). However, it is not very useful as written due to the √ in (10.3). However, it is useful when we
study excited states close to the ordered ground state of H, where the spins are completely saturated. In
this limit, we assume that only a small number of spins deviate from their perfect arrangement, that is:

s −
〈

Sz
j

〉
=
〈

a†
j aj

〉
(10.5)

is small, and so: 〈
nj

〉

s
≪ 1. (10.6)

We can therefore expand the square roots in Eq. (10.3):

S+ =
√

2S
[

aj −
nj

4s
+ . . .

]

S− =
√

2S
[

a†
j − a†

j
nj

4s
+ . . .

] (10.7)

and retain only the leading term in this expansion, and write:

SiSj =
1
2
(S+

i S−
j + S−

i S+
j ) + Sz

i Sz
j ≈ s(a†

i aj + aia†
j + s − ni − nj) (10.8)

from here, the ferromagnetic and anti-ferromagnetic lines diverge, so let’s analyze the two cases separately.

10.3 Ferromagnetic Case

Here we have J > 0, and we write the Hamiltonian as:

H = −JS ∑
⟨i,j⟩

(
a†

i aj + aia†
j + s − ni − nj

)
− 2V ∑

j
(s − nj) (10.9)

where
〈
i, j
〉

means that i, j are nearest neighbour sites. We can solve this by Fourier transforming:

bk =
1√
N

∑
j

eik·rj aj

b†
k =

1√
N

∑
j

e−ik·rj a†
j

(10.10)

The momentum-space H assumes the form:

H = −JNzs2 − 2BNs +H0 +H1 (10.11)

where z denotes the coordination number (the number of nearest neighbours) and:

H0 = ∑
k

(
2Jzs(1 − γk) + 2B

)
b†

k bk (10.12)

56



δ1

δ2
δ3

δ4

1
Figure 10.2: The four δ vectors for the 2D square lattice. Each atom has neighbours at δ = ±x̂, δ = ±ŷ.

with γk =
1
z ∑δ eik·δ. If we had a two-dimensional square lattice, then the δ vectors would be as follows:

Note that this form of H0 is valid for lattices with an inversion center which implies γk = γ−k. Without
this condition the form of H0 would be more complicated. One way to think about this is a lattice has an
inversion center if for every lattice site, there is both a δ and −δ nearest neighbour. This would not be the
case (e.g.) for a honeycomb lattice.

H1 contains higher order terms in bk, b†
k and represents magnon interactions.

The situation is analogous to phonons; we made a harmonic approximation, which gave us a nice
quadratic Hamiltonian. The higher order terms represented interactions of the phonons. The mechanics
is different here but the idea is the same; we have a “nice” quadratic Hamiltonian H0 and then the higher
order terms in H1 representing magnon interactions. Similar to phonons where the harmonic approx was
sufficient to describe lattice vibrations but not expansions, we will find that thermodynamics is described
well by the lower-order expansion, but (e.g.) thermal conduction will require the higher order terms to
analyze.

We write things suggestively as:

H0 = ∑
k

ωknk

ωk = 2Jsz(1 − γk) + 2B
(10.13)

where ωk is the magnon spectrum. This tells us about the low energy excitations.

10.4 An Example: Cubic Lattice in 3D

In this example, we have:
δ = ±ax̂,±aŷ,±aẑ. (10.14)

So then:

z(1 − γk) = 6 − ∑
δ

eik·δ = 2(3 − cos(akx)− cos(aky)− cos(akz))

We are interested in the low-temperature/energy and hence long wavelength excitations, so ka ≪ 1 and
so we can expand cos(kia) ≈ 1 − 1

2 k2
i a2. We then find:

ωk ≈ 2B + 2Js(ka)2 (10.15)

note that the same result holds for FCC and BCC lattices. At zero magnetic field, the magnons exhibit
particle like spectra:

ωk =
k2

2m∗ , m∗ =
1

4Jsa
(10.16)

5“It is a bitch to work out.” - Marcel Franz 2022
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for conventional ferromagnets, it is found that m∗ ≈ 10me.
To find the magnon heat capacity, we take ωk = Dk2 with D = 2sJa2 and calculate the internal energy

U(T):

U(T) = ∑
k

ωk ⟨nk⟩T = ∑
k

ωk

eβωk − 1

=
1

(2π)3

∫

|k|<kmax
d3k

Dk2

eβDk2 − 1

=
(kBT)5/2

4π2D3/2

∫ xm

0
dx

x3/2

ex − 1
x = βDk2, xm = Dβk2

max

=
0.45
π2

(kBT)5/2

D3/2

(10.17)

The integral is dimensionless, so the temperature dependence is entirely in the prefactor. In the last line
we have taken the xm → ∞ to carry out the integral, an approximation that is valid at low temperatures.
From this we easily obtain the heat capacity:

CV =
dU
dT

= 0.113kB(kBT/D)3/2 (10.18)

we have another different temperature dependence of the heat capacity! For electrons, CV ∼ T, for
phonons, CV ∼ T3, and for magnonons, we have CV ∼ T3/2. This suggests that if we have an insulating
(i.e. no electronic contribution) antiferromagnet, to observe CV we include a phonon contribution ∼ bT3

which means that:

Ctot
V = cT3/2 + bT3

we can then plot Ctot
V /T3/2 vs. T3/2, which gives us a straight line with intercept c as:

Ctot
V

T3/2 = c + bT3/2.

Reading Assignment: Antiferromagnetic magnons - see pages 58-62 in the handout (Kittel’s Quantum
Theory of Solids).

10.5 Magnetization Reversal

We expect the total magnetization:

Ms = 2µ0 ∑
j

〈
Sz

j

〉

to decrease as T is raised and more magnons are thermally excited. We can calculate this by going into
magnon variables:

MS(T) = 2µ0

(
NS − ∑

k

〈
b†

kbk

〉)
(10.19)

We are interested in ∆M(T) = MS(0)− MS(T):

∆M(T) = 2µ0 ∑
k
⟨n̂k⟩ =

2µ0V
(2π)d

∫ kmax

0
ddk

1
eβDk2 − 1

(10.20)
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Let’s calculate the integral. Note that kmax is the momentum cutoff analogous to the Debye momentum for
phonons. The integrand only depends on the magnitude of k, so we can carry out the angular integrals
to give us the surface Sd of the d-dimensional unit sphere (e.g. S3 = 4π, S2 = 2π):

∆M(T) = SdV
∫ kmax

0
dkkd−1 1

eβDk2 − 1

substituing x = βDk2, dx = 2βDkdk we find:

∆M(T) = SDV
∫ xm

0

dx
βD

(
x

βD

) d−2
2 1

ex − 1

= SDV
(

kBT
D

)d/2 ∫ xm

0

x(d−2)/2

ex − 1
dx

(10.21)

The behaviour near x = 0 is interesting. Because ex1 ∼ x for x ≪ 1, the integral diverges at the lower
bound when d ≤ 2. This implies that thermal fluctuations tend to destabilize ferromagnetic order in low
dimensions (that is to say, d ≤ 2). This of course is an approximate treatment, but you can analyze this
much more carefully and this is indeed a correct result. Strictly speaking, in 2D ferromagnetic order only
exists at zero temperature, and as soon as you raise the temperature above zero, you get long wavelength
fluctuations and the average magnetization is immediately zero. The same is true of 1 dimension. In three
dimensions this is not a problem, as the integral is not convergent. At T = 0 we have a perfectly ordered
ferromagnetic, and as we increase the temperature the magnetization decreases, as ∆M(T) ∼ T3/2. This
is experimentally observed. 

MSG

Figure 10.3: Plot of the total magnetization MS(T) as a function of temperature T. The deviation from total
magnetization goes as T3/2, and the total magnetization goes to zero at the critical (Curie) temperature Tc.

A concrete example that you may try at home: Fridge magnets lose their magnetic properties when
heated up. Interestingly, when you cool them back down, you find that the magnetization is still zero.
This is because the rise of domains within the magnet when cooled past the critical temperature, which
makes the net average magnetization zero. It can however be re-magnetized in the presence of a second
magnet.
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FEISTEL
Figure 10.4: Cartoon sketch of the magnetic domains that appear in a bar magnet when cooling it back
down from the critical temperature. As a result, the total magnetization is zero.

11 Electrons in a Periodic Potential: Band Theory of Solids

11.1 Review: Bloch’s Theorem

See A&M Ch. 8 for proof(s) and extended discussion.
Theorem (Bloch). Consider the eigenstates ψ of the one-electron Hamiltonian:

H =
h̄2∇2

2m
+ U(r)

where U(r + R) = U(r) for all R in the Bravais lattice. These eigenstates can be chosen to have the form:

ψnk(r) = eik·rµnk(r) (11.1)

where:
µnk(r + R) = µnu(r) (11.2)

The interesting part of this statement is that even though the Haniltonian has a full symmetry under
translation by +R. The eigenstates do not; there is a part that possesses the symmetry µnk(r) and a part
that does not, eik·r which is translation invariant. This should not be totally unexpected; for example the
QHO is symmetric under inversion, but the wavefunctions do not have all of this symmetry (n even is
even, n odd is odd).

A remark: Note that Eqs. (11.1) and (11.2) imply that:

ψnk(r + R) = eik·Rψnk(r). (11.3)

In Eq. (11.1), k is known as a crystal momentum and n is the band index. In free space, complete
translation invariance implies the conservation of momentum. In a lattice, we have translation invariance
w.r.t the Bravais lattice R, only, which implies that momentum is not conserved, but the crystal momentum
is conserved.

11.2 Weak Periodic Potential

This is also known as “nearly free” electrons in a periodic lattice. We consider the same Hamiltonian

H = h̄2∇2

2m + U(r) where U(r) is “weak”, sufficiently weak enough to be treated in perturbation theory.

We call H0 = h̄2∇2

2m and H′ = U(r).
First, we transform H into second-quantized notation:

H0 = ∑
k,σ

ϵkc†
kσckσ, ϵk =

h̄2k2

2m

H′ = ∑
kk′σσ′

⟨kσ|U|k′σ⟩c†
kσck′σ′

(11.4)
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where we note that as usual we work in the plane wave basis ψk = 1√
V

eik·r, and so:

∑
kk′σσ′

⟨kσ|U|k′σ⟩ = 1
V

δσσ′

∫
d3re−ir·(k−k′)U(r) (11.5)

Note that due to its periodic property, U can be written as:

U(r) = ∑
G

eir·GUG (11.6)

where G are reciprocal lattice vectors satisfying eiG·R = 1 for all R in the Bravais lattice (check)! UG is the
fourier transform of our potential, evaluated at G.

We further assume that UG=0 = 0, which only redefines the overall energy zero. We can therefore
write:

⟨kσ|U|k′σ′⟩ = δσσ′

V

∫
d3r ∑

G
UGe−ir·(k−k′−G) = δσσ′ ∑

G
UGδk−k′ ,G (11.7)

when the dust settles, we find:
H′ = ∑

kGσ

UGc†
k+Gσckσ (11.8)

which is a very suggestive rewrite; for each term corresponds to the destruction of an electron with
wavevector k and the creation of an electron with wavevector k + G. This also explains the conservation
of crystal momentum; the electron undergoes scattering processes which changes the momentum from k
to k + G (so momentum is not conserved) but the crystal momentum (i.e. momentum up to reciprocal
lattice vectors) is. This also connects back to the Bruillion zone; the wavevector k appearing here can
always be confined to the first Bruillion zone.

In the following, we suppress the spin index, and focus on 1D systems for simplicity. So, we have:

H0 = ∑
k

ϵkc†
k ck, H′ = ∑

k,G
UGc†

k+Gck

we ask how is an electron in an eigenstates |k⟩ = c†
k |0⟩ of H0 perturbed by H′.

11.2.1 Zeroth-order perturbation theory

To start, in zeroth order perturabtion theory, we have:

E(0)
k = ϵk (11.9)

Of course, nothing exciting here...

11.2.2 First-order perturbation theory

We have:

E(1)
k = ⟨k|H′|k⟩ = ⟨k|∑

q,G
UGc†

q+Gcq|k⟩ = ⟨k|∑
G

UGc†
k+G|0⟩ = ∑

G
UG⟨k|k + G⟩ = U0 = 0. (11.10)

so the first order contribution is zero.
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11.2.3 Second-order perturbation theory

We have:

E(2)
k = ∑

k′ ̸=k

|⟨k|H′|k′⟩|2
ϵk′ − ϵk

(11.11)

So we calculate:

⟨k|H′|k′⟩ = ∑
qG

UG⟨k|c†
q+Gcq|k′⟩ = ∑

G
UG⟨k|c†

k′+G|0⟩ = ∑
G

UG⟨k|k′ + G⟩ = ∑
G

UGδk,k′+G = (11.12)

Therefore:

E(2)
k = ∑

k′ ̸=k,G,G′

UGU∗
G′δk,k′+Gδk,k′+G′

ϵk′ − ϵk
= ∑

G ̸=0,G′

UGU∗
G′δGG′

ϵk+G − ϵk
= ∑

G ̸=0

|UG|2
ϵk+G − ϵk

(11.13)

For small |UG|, this correction is small, EXCEPT when |ϵk−G − ϵk| is also small. This occurs at specific
values of k = 1

2 G (valid also in 3D). However this is not the final answer; in reality there will not be an
infinite correction. What’s the catch? When we do perturbation theory as we have, we assume that the
energy levels are non-degenerate; but here there is a degeneracy. Hence, at and near k = 1

2 G, we must
apply degenerate perturbation theory because ϵk−G = ϵk and this could be viewed as a degeneracy.

11.3 Degenerate Perturbation Theory

We define two near degenerate states:

|1⟩ = |k⟩, |2⟩ = |k − G1⟩ (11.14)

and construct the Hamiltonian matrix in this basis:

H =

(
⟨1|H|1⟩ ⟨1|H|2⟩
⟨2|H|1⟩ ⟨2|H|2⟩

)
=

(
ϵk UG

U∗
G ϵk−G

)
(11.15)

The perturbed energies are given by eigenvalues:

det

(
ϵk − E UG

U∗
G ϵk−G − E

)
= 0 =⇒ (ϵk − E)(ϵk−G − E)− |UG|2 = 0 (11.16)

so then:

Ek =
1
2
(
ϵk + ϵk−G

)
±
√

1
4
(
ϵk − ϵk−G

)2
+ |UG|2 (11.17)

Note for k = 1
2 G, i.e. the degeneracy point, this implies:

Ek = ϵk ± |UG|. (11.18)

So we have an energy gap! This quantifies the distinction of metals and insulators, using quantum me-
chanics; we will go further into this discussion next class.
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K

Figure 11.1: Plot of the energy ϵk and ϵk−G as a function of k. At k = 1
2 G the two energy functions coincide.

At and near this point, non-degenerate perturbation theory breaks down. A more careful treatment using
degenerate perturbation theory shows that there are two energy levels, separated by a gap 2|UG|.

12 Electrons in a Periodic Potential - Tight Binding Approximation

12.1 Review and Examples of Band Structure

We recall that a weak perturbation has no effect on the electron spectrum except at the degeneracy points.
At these points, the perturbation results in a gap at these degeneracy points of magnitude 2|UG|.

We did this for one specific degeneracy point (Bragg plane), but there will be many such points. The
free electron parabola gets proken up into many such disjoint pieces. We can picture this in the extended
zone scheme (pictures −∞ < k < ∞), or the reduced zone scheme (pictures the first Bruilloin zone with
many levels), or the repeated zone scheme (copying over the structure in the first Bruilloin zone multiple
times throughout space) as pictured below.

In three dimensions, the analysis proceeds in the same way (but there are more levels at the same k). If
the Fermi energy lies inside of the band, we have a metal (e.g. aluminum), and if we have a Fermi energy
inside of the gap, we have an insulator (e.g. silicon).

An important 2D example is graphene; we consider carbon atoms in a honeycomb lattice, which can
be viewed as a triangular Bravais lattice with a two point basis. It has a hexagonal Bruillon zone, and
the band structure looks fairly free electron. Near the K point (corner of the Bruillon zone), there is a
protection (from time reversal and inversion symmetry) and there is the realization of dirac dispersion
near the K points; here we see behavior like massless particles, with zero curvature. Electrons near these
K points are in some sense massless. This is a kind of band structure that we could not get from the weak
periodic potential approximation, as the periodic potential is not weak. It also motivates our next topic,
which is the tight-binding approximation (which is successful for (e.g.) graphene).

12.2 Tight-Binding Approximation

We consider again a periodic potential, this time the case where we have a periodic Coloumb potential. If
we focus on the highly excited wavefunctions at each site, we have an exponentially decaying wavefunction
centered at each well. If only the exponentially small tails of the wavefunctions overlap, then we can think
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Figure 12.1: Sketch of the extended (left), reduced (center), and repeated (right) zone schemes for describ-
ing the electron dispersion under a weak periodic perturbation. Figures reproduced without permission
from Ashcroft and Mermin.

of the system as electrons sitting in their orbitals, and being subject to a small perturbation that allows
them to tunnel from one well to another. In some sense it is the complete opposite of the weak potential
approximation. There we started with free electrons and treated the potential as a perturbation. Here, we
assume electrons are tightly bound in atomic orbitals; tunnelling (a.k.a. “hopping”) occurs due to small
wavefunction overlap (the perturbation).

We have the Hamiltonian:

H = − h̄2∇2

2m
+ ∑

i
Uat(r − Ri) (12.1)

We work in the basis of atomic wavefunctions ϕn(r), which satisfy:

Hatϕn = Enϕn, Hat = − h̄2∇2

2m
+ Uat(r) (12.2)

we assume that the ϕns are known. This is our starting point. We write the full Hamiltonian in second
quantization notation using the ϕn basis. We introduce operators c†

n(Ri) which creates an electron in state
ϕn(r − Ri) represented as |n, Ri⟩. Then, the most general tight binding Hamiltonian can be written as:

Ĥ = ∑
m,n

∑
i,j
⟨n, Ri|H|m, Rj⟩c†

n(Ri)cm(Rj) (12.3)

c†
n(Ri)cm(Rj) precisely destroys one electron at energy Em at position Rj and creates one at energy En at

position Ri. The matrix elements ⟨n, Ri|H|m, Rj⟩ = tmn
ij give the amplitudes for this process to occur.

This general form is generally not super useful unless more about the matrix elements are known.
Fortunately, because the atomic wavefunctions ϕn(r) decay as ∼ e−r/a0 , we expect the overlap between the
wavefunctions is only appreciable between a few nearest neighbours, and the rest are negligeble. So, the
matrix elements tmn

ij are negligeble when |Ri − Rj| ≫ a0. In practice, it is usually sufficient to include first
(potentially second or third) neighbour hopping.

Tight binding models can be solved for any order of these hoppings, but low order ones have very
simple solutions. Note that we will not go into the band structure calculations of the tmn

ij matrix elements
here; but there are many textbooks and packages written specifically about this topic. There are well-
established techniques, but they require detailed knowledge of atomic orbitals. This is often difficult to
do by hand; however, they can often be constrained by symmetries.
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Figure 12.2: Cartoon sketch of the tight-binding approximation. We have per-site wavefunctions (arising
from a Coloumb potential, or some other strong per-site potential) that are centered at each site of the
lattice that “strongly bind” the electrons. There is overlap between the per-site wavefunctions that leads
to hopping in between the sites.
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Figure 12.3: The overlap matrix elements tmn
ij can often be constrained by symmetries. When looking at the

overlap of px and s, symmetry constraints give us no information. However, when looking at the overlap
of py and s, the overlap integral is odd under the interchange y ↔ −y and so we conclude that the matrix
element vanishes.
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12.3 Example - Single non-degenerate orbital in 2D

6

l it
o o

it
Figure 12.4: Sketch of a 2D square lattice with a single non-degenerate orbital at each site. The interactions
to consider will be the nearest neighbour interactions (t1) and the next-nearest interactions (t2). The next-
next nearest neighbour interactions and further can be neglected.

In this scenario our tight-binding Hamiltonian looks like:

Ĥ = ∑
i

Eic†(Ri)c(Ri)− ∑
i ̸=j

tijc†(Ri)c(Rj) (12.4)

here, Ei is the “on-site” energy. We will take Ei = ϵ0 for all i in our monoatomic lattice. for tij we consider
only first and second neighbours as indicated in the figure:

tij =





t1 first neighbour
t2 second neighbour
0 otherwise

With this we can rewrite:

Ĥ = ϵ0 ∑
i

ϵ0c†(Ri)c(Ri)− ∑
i,δ

tδc†(Ri + δ)v(Ri) (12.5)

this is often a useful rewrite as in many cases the hopping terms do not depend on both lattice positions
i, j but only the difference between them δ. δ here are vectors that point from a site to its first and second
neighbour. We will see that a Fourier transform immediately solves this type of simple problem:

c(Ri) =
1√
N

∑
k

eik·Ri ck

c†(Ri) =
1√
N

∑
k

e−ik·Ri c†
k

(12.6)

our Fourier transformed Hamiltonian takes the form:

Ĥ = ϵ0 ∑
k,k′

c†
kck′

1
N ∑

Ri

e−iRi ·(k−k′) − ∑
k,k′

c†
kck′

1
N ∑

i,δ

tδe−iRi ·(k−k′)−iδ·k

= ϵ0 ∑
k

c†
kck − ∑

k
c†

kck


∑

δ

tδe−iδ·k




(12.7)
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and so:
Ĥ = ∑

k
ϵ(k)c†

kck, ϵ(k) = ϵ0 − ∑
δ

tδe−ik·δ (12.8)

Actually the solution we write above works for any tight binding model. We can evaluate the energies for
our case specifically using that δ1 = a(±x̂,±ŷ) and δ2 = a(x̂ ± ŷ,−x̂ ± ŷ). This yields:

ϵ(k) = ϵ0 − 2t1(cos(akx) + cos(aky))− 2t2(cos(a(kx + ky)) + cos(a(kx − ky))) (12.9)

For simplicity, let us illustrate the case with t2 = 0. We sketch the lines of constant energy for the
dispersion:

ϵ(k) = ϵ0 − 2t1(cos(akx) + cos(aky))

E KxOi

YaYa

I

a
Emin

Figure 12.5: Lines of constant energy for the 2D tight-binding square lattice with one non-degenerate
orbital (left) and plot of energy vs. kx for fixed ky = 0 (right).

We find that ϵmin = ϵ(k = 0) = ϵ0 − 4t and ϵmax = ϵ(k = (π
a , π

a )) = ϵ0 + 4t. The bandwidth is
W = ϵmax − ϵmin = 8t.

A standard undergraduate question: if we have a 2D square lattice and each atom contributes one
electron, do we have a metal or an insulator? To answer this, we recall that the number of k states in the
band is equal to the number of unit cells in the crystal.

On the face of it, it seems like all of the N states would be filled with electrons so we would have an
insulator. But taking into account spin, there are 2N states, so we only fill half of the states, corresponding
to all of the states inside of the diamond. This meets the definition of a metal!

12.3.1 Effective Mass

The effective mass for these electrons can be defined near either the minima or the maxima of the disper-
sion by expanding it to second order in momenta and study the long wavelength behavior.

(i) Near k = 0, we can expand:

ϵ(k) = ϵ0 − 2t1(1 −
(akx)2

2
+ . . . + 1 − (aky)2

2
+ . . .) = (ϵ0 − 4t1) + t1a2k2 + . . . (12.10)

In the literature, often t1a2k2 is written as h̄2k2

2m∗ with m∗ = h̄2

2t1a2 the effective mass. In principle this
could be larger or smaller than the real electron mass, and in the literature when things such as
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idiom

Figure 12.6: If each atom contributes one electron, the band is half filled, corresponding to all of the states
inside of the diamond (shaded in red). Thus the fermi energy falls within the band and the material will
be a metal.

“heavy electrons” are discussed, these are compounds where the band mass of the electrons is heavy.
In conclusion, near k = 0 (the Γ point) the tight-binding electron behaves as a particle of mass m∗.

(ii) Near k =
(

π
a , π

a

)
≡ K, we expand:

ϵ(k + K) = (e0 + 4t1)− t1a2k2 + . . . (12.11)

where we now have the effective mass m∗ = − h̄2

2t1a2 . The effective mass is negative! The carriers are
holes.

12.3.2 Band Velocity

The group velocity is given by:

vk =
1
h̄

∂ϵ(k)
∂k

=
2t1a

h̄
(sin(akx), sin(aky)) (12.12)

Near k = 0, we have vk ≈ 2t1a2

h̄ k. This is as expected for a free particle of mass m∗. Near kx = π
a ,

we have vk = − 2ta2

h̄ δkx. This is very odd. The velocity is opposite to the change in momentum. This is
however consistent with the effective mass being negative.

One may ask what makes electrons behave in this strange way. The intuition of free space is violated
here as the electron is not moving in free space (it is in the tight-binding model)! In the long wavelength
limit the free space analogy may hold, but in other parts of the Bruillon zone this is simply not the case.

Another point - this shows why it is important to distinguish between momentum and crystal mo-
mentum. Here we have crystal momentum, and we can see it really does not behave as we conventionally
understand momentum.

12.4 Example - Lattice with a Basis (Dimerized chain)

Our unit cell now contains two atoms, and is of length 2a. Every atom in the chain can be labelled by the
position of the unit cell and with 1/2. We therefore write the Hamiltonian in second quantization notation
as:

H = ϵ0 ∑
i

[
c†

1(Ri)c1(Ri) + c†
2(Ri)c2(Ri)

]
+ t ∑

i

[
c†

1(Ri)c2(Ri + a) + h.c.
]
+ t′ ∑

i

[
c†

1(Ri)c2(Ri − a) + h.c.
]

(12.13)
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Figure 12.7: Group velocity of electrons for the tight-binding square lattice, as a function of kx. Near k = 0
the electrons behave as free particles with positive effective mass m∗, and the group velocity is aligned
with the change in momentum (red) as would be expected for a free particle. Near kx = π

a , the electrons
have negative effective mass, and the group velocity is opposite to the change in momentum (green).

I

Figure 12.8: Cartoon of dimerized tight-binding chain, with alternating bond strengths t/t′.

where c†
1c2 describes a hop from site 2 to site 1 and h.c. the opposite. We solve this via a Fourier transform:

cα(r) =
1√
N

∑ eikrcαk

α = 1, 2:
H = ϵ0 ∑

α,k
c†

k,αck,α + t ∑
k

(
c†

1kc2keika + h.c.
)
+ t′ ∑

k

(
c†

1kc2ke−ika + h.c.
)

(12.14)

Two solve, define a two-component spinor:

χk =

(
c1k
c2k

)
, χ†

k =
(

c†
1k c†

2k

)

and express the Hamiltonian (setting a = 1):

H = ∑
k

χ†
k hkχk, hk =

(
ϵ0 teik + t′e−ik

te−ik + t′eik ϵ0

)
(12.15)

We diagonalize this matrix, setting det(jk − ϵI) = 0. We get a secular equation:

(ϵ0 − ϵ)2 − (teik + t′e−ik)(te−ik + t′eik) = 0

When we solve the quadratic equation for ϵ, we find:

ϵ = ϵ0 ±
√

t2 + t′2 + 2tt′ cos(2k) (12.16)

so the band structure will be composed of two bands.
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Figure 12.9: Energy as a function of k for the dimerized tight-binding chain. The band structure is
composed of two bands.

Now, suppose that each atom in this dimerized chain donates exactly one electron. Do we have a metal
or insulator? Each unit cell has two atoms. So, if each atom contributes one electron, the bottom band is
completely filled (with N electrons) and the top band is completely unfilled. So we have an insulator.

Another question - what happens if the atoms we make them now identical? The gap closes - but this
is something for the reader to think about. This ends the discussion of the tight binding model, and we
do other things starting monday.
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13 Density Functional Theory

13.1 Motivation

A brief recap - at the beginning of the term we discussed the Jellium model, where we replaced the ionic
lattice with a uniform positive background, and we then calculated the energy of electrons amongst other
properties. We then began to discuss electrons moving in a periodic potential of the lattice, which lead to
band structure theory - but in this approximation we neglected interactions between the electrons. In a real
solid that we have both a periodic lattice and electronic interactions. Trying to combine the two leads to
an intractable problem, as as soon as we abandon the independent electron approximation, suddenly the
wavefunction becomes a function of 1023 variables, and there is no good method to get this wavefunction
in a system that does not have full translational invariance.

DFT is then the only practical way to perform calculations for electrons structure in real solids. It was
developed bhy Walter Kohn in the 60s. We briefly survey the topic in a single class today, but there exist
entire books written on the topic and it is a technique well-used in research today.

13.2 The Hohenberg-Kohn Theorem

QFT is grounded in the Hohenberg-Kohn theorem, which applies to the family of electron Hamiltonians
of the form:

Ĥ = ∑
k,σ

h̄k2

2m
c†

kσckσ + ∑
k,q,σ

U(q)c†
k+q,σckσ +

1
2 ∑

kpqσσ′
Vqc†

k−qσc†
p+qσ′cpσ′ckσ (13.1)

where the first term is the electron kinetic energy which we call T̂, the second term is the potential term
Û, and the third term is the Coulomb interactions V̂.

The Hohenberg-Kohn theorem says that the expectation value of any operator Ô is a unique functional
of the ground-state electron density n0(r). We don’t need the full many-body wavefunction of the system;
we only need the ground state electron density. Quite incredible! From this theorem unfolds the apparatus
of DFT. the simplification is that the density is a function only of three spatial variables r = (rx, ry, rz). We
only need to couch calcualtions in terms of 3 variables, not 1023!

Comment: There do exist extensions of the theorem to thermal ensembles at finite temperature, though
the HK theorem in the above form only addresses the ground state.

A few other remarks. The T̂, V̂ pieces of Eq. (13.1) are universal across solids, and Û is the only part
that differs between solids. In principle, given Û we can calcualte the electron density n0(r).

The HK theorem states that the mapping:

U(r) ↔ n0(r) (13.2)

is actually reversible. Because from U(r) we can in principle obtain the full many-body wavefunction
ψ(r1, . . . , rn) (and thus the expectation value

〈
Ô
〉

) this implies that
〈

Ô
〉

is uniquely determined by n0(r).
Also note that everything we will say is true of non-degenerate ground states (degeneracy can add com-
plications to these uniqueness statements), though we can extend the results to the case with degeneracy.

13.3 Proof of the Hohenberg-Kohn Theorem

13.3.1 Part 1

We first show that two potentials U(r) and U′(r) that differ by more than a trivial constant, necessarily
lead to different ground states ψ0 ̸= ψ′

0. We have:

(T̂ + V̂ + Û)ψ0 = ϵ0ψ0

(T̂ + V̂ + Û′)ψ′
0 = ϵ′0ψ′

0
(13.3)
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We proceed by proof by contradiction. Assume ψ0 = ψ′
0, then subtracting the second equation from the

first:
(Û − Û′)ψ− = (ϵ0 − ϵ′0)ψ0 (13.4)

So Û, Û′ only differ by a trivial constant, contradicting our assertion that they differ by more than a trivial
constant.

13.3.2 Part 2

It is also clear that two different densities n0(r) ̸= n′
0(r) require different potentials - this follows from the

uniqueness of solutions to the Schrodinger equation (in the non-degenerate case).
It therefore follows that the ground state wavefunction is uniquely specified by the electron density.

One can also show that ψ0 ̸= ψ′
0 implies n0(r) ̸= n′

0(r
′) which completes the proof.

13.4 Variational Principle

There is an important variational principle associated with the HK theorem. HK applies for expectation
values of all operators, so in particular let us pick the Hamiltonian (i.e. the ground state energy):

ϵ[n] = ⟨ψ0[n]|T̂ + V̂ + Û|ψ0[n]⟩ (13.5)

where ϵ[n] is the ground state energy functional, such that ϵ0 = ϵ[n0] is the true ground state energy. As a
refresher, a functional is a mapping from the space of functions to the space of numbers. For example the
definite integral over [0, 1] is a functional. We distinguish them by angular brackets, and their arguments
are functions.

It then holds that:
ϵ0 < ϵ[n] (13.6)

for any n(r) ̸= n0(r). This is nothing more than a restatement of the familiar variational principle of
E0 ≤ ⟨ψ|H|ψ⟩.

This variational principle gives the practical machinery for doing DFT calcualtions; the ground state
energy and n0(r) can be found by minimizing this functional. ϵ[n] is usually written as:

ϵ[n] = FHK[n] +
∫

d3rn(r)U(r) (13.7)

where FHK[n] = ⟨ψ0[n]|T̂ + V̂|ψ0[n]⟩, which importantly is the same for all systems on the account of
universality! FHK has to be determined only once! Of course anything that is this useful is not so easily
obtained, and various DFT approaches differ in what they use for the FHK functional. Let us explain the
second term - why can it be written as the simple integral? First, we write:

n(r) =
∫ {

d3r
}

ψ∗(r1, . . . rN)
N

∑
i=1

δ(r − ri)ψ(r1 . . . rN)

Where
{

d3r
}
= d3r1 . . . d3rN . Then:

⟨ψ0|U|ψ0⟩ =
∫ {

d3r
}

ψ∗(r1, . . . rN)
N

∑
i=1

U(ri)ψ(r1, . . . rN) =
∫ {

d3r
}

d3rpψ∗(. . .)∑
i

δ(rp − ri)U(rp)ψ(. . .)

(13.8)
and separating this into two integrals, and the integral over all wavefunction coordinates gives exactly
n(r), giving precisely ⟨ψ0|U|ψ0⟩ =

∫
d3rn(r)U(r).
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13.5 The Kohn-Sham Formulation

This formulation allows for practical applications of the HK theorem. The idea - one imagines that there
is a non-interacting reference system ĤS = T̂ + ÛS whose potential ÛS is chosen such that the ground
state density is precisely the same as the actual interacting system Ĥ = T̂ + V̂ + Û we are interested
in. Because computations of ψ0 and n0 are “easy” in a non-interacting system ĤS (as the indepdendent
electron approximation can be used), we can then practically implement this whole scheme.

13.5.1 DFT for the Reference System

Similarly for the actual system, we have a ground state energy function:

ϵS[n] = Ts[n] +
∫

d3rUs(r)n(r) (13.9)

where here ns(r) can be easily obtained from the wavefunctions:

ns(r) =
N

∑
i=1

|ϕi(r)|2 (13.10)

and we solve for the ϕis by solving the Schrodinger equation:
[
− h̄2∇2

2m
+ US(r)

]
ϕi(r) = ϵiϕi(r) (13.11)

The hard part is we do not know what US is - we need to find its form. We write down again the ground
state energy functional for the full system, but in a peculiar way:

ϵ[n] = T[n] + V[n] +
∫

d3rn(r)U(r)

= TS[n] +

[
T[n]− TS[n]−

e2

2

∫
d3rd3r′

n(r)n(r′)
|r − r′|

]
+

e
2

∫
d3rd3r′

n(r)n(r′)
|r − r′| +

∫
d3rU(r)n(r)

(13.12)

Where the term in brackets is the exchange-correlation functional:

ϵxc[n] = FHK[n]−
e2

2

∫
d3rd3r′

n(r)n(r′)
|r − r′| − TS[n] (13.13)

We minimize ϵ[n] by variational calculus:

0 =
δϵ[n]
δn(r)

=
δTs[n]
δn(r)

+ e2
∫

d3r′
n(r′)
|r − r′| + U(r) + vxc[n(r)] (13.14)

where vxc[n(r)] =
δϵxc [n]
δn(r) is the exchange-correlation potential. We minimize the reference system:

0 =
δϵn[n]
δn(r)

=
δTs

n(r)
+ US(r) (13.15)

and then subtracting from the minimization of the full system in Eq. (13.14):

Us(r) = U(r) + e2
∫

d3r′
n(r′)
|r − r′| + vxc(r) (13.16)

This is the important result! In practical calculations we can therefore implement Kohn-Sham by following
the three-step program:
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1. Choose an initial trial density n(r). Substitute in Eq. (13.16) and calculate US(r).

2. Solve the SE in Eq. (13.11) for ϕi(r) and find the new density n(r) from Eq. (13.10)

3. Iterate until n(r) stops changing.

The enormous advantage of this procedure is that at no point in this calculation are we ever forced to
calculate the full many-body wavefunction. Of course, it comes at a cost - we have hidden all of the
interaction physics inside of the exchange-correlation potential vxc. Despite this - DFT remains as one of
the most successful techniques in CM physics today, and is the basis for much of our understanding of
solids.

13.5.2 Remarks

(i) The above procedure is implemented in various software packages (Wien 2K, Quantum Espresso...)

(ii) These differ mainly in the form of vxc.

(iii) Packages provide “band structures”, i.e. energy eigenvalues ϵi(k) of Eq. (13.11). If we construct the
full many-body wavefunctions from the obtained observable expectation values, we often obtain very
good approximations to the true systems - and systems for which DFT fail are unusual/interesting.

(iv) There are many useful generalizations of DFT, such as TD-DFT which adds time-dependence, CDFT
(current DFT) which includes an external magnetic field, and EDFT (ensemble DFT) which deals
with degeneracies.

13.6 Choices for the Exchange-Correlation Potential

Many sophisticated approximations for ϵxc[n] have been developed and implemented over the years.
The simplest such is the local density approximation, which assumes that ϵxc only depends on the

local density:

ϵxc[n] =
∫

d3rn(r)ϵxc(n(r)) (13.17)

where ϵxc(n) is the exchange-correlation energy (per particle) of a homogenous electron gas of density n
(Jellium):

ϵxc(n) =
e2

a0r2
s
(brs + crs log rs + . . .). (13.18)

Other popular approximations include LSDA (low spin density approximation) and GGA, the “general-
ized gradient approximation”:

ϵxc[n] =
∫

d3r[g00(n) + g22(n)(∇n)2 + g42(n)(∇2n)2 + . . .] (13.19)

Next time, we will start discussing the semiclassical theory of conduction in metals. Please read A&M
p214-218 in preparation.
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14 Semiclassical Theory of Conduction I

14.1 Semiclassical QM in Crystals

We start with a wave packet with ∆x∆p ≥ h̄, ψ(r, t) = ∑k g(k)eik·r− h̄2k2
2m t. By considering the “center

of mass” of the wave packet, we are able to derive equations of motion from the Schrodinger Equation
(non-trivially) - In free space, these read:

dr
dt

=
h̄k
m

h̄
dk
dt

= −e(E +
1
c

v × H)

(14.1)

In a periodic crystal, we need to revise this slightly; we have a “wave packet” described by Bloch
wavefunctions, ψ(r, t) = ∑k g(k)ψnk(r)e−iϵn(t)t/h̄ where ψnk(r) are the Bloch eigenstates. In this setting,
we obtain the equations of motion:

v(k) =
1
h̄
∇kϵn(k)

h̄
dk
dt

= −e(E +
1
c

v × H)

(14.2)

Note that although crystal momentum is not equal to the actual momentum, we have:

∇kϵk =
h̄2

2m

∫
drψ∗

nk(−i∇)ψnk (14.3)

where the expectation value of velocity appears on the RHS. So, we can apply Eq. (14.2) if we suppose
some localization in k-space, i.e. ∇k ≪ 1

a . Note that in this limit that due to the uncertainty relation
∆x∆k ≥ 1, we have that ∆x ≫ a, i.e the particle is very spread out in position space.

14.2 Limits of Validity

We assume that electrons stay in one band, and that E, B vary slowly:

e|E|a ≪ ∆2

ϵF

h̄ωc ≪
∆2

ϵF

h̄ωAC ≪ ∆2

ϵF

(14.4)

here ∆ is the band gap, a the lattice spacing, and ωC = eB
m∗c is the cyclotron frequency.

Note that typically |E| ∼ 1N m−1, so with a ∼ 10−10m, in order for the condition to hold we require
∆ ≫ 10−5eV. In contrast, |B| ∼ 1T typically, where then h̄ωc ∼ 10−4eV which requires ∆ ≫ 10−2eV. So,
the semiclassical approximation breaks down due to the magnetic field (known as magnetic breakdown).

14.3 Filled Bands are Inert

Let us define the current:

j = (−e) ∑
k<kF

v(k) = −e
∫

k<kF

d3k
(2π)3

1
h̄
∇kϵk (14.5)
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From this, we observe that filled bands are inert; looking for example at the one-dimensional case:

k = −e
∫

k<kF

dk
2π

1
h̄

∂

∂k
ϵk =

e
2πh̄

ϵk

∣∣∣∣
π/2

−π/2
= 0 (14.6)

where the last equality is obtained via periodicity. From this observation, we would conclude that only
bands near the Fermi surface are relevant for transport properties (as far as the semiclassical approxima-
tion is concerned) - filled bands will never contribute, due to this periodicity.

14.4 Motion in a Uniform Electric Field

For uniform E, we have:

h̄
dk
dt

= −eE (14.7)

which is immediately solved to be:

k(t) = k(0)− eEt
h̄

(14.8)

so in time we have a displacement of k-values, and at a certain time, the filled states fully “pass through”
- the below sketch illustrates this in the 1-dimensional case:
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Figure 14.1: 1-dimensional cartoon of the displacement of k values in time as a result of a uniform E-field.

Hence, since v(t) = v(k(t)) = v(k(0)− eEt
h̄ ) and at some time the filled levels “pass through”, we have

oscillatory electrons/AC current!
Note in a real crystal, this phenomena does not actually occur due to electron collisions that relax

v(t). These break the periodicity that the Bloch wavefunctions have - in a metal these symmetry-breaking
components may be phonons, impurities etc.
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14.5 The Hole Picture

Let us rearrange the (vanishing) integral over the full band we had from our previous calculation, by
splitting it into two parts:

0 = −e
∫

full band

d3k
(2π)3 v(k) = −e

∫

occupied

d3k
(2π)3 v(k) + (−e)

∫

unoccupied

d3k
(2π)3 v(k) (14.9)

From this we obtain an equivalent way of describing the current:

j = +e
∫

unoccupied

d3k
(2π)3 v(k) (14.10)

which describes the current in terms of positive charge carriers corresponding to the unoccupied parts
of the band. This has practical use (e.g.) for a band which is mostly filled - where it is much easier to
compute with the unoccupied states, rather than the occupied ones.
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Figure 14.2: A sketch of a mostly filled band, for which the hole picture would be more convenient to do
calculations in.

14.6 Motion in Uniform Magnetic Field

We now consider a scenario with a uniform H-field (and zero electric field). We then have:

h̄
dk
dt

= −e(v × H) (14.11)

With ϵk =
h̄2(k2

x+k2
y)

2m , we have that v = 1
h̄∇kϵk = 1

h̄
h̄2

m (kx, ky) = h̄
m (kx, ky) (Note: k moves through state

space, but v is the real motion of velocity!). From this it follows that:

dk
dt

∼ v · θ (14.12)

where θ is some tangential vector. So, the electrons will move on intersections of constant ϵk and surfaces
perpendicular to H!
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15 Semiclassical Theory of Conduction II

We have our configurational space k, r. For some volume in this space, as we go infinitesimal we have:

gn(k, r, t)
dkdr
4π3 = dN (15.1)

where gn is the density of states. In equilibrium, we have that:

gn → g0 =
1

eβ(ϵk−µ) + 1
. (15.2)

If we recall the Drude model, there we looked at a toy model of electrons travelling through a wire,
with equation of motion:

dp
dt

= F − p
τ

(15.3)

where the probability of a collision in an infinitesimal time interval dt given by dp = dt
τ with τ the

relaxation time and
∫

dp = 1.

15.1 Non-equilibrium Distribution Function

With this picture in mind, we have that the number of electrons emerging from each collision after time
dt is:

dgn =
dt

τ(k, r)
g0(k, r, t)

d3kd3r
4π3 (15.4)

where the g0(k, r, t) d3kd3r
4π3 are the number of electrons that appear in the volume.

Now, let us assume that g0(k, r, t) is unaltered by collisions, that g0 does not depend on g (and as
above, g → g0 in equilibrium). The trajectory of an electron is described by r(t), k(t).

Define P(t, t′) as the number of electrons that make it to k(t), r(t) without a collision from k(t′), r(t′).
Note that some electrons will leave this trajectory due to collisions.

We then have that:

dN = g(k, r, t)
d3kd3r

4π3 =
∫ t

−∞
P(t, t′)

dt′

τ(k(t′), r(t′))
g0(k(t′), r(t′), t)

d3kd4r
4π3 (15.5)

It is worth noting some terminology now - g is the non-equilibrium distribution function, while g0 is
the equilibrium distribution function.

Now, we have:

P(t, t′) = P(t, t′ + dt′)

(
1 − dt′

τ(t′)

)
(15.6)

so in the limit where dt′ → 0:
∂P(t, t′)

∂t′
=

P(t, t′)
τ(t′)

(15.7)

which has solution:

P(t, t′) = e
−
∫ t

t′
dt′′

τ(t′′) (15.8)

and we note that P(t, t) = 1 (of course, as there are no collisions).
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Using this, we can write the non-equilibrium distribution function as:

g(t) =
∫ t

−∞
dt′g0(t′)

P(t, t′)
τ(t′)

=
∫ t

−∞
dt′g0(t′)

∂P(t, t′)
∂t′

= g0(t′)P(t, t′)
∣∣∣
t

−∞
−
∫ t

−∞
P(t, t′)

∂

∂t′
g0(t′) (Integration by parts)

= g0(t)P(t, t)− g0(−∞)P(t,−∞)−
∫ t

−∞
P(t, t′)

∂g0(t′)
∂t′

(15.9)

Now noting that P(t, t) = 1 and P(t,−∞) = 0 (as no electrons from −∞ make it to t):

g(t) = g0(t)−
∫ t

−∞
dt′P(t, t′)

dg0(t′)
dt

(15.10)

Now, with g0(k, r) = 1
eβ(ϵk−µ)+1

, and so g0(k(t), r(t)) = 1
eβ(r(t))(ϵ(k(t))−µ(r(t)))+1

(where this corresponds to

“local” occupation assuming “local thermodynamic equilibrium”), we compute with the chain rule that:

dg0

dt
=

∂g0

∂ϵk

∂ϵk
∂k

dk
dt

+
∂g0

∂µ

∂µ

∂r
dr
dt

+
∂g0

∂T
∂T
∂r

dr
dt

(15.11)

Now, recalling that:

dr
dt

= vn(k) =
1
h̄
∇kϵk

h̄
dk
dt

= −e(E +
v
c
× H)

(15.12)

we find:
∂g0

∂ϵk

∂ϵk
∂k

dk
dt

=
∂ f
∂ϵ

v · e(E +
v
c
× H) =

∂ f
∂ϵ

v · eE (15.13)

where the second term vanishes as v × H is perpendicular to v. For the other terms:

∂g0

∂µ

∂µ

∂r
dr
dt

= − ∂ f
∂ϵ

∇µ · v (15.14)

∂g0

∂T
∂T
∂r

dr
dt

= − ∂ f
∂ϵ

(
ϵ − µ

T

)
∇T · v (15.15)

So therefore the non-equilibrium distribution function can be written as:

g(t) = g0(t) +
∫ t

−∞
dt′P(t, t′)

[
− ∂ f

∂ϵ
v ·
(
−eE −∇µ − ϵ − µ

T
∇T

)]
(15.16)

where P(t, t′) = e−(t−t′)/τ(ϵk) assuming τ = τ(ϵk).
Note that last lecture we wrote down a current as:

j = −e
∫

ϵ<ϵF

dk
4π3 v(k) (15.17)

with the equilibrium distribution (Fermi-Dirac distribution) we now generalize this to:

j = −e
∫ d3k

4π3 v(k) · g(k) (15.18)

where g(k) corresponds to some other, messier distribution.
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16 Semiclassical Theory of Conduction III

16.1 Solving for Non-Equilibrium Distribution

We have:

g(t) = g0(t) =
∫ t

−∞
dt′P(t, t′)

[(
− ∂ f

∂ϵ

)
v ·
(
−eE −∇µ − ϵ − µ

T
∇T

)]
(16.1)

P(t, t′) = exp(−
∫ t

t′

dt̄
τ(t̄)

) (16.2)

ṙ = v, h̄k̇ = −e
[

E +
1
c
(v × B)

]
(16.3)

But in this form solving for the non-equilibrium distribution is only possible numerically. However, there
are three simplifying assumptions that allow for us to get a closed form:

1. Weak E-field and ∇T. Usually this is a good approximation - most of the time it is impossible to
apply a sufficiently strong E field or a thermal gradient such that these terms matter significantly.

2. Spatially uniform E and ∇T. This again is a good approximation; E will likely be uniform on the
length-scale of electron collisions, as will thermal gradients. Under these assumptions, the energy
(which is the only place where t′ enters) only depends on the magnetic field - however the magnetic
field conservs energy, so t′ enters only in the first piece of the integral!

3. The relaxation time depends k only through ϵn(k). This is the energy-dependent relaxation approx-
imation. It is the hardest approximation to justify, and there isn’t a deep reason for it beyond making
the calculations simple. This implies that P(t, t′) = e−(t−t′)/τn(k).

With these assumptions, the non-equilibrium distribution takes the form (note: there is no more spatial
dependence/translationally invariant situation here!):

g(k, t) = g0(k) +
∫ t

−∞
dt′e−(t−t′)/τ(ϵ(k))

[(
− ∂ f

∂ϵ

)
v(k(t′)) · [−eE(t′)−∇µ(t′)− ϵ(k)− µ

T
∇T(t′)]

]

(16.4)

16.2 DC electrical conductivity

We consider B = 0,∇T = 0, E = E0n̂ ̸= 0. In this scenario, v is a constat, E is a constant, and so we can
take things out of the integral and perform the remaining integral, which is trivial:

g(k) = g0(k)− eE · v(k)τ(ϵ(k))
(
− ∂ f

∂ϵ

)
(16.5)

We can obtain the electrical current as:

j = −e
∫ d3k

4π3 v(k)g(k) = σ̂E (16.6)

Note the g0 term will give us no contribution as we have no current at equilibrium. σ̂ is the conductivity
tensor. This is the generalized Ohm’s law. We can get it by summing the per-band conductivity tensors
(here expressed in their Cartesian components):

σ̂ = ∑
n

σ̂(n), σ̂
(n)
µν = e2

∫ d3k
4π3 τn(ϵn(k))v

µ
n(k)vν

n(k)
(
− ∂ f

∂ϵ

)

ϵ=ϵn(k)
(16.7)
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Note that vn, ∂ f are relatively well-known but τ(ϵn(k)) is generally not. This is because relaxation can
come from many sources. It is hard to theoretically calculate.

Some remarks:

(i) Anisotropy - In general because σ̂ is a tensor, it is possible to have a scenario where j is not aligned
with E, which can occur when σ̂ has off-diagonal elements. However, one can show that for free
electrons, and for cubic crystals, σµν = σ0δµν by symmetry so j ∥ E. In less symmetric crystals (e.g.
orthorhombic) we an see that they are not parallel.

(ii) Filled bands do not contribute to σ̂ at T = 0. Obviously empty bands would contribute nothing, but
it is more surprising that a filled band does not contribute either. Formally, we can see it from the(
− ∂ f

∂ϵ

)

ϵ=ϵn(k)
- at T = 0 the fermi function is a step function, with the step at ϵF, so if we take

a derivative, it is just δ(ϵ − ϵF). But since we evaluate at ϵ = ϵn(k) a band energy, the derivative
must vanish. You will get to explore this in the HW, where you will study the conduction of a band
insulator at finite temperature.

(iii) Equivalence of electron and hole pictures. We consider a situation where the band structure looks as:

Now, consider:

v(ϵ)
(
− ∂ f

∂ϵ

)

ϵ=ϵn(k)
= −1

h̄
∂

∂k
f (ϵ(k)) (16.8)

so:

σ̂n = e2τ(ϵF)
∫ d3k

4π3
∂vn(k)

∂k
f (ϵ(k)) = e2τ(ϵF)

∫

occ. levels

d3k
4π3 M−1(k) (16.9)

where we have used an integration by parts to rewrite σ̂n, and are assuming that T = 0. Note that

M−1
µν (k) =

1
h̄2

∂2ϵ(k)
∂kµ∂kν

= 1
h̄

∂vµ(ϵ)

∂kν
. We can then write:

σ̂ = e2τ(ϵF)

[∫

all states
−
∫

empty states

]
(16.10)

But if we integrate over the entire Brioullin zone, then
∫ d3k

4π3 M−1(k) = 0 as we integrate over a
periodic function. The bottom line is:

σ̂ = −e2τ(ϵ f )
∫

empty states

d3k
4π3 M−1(k) (16.11)

which is the “hole picture”.

16.3 Thermal Conductivity

Everyone is familiar with electrical conductivity measurements. Thermal conductivity is similar; we apply
some thermal gradient to our material, and then measure the thermal current. There is some subtlety here;
not only does heat flow, but charge also flows - we produce both jq (heat current) but also j (electrical
current). Thermal conductivity is defined as the ratio of the heat current to the thermal gradient, under
the condition which no electrical current flows.

Heat current is also a bit subtle in its definition. It’s not a pure energy current, one also has to consider
entropy. We write down the two relations (from our course in thermodynamics) and draw analogies:

dQ = TdS ↔ jq = Tjs

TdS = dU − µdN ↔ Tjs = jϵ − µjn (16.12)
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so we suddenly have four currents to worry about. We do this because jϵ, jn are easy to calculate from our
semi-classical theory, but it is jq that we want. So, next we will calculate jϵ and jn, and use these relations
to reconstruct the electrical and heat current. We write:

(
jϵ

jn

)
= ∑

n

∫ d3 j
4π

(
ϵn(k)

1

)
vn(k)gn(k) (16.13)

The heat current is then:

jq = jϵ − µjn = ∑
n

∫ d3k
4π3 (ϵn(k)− µ)vn(k)gn(k) (16.14)

Now what we do is we take the non-equilibrium distribution function with all the simplifying assump-
tions, and stick it in. Now we have both potentially a nonzero electric field and thermal gradient. Once
again the contribution from the equilibrium piece will vanish. What we will get is the following:

j = L̂11ϵ + L̂12(−∇T)

jq = L̂21ϵ + L̂22(−∇T)
(16.15)

where ϵ = E + ∇µ
e . Note we have the obvious diagonal pieces (electric field contributes to electrical

current, thermal gradient contributes thermal gradient) but also off-diagonal; thermoelectric effects! E.g.
L̂21ϵ explains refrigerators, where we use electricity to remove heat. L̂12(−∇T) explains space probes,
which use heat from the sun to generate electricity. The theory we have developed allows us to calculate
these coefficients, and if we summarize how this looks:

L̂11 = L(0), L̂22 =
1

e2T
L(2), L̂21 = TL̂12 = −1

e
L(1) (16.16)

where:

L(α) = e2
∫ d3k

4π3

(
− ∂ f

∂ϵ

)
τ(ϵ(k))vµ(k)vν(k)[ϵ(k)− µ]α

=
∫

dϵ

(
− ∂ f

∂ϵ

)
(ϵ − µ)αΠ̂(ϵ)

where Π̂µν(ϵ) = e2τ(ϵ)
∫ d3k

4π3 δ(ϵ − ϵ(k))vµ(k)vν(k)

(16.17)

so therefore:

L̂11 = Π̂(ϵF) = σ̂

L̂21 = TL̂12 = −π2

3e
(kBT)2Π̂′

L̂22 =
π2

3
k2

BT
e2 σ̂

(16.18)

where Π′ =

(
∂Π̂(ϵ)

∂ϵ

)

ϵ=ϵF

. These formulas are valid at kBT ≪ ϵF (Sommerfield expansion). The diagonal

components are simple and relate to the electrical conductivity tensor. But there are off-diagonal effects
which underlie the thermoelectric properties of materials.

The last thing we will do is to extract the thermal conductivity - we want a situation where we apply a
thermal gradient, and there is zero electrical current (only a thermal current). To this end, we must apply
an electric field such that the electric field cancels out the thermoelectric term in j:

j = 0 =⇒ ϵ = −(L̂11)−1 L̂12(−∇T) (16.19)
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This then gives:
jq = K̂(−∇T) (16.20)

where:
K̂ = L̂22 − L̂21(L̂11)−1 L̂12 (16.21)

as expected, the dominant piece is L̂22, but there is a correction coming from the thermo-electric effects.

One can show that the thermoelectric piece is on the order of
(

kBT
ϵF

)2
which is small. So one finds that:

K̂ ≈ L̂22 + O

((
kBT
ϵF

)2
)

T→0−→ L̂22 (16.22)

so recalling L̂22, we find at low T in metals that:

K̂ =
π2

3

(
kB
e

)2
σ̂ (16.23)

which is known as the “Wiedemann-Franz”6 law. It is reproduced in experiment. It is related to the fact
that in some regimes, the heat is carried in electrons, which carry one unit of electric charge, and kBT
of energy. In the assigned homework, we will see that this is not true in a semiconductor - it is strongly
violated.

This concludes the semiclassical theory of conduction in metals. We will now switch gears and discuss
electron-phonon interactions next class.

6Unfortunately, no relation to Marcel as far as we know
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17 Electron-Phonon Interactions

We discussed tight-binding electrons which lead to bands, and lattice vibrations which lead to phonons -
but both happen at the same time, so we now ask how do these two interact/intertwine?

Despite a fairly simple Hamiltonian that describes this, it’s a surprisingly difficult problem, with un-
solved questions remaining to this day.

17.1 Deriving the Electron-Phonon Interaction Hamiltonian

We proceed by considering electrons moving in the ionic potential, but we will not assume the ions are
frozen in a perfectly periodic formation. We write:

H1 = ∑
k,k′ ,l

⟨k|U0(r − Rl − µl)|k′⟩c†
kck′ (17.1)

where U0 is a single-ion potential, Rl is the ion equilibrium position, and µl the ion displacement.
As usual, we work in a basis where |k⟩ ∼= 1√

V
eik·r. So we calculate the matrix element, which amounts

to fourier transforming the potential of these ions. What we get out is;

H1 = ∑
k,k′ ,l

ei(k′−k)·(Rl+µl)Vk−k′c†
kck′ (17.2)

Here, Vk is the FT of U0(r). We will now proceed to make the assumption that |µl | ≪ a and expand:

ei(k′−k)·µl ≈ 1 + i(k′ − k)µl = 1 +
i√
N
(k′ − k)∑

q
eiq·Rl µq (17.3)

We now substitute this back into the equation. The leading term (1) is just the Bloch Hamiltonian:

HBloch = ∑
k,k′

(
∑

l
ei(k−k′)·Rl

)
Vk−k′c†

kck′ = N ∑
k,G

VGc†
k+Gck (17.4)

this we already studied. Going to the next term, we get electron-phonon interaction:

He−p =
i√
N

∑
k,k′

(k′ − k)µk−k′Vk−k′c†
kck′ (17.5)

where we again have carried out the sum over lattice indices l. Now, let us express µq in terms of phonon
operators:

He−p = i ∑
k,k′ ,s

(
Nh̄

2Mωk−k′ ,s

)1/2

(k′ − k) · sVk−k′(a†
k′−k,s + ak−k′ ,s)c

†
kck′ (17.6)

Looking at the creation/annihilation operators, we can see that an electron with momentum k′ gets de-
stroyed and a new one with momentum k is created. In the process, a phonon with that difference is
either emitted or created. Diagramatically:

Also, look at (k′ − k) · s; this means that only longitudinal phonons are important. In a generic solid,
one cannot classify longitudinal/transverse phonons, but let us assume a sufficient amount of isotropy in
the solid such that this is possible.

In the following, we make two assumptions:

(i) We only have longitudinal phonons.

(ii) Neglect the effect of HBloch - study el-ph interactions in the limit of free-electrons.
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Figure 17.1: Feynman Diagrams for the processes in He−p.

We therefore have the full Hamiltonian:

H = ∑
k

ϵkc†
kck + ∑

q
ωqa†

qaq + ∑
k,q

Mq(a†
−q + aq)c†

k+qck (17.7)

where Mq = i
√

Nh̄
2Mωq

|q|Vq. The first term we can call H0 (this just describes “free” electrons and phonons)

and the second term we can call H′ (which describes the interactions). Even solving this simplified Hamil-
tonian we will find is nontrivial - the remainder of the lecture will be studying some of its consequences.

17.2 Kohn Anomaly and Peierls Instability

This describes the effect of the Fermi sea on phonons. The same Kohn who is responsible for DFT! We
consider a single phonon propagating in the presence of the Fermi sea. Assume a weak el-ph interaction,
and treat H′ as a perturbation.

Consider unperturbed eigenstates |ϕi⟩, that satisfy H0|ϕi⟩ = ϵi|ϕi⟩. Consider |ϕ1⟩ = |FS⟩a†
p|0⟩ where

|FS⟩ describes the fermi sea of electrons and a†
p|0⟩ describes a single-phonon state.

Now, let’s use second-order perturbation theory to calculate the perturbed energies.

E1 ≈ E(0)
1 + ⟨ϕ1|H′|ϕ1⟩+ ⟨ϕ1|H′(E(0)

1 − H0)
−1H′|ϕ1⟩ (17.8)

E(0)
1 = ϵ1 is just the unperturbed energy. ⟨ϕ1|H′|ϕ1⟩ = 0 as there is an odd number of phonon operators

in H′. Now, for the second order term - this might seem unfamiliar compared to what you are used to. If
you insert the completeness relation I = ∑i|ϕi⟩⟨ϕi| twice (next to the H′s) you will reproduce the usual
expression. Importantly, it is only at second order where one finds interesting physics.

So, let’s calculate this second order term:

E(2)
1 = ⟨ϕ1| ∑

k,q
Mq(a†

−q + aq)c†
k+qck(ϵ1 − H0)

−1 ∑
k′ ,q′

Mq′(a†
−q′ + aq′)c†

k′+q′ck′ |ϕ1⟩ (17.9)

we make our lives simpler by the following observation - if we anninilate a phonon then we must create
another, or if we create a phonon we must annihilate another. So, there are two possible pairings which
give a nonzero contribution, namely a†

−qaq′ and aqa†
−q′ .

It turns out these two pairings correspond to different processes. The first term will be important for
the question we are addressing at the moment - we put the other term on the backburner, as it explains
how phonons effect the behaviour of the electrons.

First of all, in the initial state we only have one phonon with momentum p, so for aq′ |ϕ1⟩ to not vanish
we require q′ = p, and further we have to recreate the same phonon, so q′ = p = −q. This reduces two of
the sums. We are then left with the k, k′ sums. By considering that the same electron must be destroyed
and recreated in the Fermi sea, we obtain k′ = k + q.
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The other thing to consider; (ϵ1 − H0)
−1 looks nasty, like the inverse of some operator. We will not be

taking the inverse of anything here; we just consider that H0 when acting on an eigenstate should yield
the correct energy, so we replace:

(ϵ1 − H0)
−1 → −(ϵk′+p − ϵk′ + h̄ωp)

−1 (17.10)

so then:

E(2)
1 = −∑

k
|Mp|2

⟨ϕ1|a†
pc†

k−pckc†
kck−pap

ϵk − ϵk−p + h̄ωp
= −∑

k
|Mp|2

⟨ϕ1|c†
k−pck−p(1 − c†

kck)a†
pap|ϕ1⟩

ϵk − ϵk−p + h̄ωp
(17.11)

so if we beautify our expression with k → k + p:

E(2)
1 = h̄δωp = −|Mp|2 ∑

k

nk(1 − nk+p)

ϵk+p − ϵk + h̄ωp
(17.12)

where we note the definition of the number operator, and that a†
pap = 1 as we have one phonon with

momentum p.

17.2.1 3 dimensions - Kohn Anomaly

In 3-dimensions, note that δωp is finite everywhere but has an infinite slope ∂ωp
∂p → ∞ as |p| → 2kF.

This is known as the Kohn Anomaly, and is often observed in metals (which have a Fermi momenta). This
is interesting - you can use this technique to map out the Fermi surface of the metal, if you are able to
measure the dispersion of a phonon in sufficient detail!
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Figure 17.2: Dispersion Relation for 3-D electron-phonon interaction Hamiltonian. The derivative of the
dispersion diverges at p = 2kF.

What’s the intuition behind this? Diagramatically, we have a electron-hole bubble:
and why does this give us the intuition for the anomaly? Intuitively, the Kohn anomaly can be inter-

preted as phonon spending some fraction of time as a electron-hole pair. Because vF ≫ vph, the phonon
speed of propagation increases dramatically. Why only near the fermi momentum? Kinetmatic constraints
- you need the correct amount of momentum to create an electron-hole pair. At precisely 2kF, the fraction
of time the phonon spends as an electron-hole pair approaches 100%. Note a more careful analysis of
the behaviour near 2kF would show that the derivative of the dispersion does not actually diverge but
approaches the fermi velocity, as we might expect.
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Figure 17.3: Feynman Diagram of Electron-Hole Bubble.

17.2.2 1 dimension - Peirels Instability

Assume |ωq| ≪ ϵk, ϵk+p. We then evaluate:

h̄δωp = −
∫ ∞

−∞
dk

nk(1 − nk−q)

ϵk−q − ϵk
(17.13)

but the integral vanishes everywhere where the product of nk, (1− nk−q) is not supported, i.e. everywhere
except [−kF,−kF + q] (see sketch below)
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Figure 17.4: Sketch of the support of nk, 1 − nk−q.

so:

h̄δωP = −
∫ −kF+q

−kF

dk
1

(k − q)2 − k2 =
1
2q

ln|q − 2k|
∣∣∣∣∣

q−kF

−kF

=
1
2q
(
ln|q − 2kF| − ln|q + 2kF|

)
(17.14)

and so we conclude:
δωq ∼ 1

2q
(
ln|q − 2kF| − ln|q + 2kF|

)
(17.15)
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Although we assume q > 0, the same occurs for q < 0, as the above is symmetric in the sign of q. But now
notice - this correction is divergent when q = ±2kF! This is a much stronger effect - in 3D the correction
was finite but the derivative diverged, but here the correction itself diverges.

i
i

iii

I q
Figure 17.5: Dispersion Relation for 1-D electron-phonon interaction Hamiltonian. Naive analysis has the
dispersion (blue) diverging at q = 2kF but otherwise similar to the original dispersion (red), but a more
careful analysis shows that the dispersion goes to zero at 2kF instead (purple).

Note: A more careful treatement where we do not neglect h̄ωq in the denominator shows that ωq → 0
as q → 2kF (rather than diverging). This leads to “Bose Condensation” of phonons at q = ±2kF - there
is always a macroscopic number of phonons at this frequency, as there is no energy cost to be at that
frequency. Physically, what does this mean? This corresponds to a static distortion of the lattice (we see a
spontaneous change in the geometry), known as the Peierls instability. Next time we look at the canonical
example of this, which is polyacetate - it undergoes a dimerization transition which can be observed as
this instability.

17.3 Polyacetylene - A Classic Peierls Example

Last time we saw the effect of electron-phonon interactions in 1D, resulting in Peierls instability. The
canonical example of this phenomenon is in polyacetylene, which is a carbon polymer with 1 hydrogen
atom per site.
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Figure 17.6: Symbolic depiction of the polyacetylene molecule.

Explaining the chemistry: there are 4 valence electrons, 3 are hybridized (s, px, py) and form bonds and
do not contribute to conduction. One is in the pz orbital (which sticks out of the plane) and this is the one
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electron that contributes to the conduction band.
So, we have the contribution of one electron per carbon atom, and therefore a simple prediction from a

tight-binding model gives the dispersion: which seems to suggest that the molecule should be a conductor!
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Figure 17.7: Dispersion relation for the polyacetylene molecule as predicted by the tight-binding molecule.
This suggests the molecule is a conductor, but in fact it is insulating.

But when one prepares these molecules experimentally, we find that these molecules are insulating. We
can understand this by studying the effects of electron-phonon interaction. Here we have k f =

π
2a and so

2kF = π
a , i.e. at the edge of the Bruillion zone we see ωq goes to zero.
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Figure 17.8: The electron-phonon interactions lead to the phonon dispersion going to zero at the edge of
the Bruillion zone.
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Now, since µq(r) ∼ eirq = rila π
a = eilπ = ±1, we will find that the Peierls instability results in a static

distortion where odd sites get shifted to the left and even sites get shifted to the right - which results in a
dimerized chain, with the bond lengths alternating:
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Figure 17.9: The phonon-electron interactions lead to a static deformation of the 1-D chain, leading to
dimerization.

This is “dimerized polyacetylene”. Computing the band structure for this, we find:
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Figure 17.10: Dispersion relation for the dimerized polyacetylene chain.

where we have an insulator (the lower band is totally filled, and the upper band totally empty) and we
have a “dimerization gap”.

17.4 Polarons and Mass Enhancement

Now, we ask how electron-phonon coupling affects the electron band structure. We saw an extreme
example of this above in 1-D, but let us see how the (weaker) effect manifests in 3-D. This can also be
understood based on the Frolich Hamiltonian which we derived last time, and follows from the second
term in Eq. (17.9).

The contraction of this term yields:

E(2)
0 = − ∑

k,q
|Mq|2

⟨ϕ0|aqc†
kck−qa†

qc†
k−qck|ϕ0⟩

ϵk − ϵk−q − h̄ωq
(17.16)

Diagramatically, the above process can be visualized as:
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Figure 17.11: Feynman diagram for the process depicted in Eq. (17.16).

Note that Eq. (17.16) is called the electron “self-energy” due to phonons7. We calculate this expression
exactly as we did before, and obtain:

E(2)
0 = ∑

k,q
|Mq|2

nk(1 − nk−q)

ϵk − ϵk−q − h̄ωq
(17.17)

How do we analyze this expression? The effective single electron Hamiltonian reads:

He = ∑
k
(ϵk + δϵk)c†

kck = ∑
k
(ϵk + δϵk)nk (17.18)

Now, its clear that the correction δϵk can be obtained by taking the derivative of the correction w.r.t nk:

δϵk =
∂E(2)

0
∂nk

= ∑
q
|Mq|2

(
1 − nk−q

ϵk − ϵk−q − h̄ωq
− nk+q

ϵk+q − ϵk − h̄ωq

)

= ∑
q
|Mq|2

(
1

ϵk − ϵk−q − h̄ωq
− 2h̄ωqnk−q

(ϵk − ϵk−q)2 − (h̄ωq)2

) (17.19)

Note that the second term comes about because the fixed k we take the derivative with respect to coincides
with the k in the sum.

The first term represents a correction independent of nk, and would be present even in an insulating
crystal. It changes the effective mass of the electron near k = 0. We say that the electron is “dressed” with
a cloud of phonons and becomes the so called “polaron”. In some crystals, this enhancement can be very
large - factor of 10, for example (corresponds to a large number of phonons attached to the electrons).

The second term leads to a velocity change near the Fermi level:

h̄vk =
∂(ϵk + δϵk)

∂k
=

∂ϵk
∂k


1 +

d
dϵk

∑
q
|Mq|2

2h̄ωqnk−q

(ϵk − ϵk−q)2 − (h̄ωq)2


 ≈ h̄v0

k(1 − α) (17.20)

with α > 0. The final approximation we make by expanding around kF. Again we have a “mass enhance-
ment” as we have a lower velocity. Diagramatically, we can interpret this as the electron spends time as a
slower electron + phonon before recombining, hence travels at a reduced speed. The dispersion looks like:

where we see near the Fermi surface that the velocity is reduced, attributed to the electron being slowed
down by the phonon cloud.

Higher order terms have multiple phonons splitting off from the electron and recombining - but these
much look much more complicated.

7There is an anlogous process in quantum electrodynamics, with an electron emitting a photon and absorbing it back.
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Figure 17.12: Sketch of the dispersion relation for the electrons - the phonons dress the electrons, enhanc-
ing their mass and changing the curvature of the dispersion as a result.
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Figure 17.13: Dispersion relation for the mass-enhanced electrons. At kF there is a small effect from the
phonons, slowing them down and leading to a wiggle in the dispersion there.

92



18 Phonon-Mediated Attraction Between Electrons

We’ve looked at some effects of electron-phonon interaction, but we have saved the most spectacular
for last - that is superconductivity. Phonons can create attractive interactions between electrons, which
can give rise to superconductivity - an interesting historical note is that this phenomenon was known
experimentally for many decades before a good theory to describe it was discovered!

Recall the electron-electron interaction (photon exchange) in quantum electrodynamics - this leads to
Coloumb repulsion. Analogously, we have an exchange of phonons between electrons in solids. However,
this can give rise to attractive interactions - why? Photons travel at c ≫ vel , but phonons travel at the
speed of sound cs ≪ vel ; it is a matter of relative velocities.

18.1 Canonical Transformations

We sketch a derivation of this based on the Frolich Hamiltonian. Our goal is to show that some attractive
interaction is possible - we will not analyze this in great detail however. We are doing this primarily to
introduce a new, very useful technique - known as canonical transformations. We write:

H = H0 + H′ = ∑
k

ϵkc†
kck + ∑

q
ωqa†

qaq + M ∑
k,q

c†
k+qck(a†

−q + aq). (18.1)

From this we want to derive an effective “electron-only” Hamiltonian He f f . Diagramatically, the process
we consider is:
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Figure 18.1: Feynman diagram for the electronic interaction via phonon exchange (left). Via a canonical
transformation, we will recast this interaction into one that does not contain phonons (just electrons
interacting - right).

where we want to ignore the phonons and just consider an interaction between electrons (analogous
to QED where one ignores the photon field). This is where canonical transformations will come in handy.
We consider:

H = H0 + λH′

where λ is some parameter. We transform it to:

H → H̃ = e−S HeS = H + [H, S] +
1
2
[[H, S], S] + . . . (18.2)

usually in the literature, S is anti-hermitian (hence the is that you might expect are not written) but keep in
mind that the above is a unitary transform. We have then expanded it using the Baker-Campbell-Hausdorf
formula.
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Now, we find an operator S such that H̃ is independent of λ to linear order. It may not be immediately
obvious why this achieves what we want, but it will.

We then have:
H̃ = H0 + λH′ + [H0, S] + λ[H′, S] + . . . (18.3)

We assume that S must be linear in λ. So, λH′ + [H0, S] is linear in λ and we demand it vanishes (λ[H′, S]
is quadratic in λ, and so on for higher order terms)

We therefore find S such that:
[H0, S] = −λH′ (18.4)

In some cases, if the operators are sufficiently simple one can find this directly. But there exists a way to
find S for an arbitrary situation - we proceed as follows. We adopt a basis H0|ϕm⟩ = ϵm|ϕm⟩. We then take
matrix elements of both sides of the equation using these eigenstates:

⟨ϕn|(H0S − SH0)|ϕm⟩ = −λ⟨ϕn|H′|ϕm⟩

Now, the trick is to act H0 on the right and H0 on the left, yielding the energy:

(ϵn − ϵm)⟨ϕn|S|ϕm⟩ = −λ⟨ϕn|H′|ϕm⟩

So dividing by the energies, we can obtain arbitrary matrix elements of S (note: it might seem like we run
into trouble with this if we look at diagonal matrix elements - however we get around this by absorbing
any diagonal perturbations into H0, so the diagonal terms of H′ are zero)! I.e. we have the solution:

⟨ϕn|S|ϕm⟩ = λ
⟨ϕn|H|ϕm⟩

ϵm − ϵn
(18.5)

Finally, we have:

H̃ = H0 + λ[H′, S] +
1
2
[[H0, S], S] +

λ

2
[[H′, S], S]

By assumption [H0, S] = −λH′, so λ[H′, S] + 1
2 [[H0, S], S] = O(λ2). But, λ

2 [[H
′, S], S] + . . . O(λ3). And so

the result after combining everything is:

H̃ = H0 +
1
2

λ[H′, S] + O(λ3). (18.6)

which achieves what we set out to do - we have found S such that the transformed Hamiltonian is to
leading order independent of λ! Next class, we apply this technique to the Frolich Hamiltonian. And
when we evalute the [H′, S] term, we will see that it has no phonons, and corresponds to an attractive
interaction.

18.2 Applying Canonical Transformations to the Frolich Hamiltonian

We consider T = 0, i.e. there are no thermal phonons.
As basis states, we take eigenstates of the phonon Hamiltonian Hϕ

0 = ∑q ωqa†
qaq. Only two eigenstates

here will be of consequence, namely |0⟩ (no phonons) and |q⟩ (one phonon of momenta q) - note that
higher phonon states do not contribute as starting from the ground state we are not able to excite to a
state with more than one phonon. We use (18.5) to calculate:

⟨q|S|0⟩ = M ∑
k,p

⟨q|c†
k+pck(a†

−p + ap)|0⟩
ϵk − ϵk+p − ωq

= M ∑
k

c†
k−qck

ϵk − ϵk−q − ωq
(18.7)
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where in the last equality we use that the matrix element vanishes unless p = −q. Analogously, we can
obtain:

⟨0|S|q⟩ = M∗ ∑
k

c†
k+qck

ϵk − ϵk+q + ωq
(18.8)

So we can therefore find the leading ∼ λ2 correction in H̃:

⟨0|[H′, S]|0⟩ = ⟨0|H′S|0⟩ − ⟨0|SH′|0⟩
= ∑

q

(
⟨0|H′|q⟩⟨q|S|0⟩ − ⟨0|S|q⟩⟨q|H′|0⟩

)

= |M|2 ∑
q,k,k′

c†
k′+qck′c†

k−qck

(
1

ϵk − ϵk−q − ωq
− 1

ϵk′ − ϵk′+q + ωq

) (18.9)

where in the second equality we have inserted the resolution of the identity, and in the third equality we
evalute the matrix elements. We have “integrated out the phonons” in this way. Now, in the last term let
us rename k ↔ k′, reverse q → −q and so:

⟨0|[H′, S]|0⟩ = |M|2 ∑
q,k,k′

ωq

(ϵk − ϵk−q)2 − ω2
q

c†
k′+qck′c†

k−qck (18.10)

which (looking at the first term) can be negative! So, we conclude that the phonon-mediated interaction
is attractive whenever this occurs, i.e.:

|ϵk − ϵk−q| < ωq =⇒ h̄2

2m
|2k · q − q2| < cs|q| (18.11)

where in the last implication we put in the dispersion relation for free electrons ϵk = h̄2k2

2m , and the
dispersion relation for acoustic phonons (linear). This occurs whenever |k| ≈ kF and q ≈ 2k.
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Figure 18.2: Electrons at different poles of the Fermi sphere feel an attractive interaction, due to phonons.

I.e. whenever two electrons are on opposite sides of the Fermi surface, their interaction will be attrac-
tive. And this we will see leads to superconductivity!

18.3 A physical picture for attractive electrons

We consider an ionic lattice. The electrons exert an attractive force on the ions in the lattice. But the
electron moves very quickly. Another electron then would see the increased positive charge density due to
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the ions - the second electron then feels attraction to this increased positive charge density. The important
thing in the language that we use is that this is a retarded attraction - which is to say that the second
electron is attracted to the previous position of the first electron. This is good, because when the second
electron feels the attraction, the first electron is already faraway - so the Coloumb interaction does not
matter in this consideration. So, even though this phonon mediated attraction is fairly weak compared
to Coloumb, it can often win out - and this is all because of the relative velocities of the players in the
interaction.

if
Ky

Yielded

Figure 18.3: Cartoon sketch of the electron-electron attraction mechanism. Electron 1 attracts the positively
charged ions in the lattice, and then quickly moves elsewhere in the lattice, creating an area of high positive
charge density. Electron 2 is then attracted to the area that electron 1 once was.
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19 Superconductivity

19.1 Phenomenology and Historical Background

We will not provide a large background of the phenomenology of superconductivity - the first 2-3 pages
of any textbook section about it will explain it in depth. We just give a couple points and then explain the
Cooper problem which is the microscopic foundations for the effect.

• In 1911, Kamerlingh-Onnes discovered that the low-temperature (< 4K) resistance of mercury goes
to zero. Actually, his assistant discovered this and called Onnes at a conference, who doubted the
result initially. The big contribution of Onnes was actually how to liquify Helium, as this is what
was necessary to cool things down to low T8.

• Meissner and Dehsenfield found that B = 0 (expels magnetic fields) for superconductors - this in
some sense is more fundamental of a property, because a perfect metal (with no impurities) would
have no resistance at T = 0, but such a perfect metal would not have this expelling of magnetic fields
property.

• Flux quantization. This says that if we take a piece of superconductor, make a hole in it, and measure
the magnetic flux through the hole, we would find that Φ = nΦ0 where Φ0 is the superconducting
flux quantum Φ0 = hc

2e .
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Figure 19.1: If we open a hole in a superconductor, the magnetic flux is quantized with Φ = nΦ0.

How do we understand this effect? Note the theoryof superconductivity was developed in 1956, so it
took almost 50 years from the discovery of the phenomenon before we got an explantory theory.

Note in 2011 (the 100 year anniversary of SC) a book was published with many famous papers (both
theory and experiment), entertainingly many theory papers which were absolutely wrong.

19.2 Cooper Instability

Cooper instability9 is where for arbitrarily weak attractive interactions, electrons in a Fermi sea are unsta-
ble to formation of pairs, or electron-electron bound states. These are what are known as Cooper pairs.
Superconductivity can be thought of as the condensation of e-e pairs, which act as bosons. Unlike Helium
atoms which are charge neutral, cooper pairs carry a charge and therefore can carry current. The first clue
to this is the 2e (rather than e) appearing in the superconducting flux quantum.

To discuss this problem, we consider T = 0 and consider the filled Fermi sphere.

8Onnes had a streak of cooling many things with liquid Helium... like frogs, though nothing interesting happens to them at 4K -
they just die. Fortunately mercury is more interesting

9An interesting sociological point - when Cooper came up with this, he was actually a graduate student. He got a Nobel prize a
few years later, but unfortunately didn’t come up with anything else notable after this (though the other two awardees did).
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Cooper considered two electrons that are slightly above the Fermi sphere, and considered the Hamil-
tonian of these two electrons:

H =
p2

1
2m

+
p2

2
2m

+ V(r1 − r2) (19.1)

we assume that the total momentum of the two is zero, so k1 + k2 = 0. Further we assume that the
electrons are in the spin singlet state (total spin is 0).
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Figure 19.2: Setup of Cooper instability - We consider two electrons with total momentum zero, in a spin
singlet state, sitting slightly above the Fermi sea.

Under these assumptions, one is able to solve this problem. We make an ansatz:

ψ(r1, r2) = ∑
|k|>kF

gkeik·r1 e−ik·r2
|↑↓⟩ − |↓↑⟩√

2
(19.2)

Fermi statistics implies that gk = g−k. Because the spin part is already anti-symmetric, under interchange
the g part must be symmetric so under the interchange we have a net negative sign. From this, we can
conclude that the wavefunction is only a function of the difference of the two coordinates:

ψ(r1 − r2) = ∑
|k|>kF

gk cos(k · (r1 − r2))
|↑↓⟩ − |↓↑⟩√

2

Now, we look for gk by solving the Schrodinger equation with this Hamiltonian:

Hψ0 = Eψ0

What we get out is:
(E − 2ϵk)gk = ∑

|k′ |>kF

Vkk′ gk′ (19.3)

where ϵk = h̄2k2

2m , and:

Vk,k′ =
1
Ω

∫
d3rV(r)ei(k′−k)·r (19.4)

now we make a Cooper ansatz for this interaction. If we take a generic interaction (such as that we found
from the el-ph interaction) we cannot solve this analytically. However, with the ansatz:

Vkk′ =

{
−V |ϵk − ϵF|, |ϵk′ − ϵF| < h̄ωc

0 otherwise
(19.5)
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With this ansatz:

(E − 2ϵk) = −V
′

∑
k′

gk′

where the ′ on the summation denotes the restriction of beign sufficiently close to the Fermi energy. From
this we obtain:

gk = V
∑′

k′ gk′

2ϵk − E

and so:
1
V

=
′

∑
k

1
2ϵk − E

(19.6)

we now solve for the energy eigenvalue E - we obtain this by going to the continuum approximation and
replacing sum with integral:

1
V

=
∫ ϵF+h̄ωc

ϵF

dϵN(ϵ)
1

2ϵ − E
= N(ϵF)

∫ ϵF+h̄ωc

ϵF

dϵ
1

2ϵ − E
=

1
2

N(ϵF) ln
(

1 +
2h̄ωc

2ϵF − E

)
(19.7)

And we obtain the algebraic equation for E:

1 +
2h̄ωc

2ϵF − E
= e2/VN(ϵF) (19.8)

If we make the weak coupling assumption of VN(ϵF) ≪ 1, then the argument of the exponential becomes
very large. Therefore we obtain the condition that ϵF ≈ E. In this limit we can neglect the +1 on the LHS
and solve for E to be:

E ≈ 2ϵF − 2h̄ωce
− 2

VN(ϵF) (19.9)

Normally, we would expect that E > 2ϵF as the electrons should be above the Fermi surface (the Fermi
sphere being full)! But with the attractive interaction, we find a state that has smaller energy than that -
the attractive interaction lowers the energy. E < 2ϵF, meaning we have a bound state. Another point is
that it exists at arbitrarily small V > 0. A final point - the expression is not analytic in V. This implies that
Cooper instability is a non-perturbative phenomena. This is an important insight, and may explain why
it took so long to formulate this theory - perturbative approaches to probe superconductivity are destined
to fail, as e−

1
V has no taylor expansion about V = 0- there is an essential singularity at V = 0.

Now the important thing to ask - what happens when we try to describe all the electrons? It is quite
contrived to have a problem of a full Fermi sea and two extra electrons. However, it will nevertheless lead
to the whole BCS theory of superconductivity. To this endWe discuss the 1956 result of Bardeen, Cooper
and Schrieffer, who answered the question - what happens to many (as opposed to one) electrons in the
presence of attractive interaction?

Today, we go through a historical account of the story. Schrieffer wrote down the wavefunction via
intuitition, and then it was shown that this had minimal energy. This is a bit unwieldy and complex, but
still interesting. On Wednesday, we discuss the more modern approach to SCs, which also will be more
applicable to finite temperature (vs. today’s lecture’s result, which is only applicable at T = 0).

19.3 BCS Ground State Wavefunction

We write:

|ψG⟩ = ∏
k

(
uk + vkc†

k↑c†
−k↓

)
|0⟩

|uk|2 + |vk|2 = 1.
(19.10)
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and then solve the variational problem where µk, vk are the variational parameters. We will find that
the minimum energy variational state will have lower energy than if we just put all the electrons in the
lowest energy states. Note the condition on uk, vk follows from normalization. We can interpret |vk|2 as
the probability that the pair (k ↑,−k ↓) is occupied.

An immediate possible objection - |ψG⟩ is a superposition of states with different electron numbers.
There are famous physicists who to this day do not accept the wavefunction. To clarify this point, we can
write:

|ψG⟩ = ∑
N

λN |ψN⟩

where |ψN⟩ is a state with a definite number N of electrons. Bardeen would answer to this objection - this
is true, but λN is very sharply peaked around N = N̄. This is a simple calculation:

N̄ = ⟨ψG|N̂|ψG⟩ = ∑
k

2|vk|2 ∼ Ω (19.11)

the last expression follows from the fact that |vk| are constants of order one, so taking ∑k → Ω
∫

d3k, we
se that the sum scales with volume. Similarly, we can calculate:

〈
(N̂ − N̄)2

〉
= 4 ∑

k
|uk|2|vk|2 ∼ Ω

Therefore:

δN
N̄

=

√
(N̂ − N̄)2

N̄
∼

√
Ω

Ω
∼ 1√

Ω
∼ 1√

N̄
(19.12)

Now, since N̄ ∼ 1022, δN ∼
√

N̄ ∼ 1011 so the distribution P(λN) is sharply peaked:
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Figure 19.3: Plot of P(ΛN) as a function of the electron number N. The distribution is sharply peaked
around N̄.

So, the BCS wavefunction describes a state with the number of electrons extremely sharply peaked
around N̄. Note we could calcualte the distribution in principle by expanding out the product and then
evaluating the products of uks and vks.

19.4 Calculation of uk, vk

We consider the Pairing Hamiltonian, or the BCS Hamiltonian as it is known today. Writing it down, we
have:

Ĥ − µN̂ = ∑
kσ

(ϵk − µ)c†
kσckσ + ∑

kl
Vklc†

k↑c†
−klc−l↓cl↑ (19.13)
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The first term is the kinetic energy, the second is the interaction. Where does this come from? We recall
the general form of the two body interaction is:

∑
kpqσσ′

Vqc†
k−qσc†

p+qσ′cpσ′ckσ

And then motivated by our discussion last class of two electrons on opposite sides of the Fermi sphere
having attractive interaction, we enforce p = −k and k + q = l. This yields the interaction term in the
BCS Hamiltonian.
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Figure 19.4: We restrict the sum of interactions to be electrons at opposing points above the Fermi sphere.

We now calculate the ground state energy:

ES = ⟨ψG|Ĥ − µN̂|ψG⟩ (19.14)

This is another simple, if lengthy calculation:

ES = 2 ∑
k

ξk|vk|2 + ∑
k,l

Vklukv∗ku∗
l vl (19.15)

where ξk = ϵk − µ. We minimize this with respect to uk, vk. Let as assume that uk, vk ∈ R (relaxing
this assumption does not result in immediately significant changes). An immediate simplification is that
uk, vk are not independent via the normalization condition in Eq. (19.10). So, let us parameterize:

uk = sin(θk), vk = cos(θk) (19.16)

which immediately enforces that the sum of their squares is one.

Es = 2 ∑
k

ξk cos2(θk) + ∑
k,l

Vkl cos(θk) sin(θk) cos(θl) sin(θl)

= ∑
k

ξk(1 + cos 2θk) +
1
4 ∑

kl
Vkl sin 2θk sin 2θl

(19.17)

Now we minimize (for a given k)

0 =
∂ES
∂θk

= −2ξk sin 2θk + ∑
l

Vkl cos 2θk sin 2θl

=⇒ tan 2θk =
∑l Vkl sin 2θl

2ξk

(19.18)
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Now, let us define:

∆k = −∑
l

Vklulvl = −1
2 ∑

l
Vkl sin 2θl

Ek =
√

ξ2
k + ∆2

k

(19.19)

So with this, we have:

tan 2θk = −∆kl
ξk

Now, writing:

2ukvk = sin 2θk =
1√

1 + tan−2 2θk
=

∆k
Ek

v2
k − u2

k = cos 2θk =
−1√

2 + tan2 2θk
= − ηk

Ek

(19.20)

We can now solve:

v2
k =

1
2

(
1 − ξk

Ek

)

u2
k =

1
2

(
1 +

ξk
Ek

) (19.21)

The last step is to calculate ∆k (from its definition) so we can make sense of Ek. We find:

∆k = −1
2 ∑

l

∆l
El

Vkl = −1
2 ∑

l

∆l√
ξ2

l + ∆2
l

Vkl (19.22)

this is now a self-consistent equation for ∆. To solve, we use Cooper’s Ansatz:

Vkl =

{
−V if |ξk|, |ξl| ≤ h̄ωc

0 otherwise
(19.23)

So then:

∆k =

{
∆ when |ξk| ≤ h̄ωc

0 otherwise
(19.24)

And so we obtain the equation:

∆ =
1
2

V
′

∑
l

∆√
∆2 + ξ2

l

(19.25)

the trivial solution is ∆ = 0. If ∆ ̸= 0, then we can divide out by ∆ on both sides, and obtain:

2
V

=
′

∑
l

1√
∆2 + ξ2

l

=
∫ h̄ωc

−h̄ωc
dξ

N(ξ)√
ξ2 + ∆2

≈ N(0)
∫ h̄ωc

−h̄ωc

dξ√
ξ2 + ∆2

= 2N(0) arcsinh(
h̄ωc

∆
)

Inverting this to find ∆, we find:

∆ =
h̄ωc

sinh(1/VN(0))
2h̄ωCe−1/VN(0) ≈ (19.26)
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this starts to look like the Cooper problem. At weak coupling of VN(0) ≪ 1, the argument of sinh is large
and we can approximate it as an exponential, giving the last expression.

A few remarks on the physics behind this. This is a non-perturbative result, like Cooper instability. If
you expand in powers of V, the expansion will fail as there is an essential singularity at V = 0. We also
note that a non-trivial solution exists for any V attractive. So, the state exists self-consistently!

Let us now plot v2
k given this result.

i

E Ex M
Figure 19.5: Plot of v2

k vs ξk, with the T = 0 Fermi function plotted for comparison.

When ∆ ̸= 0, we have a “paired state”, different from the filled Fermi sphere.

19.5 BCS Condensation Energy

Finally, we show that this paired state has lower energy than the Fermi sphere:

Es = ⟨ψG|Ĥ − µN̂|ψG⟩

= ∑
k

(
ξk − ξ2

k
Ek

)
− ∆2

V
(19.27)

compare this with the Fermi sphere energy:

En = ⟨ψG|Ĥ − µN̂|ψG⟩∆=0 = 2 ∑
|k|<kF

ξk

and so:

δE = Es − En = −1
2

N(0)∆2 (19.28)

note the minus sign - the condensation energy is negative δE ≤ 0, anytime ∆ is nonzero. This implies that
|ΨG⟩ is a stable state. It has energy lower than the Fermi sphere.

If you read the original BCS paper, they go onto discuss the physical implications of this. But unfor-
tunately because the calculation was at zero temperature, the calculations are lengthy and roundabout.
Instead, next time we show the modern treatment of this problem via a standard mean-field theory, and
do a finite temperature calculation. From those results we will be able to readily evaluate the properties
of a superconducting state.
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20 Superconductivity - The Bogoliubov-de-Gennes Formalism

Last time, we looked at the historic approach the BCS theory. Today we basically do the same thing, but
using a modern formalism. It is faster, more elegant, and lets us calculate things with less effort. This is
not too surprising - the beginning of a theory is always the most difficult. Eventually, others come up with
more efficient and useful formulations/extensions. In the formalism we discuss today, we can consider
superconductivity at finite temperature (vs. last lecture whose results were only applicable at T = 0).

20.1 The Bogoliubov-de-Gennes Hamiltonian

The BDG approach seeks to solve the BCS pairing Hamiltonian:

H = ∑
k,σ

ξkc†
σkcσk + ∑

kl
Vklc†

k↑c†
−k↓c−l↓cl↑ (20.1)

via a mean-field decoupling. We take the interaction term and write it in the mean-field approximation:

c†
k↑c†

−k↓c−l↓cl↑ → c†
k↑c†

−k↓
〈

c−l↓cl↑
〉
+
〈

c†
k↑c†

−k↓
〉

c−l↓cl↑ − ⟨. . .⟩ (. . .). (20.2)

Sometimes this is called “Hartree-Fock in the pairing channel”. Normally we pair c†s with cs, but in the
superconductiviy problem we pair c†s together and cs together. If we recall the form of the BCS ground
state, there is a c†c† arising so we expect nonzero expectation value even when taking expectation values
of operators of the same type. In this approximation, Eq. (20.1) can be approximated as:

HBdG = ∑
kσ

ξkc†
kσckσ + ∑

k

(
∆kc†

k↑c†
−k↓ + h.c.

)
+ ∑

k
∆k

〈
c†

k↑c†
−k↓

〉
(20.3)

where:
∆k = ∑

l
Vkl

〈
c−l↓cl↑

〉
(20.4)

is the “pairing field”. We can now diagonalize this using a canonical/unitary transformation.
Customarily, one defines a Nambu spinor:

ψk =

(
ck↑

c†
−k↓

)
(20.5)

Which allows one to write HBdG in the compact form:

HBdG = ∑
k

ψ†
k

(
ξk ∆k
∆∗

k −ξk

)
ψk + E0

where E0 = ∑
k

ξk − ∑
k

∆k

〈
c†

k↑c†
−k↓

〉 (20.6)

where the ∑k ξk comes from the anticommutation relations which generates a constant. The 2x2 matrix

hk =

(
ξk ∆k
∆∗

k −ξk

)
has eigenvalues ±Ek with:

Ek =
√

ξ2
k + |∆k|2 (20.7)

In the diagonal basis, we find the BdG Hamiltonian Eq. (20.6) becomes:

HBdG = ∑
k

Ek

(
γ†

k1
γk1 − γ†

k2
γk2

)
+ E0 (20.8)
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Here, γkα are the BdG quasiparticle operators (still fermions!) related to ckσ via a unitary transformation
(that diagonalizes the Hamiltonian):

(
γk1
γk2

)
= Uk

(
ck↑

c†
−k↓

)
.

An interesting connection with our previous discussion of BCS theory. If we look at Uk:

Uk =

(
uk v∗k
vk −u∗

k

)

where uk, vk were the coefficients appearing in the BCS ground state wavefunction we obtained last class.

20.2 Bogoliubov-de-Gennes Ground State and Excitations

By definition, Ek is positive. So it is very easy to create a ground state. If there were any γk1 particles in
the ground state, this would cost energy (note the plus sign); conversely, γk2 particles take away energy
(note the minus sign). So, the ground state would have no γk1 particles and all γk2 particles.

We therefore write:
|ΨG⟩ = ∏

k
γ†

k2|0⟩ (20.9)

and it can be shown that this is equivalent to the BCS ground state.
The new contribution of this formalism is the ability to discuss excitations above the ground state. Ex-

citations/increasing energy would involve either adding a γk1 particle or removing a γk2 particle, each of
which costs energy. This implies an interpretation of Ek as the excitation spectrum of the superconductor.
This is nice because we are now able to discuss thermodynamic quantities and transport properties (the
BCS approach only gives us the ground state). One last note - whenever we have a property such that
mink|∆k| > 0, the excitation spectrum is gapped - namely it costs finite energy to produce the excitation.

And this can be see from the form Ek =
√

ξ2
k + |∆k|2 - ξk = ϵk − µ can vanish at the Fermi surface, but if

mink|∆k| > 0 then Ek > 0 for all k. Note that this property is true for most, but not all superconductors.
In fact, superconductors which have gapped excitations are considered to be conventional superconduc-
tors. However, there are examples (e.g. high Tc cuprates) where this does not hold. As a result, ∆k is often
called the superconducting gap function.

20.3 Temperature Dependence of Superconductors

We defined ∆k(T), but we still must calculate it. This will allow us to obtain the critical temperature (and
later, specific heat) of the superconductor. It can be determined by minimizing the system free energy -
which we recall to be F = − 1

β ln Z from statistical mechanics, with Z the partition function. The general
expression for Z is:

Z = ∑
{n}

e−βE{n}

where E {n} = ∑
k

Ek(nk1 − nk2) + E0

(20.10)
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(which can be read off directly from the Hamiltonian) and nkα = 0, 1. From this, we are able to calcualte
the partition function:

Z = ∑
nk1,nk2

e−β ∑k Eknk1 eβ ∑k Eknk2 e−βE0

= e−βE0 ∏
k

(
1 + e−βEk

) (
1 + eβEk

)

= e−βE0 ∏
k

(
e

1
2 βEk + e−

1
2 βEk

)2

= e−βE0 ∏
k
(2 cosh

1
2

βEk)
2

(20.11)

Now, we take a logarithm (and divide by −β) to get the free energy:

F = E0 −
1
β ∑

k
2 ln(2 cosh

1
2

βEk) (20.12)

Where we recall that Ek =
√

ξ2
k + ∆2

k and E0 = ∑k ξk − ∑k ∆k

〈
c†

k↑c†
−k↓

〉
. We again adopt the Cooper

ansatz for Vkl, which implies:

∆k =





∆ = −V ∑′
l

〈
c−l↓cl↑

〉
|ξk| < h̄ωc

0 otherwise

and this has the convenient implication:

E0 = ∑
k

ξk +
1
V

∆2 (20.13)

so now we are able to minimize F with respect to ∆:

0 =
∂F
∂∆

=
2
V

∆ − 2 ∑
k

∂Ek
∂∆

tanh
1
2

βEk,
∂Ek
∂∆

=
∆
Ek

(20.14)

Finally, we get what is known as the BCS gap equation at non-zero T:

∆
V

=
1
2

′
∑
k

∆
Ek

tanh
1
2

βEk (20.15)

which self-consistently determines ∆ as a function of temperature. Let’s analyze this - we can learn
something interesting from it.

At T = 0 β = ∞ and so tanh 1
2 βEk = 1. So we then obtain:

∆
V

=
1
2

′
∑
k

∆
Ek

we already solved this on Monday to obtain:

∆ ≈ 2h̄ωce−1/N(0)V (20.16)

so we reproduce the zero-temperature result. At a generic nonzero temperature, Eq. (20.15) is a transcen-
dental equation that must be solved via numerical iteration (i.e. start with some value for ∆0, compute the
new value by evaluating the sum to get ∆1, and iterate until convergence). One obtains:
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Figure 20.1: Plot of the superconducting gap function ∆(T) as a function of temperature. ∆ acts as an
order parameter, where it is positive in the superconducting phase and zero outside of it. ∆ goes to 0 at
the critical temperature Tc, where the phase transition (denoted by the red arrow) occurs.

and we find that near the phase transition:

∆(T)
∆(0)

≈ 1.74
(

1 − T
Tc

)1/2
(20.17)

with Tc the critical temperature. Note mean-field theory provides us the critical exponent of 1/2. However
it is of course worth noting that these critical exponents are universal information (determined, e.g. by the
symmetries of the Hamiltonian and dimensionality), and they are often of interest to study and determine
in CM research. ∆ acts as an order parameter for this phase transition, where ∆(T) = 0 for T ≥ Tc and
∆(T) > 0 for T < Tc.

20.4 Determining the Critical Temperature

As ∆(T) → 0, we replace in Eq. (20.15) Ek → |ξk| and solve:

1
V

=
1
2

′
∑
k

1
ξk

tanh
1
2

βξk

= N(0)
∫ h̄ωc

0
dξ

1
ξ

tanh
1
2

βξ

= N(0) ln(
2γ

π
βh̄ωc)

(20.18)

where γ is the Euler constant, and 2γ
π ≈ 1.13. The critical temperature is then obtained as:

kBTC =
1

βC
= 1.13h̄ωce−1/N(0)V (20.19)

What is usually done is to find the BCS universal ratio (dividing by (20.16)):

∆(0)
kBTc

=
2

1.13
= 1.76 (20.20)

Both ∆(0) and Tc are measurable. One finds experimental values of ∆(0)/kBTc to range between 1.5-2.3
in most conventional superconductors, in agreement with the theoretical prediction. There are of course
unconventional superconductors like high-Tc cuprates where the value can differ quite significantly (3-4).
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20.5 Specific Heat of Superconductors

The specific heat of electrons in a superconductor is most easily obtained from entropy, using the thermo-
dynamic identity:

Cls = T
dSls
dT

= −β
∂Sls
∂β

(20.21)

where Sls denotes the entropy of the Fermion gas in Eq. (20.8), which is:

Sls = −2kB ∑
k

[
(1 − nk) ln(1 − nk) + nk ln nk

]
(20.22)

Which we now evaluate:

Cls = 2βkB ∑
k

∂nk
∂β

ln
nk

1 − nk

= −2β2kB ∑
k

Ek
∂nk
∂β

= −2β2kB ∑
k

Ek
dnk

d(βEk)
(Ek + β

dEk
dβ

)

= 2βkB ∑
k

(
− ∂nk

∂Ek

)(
E2

k +
1
2

β
d∆2

dβ

)

(20.23)
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Figure 20.2: Plot of the heat capacity of a superconductor Cls as a function of temperature (red), compared
with a normal metal Cln (blue, linear in T). There is exponential activation at low T (like an insulator), and
then the heat capacity steeply rises, before dropping down at Tc and increasing linearly in T thereafter
(where we have now left the superconducting phase, and the material acts like a regular metal).

Note the exponential activation at low temperatures. Also, note the superconductor phase transition
at Tc is marked by a jump ∆C in C, which is characterized by the universal ratio:

∆C
Cln(Tc)

≈ 1.43 (20.24)
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which is in agreement with experimental measurements.
If we had more time, we could calculate many other things from this theory - the zero-resistivity,

the Meissner effect (expelling of magnetic fields, which exponentially decay in the superconductor, with
characteristic London scale λ).

Figure 20.3: Cartoon of how the magnetic fields in a superconductor drops off exponentially inside of it,
with characteristic London scale λ.
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