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Abstract

Vibrational analysis was carried out on 6 different species of wood, Quercus alba,
Acer macrophyllum, Pinus monticola, Pseudotsuga menziesii, Thuja plicata, and
Picea engelmanni. Resonant frequencies of the (1,1) and (2,0) modes of vibra-
tion were analyzed with Audacity, and modulus of elasticity was determined
via beam approximation. Quality factor of oscillations of the (2,0) mode and
Acoustic Conversion Efficiency of each specimen were determined. Out of the
tested specimens, Pseudotsuga menziesii was found to have the highest Acoustic
Conversion Efficiency, possibly due to having the most consistent wood grain.
A new unified model was derived to approximate resonant frequencies of the
(2,0) mode for rectangular plates by combining past models for square plates
and bars.
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1 Introduction

When selecting wood for instrument construction, specific species have tradi-
tionally been favoured. In violin soundboards, generally only 3 species of Picea
genus woods are used [1], due to their superior sound transmission. The im-
portant physical characteristics that determine this are the Young’s modulus of
Elasticity and Internal Friction.

Young’s modulus is a mechanical property of material that is defined as the
ratio of stress and strain along an axis. It can be measured via mechanical
tensile or bending testing, or determined through vibrational analysis.

Internal friction describes the friction between particles as the wave propa-
gates through the material. It can be determined through the ”Quality Factor”,
which describes the energy loss (dampening) of a material while it oscillates. A
higher value indicates lower energy loss.

When combined with specific gravity, a value calculated by dividing wood
density by the density of water, an index known as Acoustic Conversion Effi-
ciency (ACE) can be calculated. This ratio indicates the ability of a material to
convert the energy provided to it into vibrations, creating sound. High values
indicate effective sound conversion, and indicates suitability of a species of wood
for use in soundboards [1].

These values vary widely among species and have been found in large part
to be determined by the cell walls of a type of wood, in specific the microfibril
angle of the cell walls [1]. This is the angle between the microfibrils of the
secondary cell wall and the long axis of the cell, and it correlates strongly with
overall stiffness of the wood [2]. The straightness of the grain also determines
which vibration modes dominate, and thus the efficiency of the vibration.

To calculate many of these values the resonant frequency of different vi-
brational modes are measured. In this experiment, a free-free system, which
allows the edges of the plate to oscillate, was studied with regard to rectangular
wooden plates.

However, when looking at the vibration of wooden rectangular plates in a
free-free system an interesting problem arises. The differential equation that
describes the oscillations of a wooden rectangular plate requires boundary con-
ditions in order to solve for the specific coefficients of the system. In the case
of supported or clamped edges, the sides are held and so the boundary condi-
tion for all modes is the lack of movement at the edges. However, for free-free
systems the entire system is allowed to vibrate freely. Nodal areas do exist, how-
ever they change location for each mode. Thus, there are no constant boundary
conditions which the equation can be solved with. Instead, complex numerical
approximations (Rayleigh Ritz Equation), or approximations based on similar
shapes such as square plates or bars (for which solutions exist) can be used [3].

The aim of this experiment was to use frequency analysis to determine which
of the tested species was most suitable for soundboard use, as well as to find a
simple model to predict the frequency of the samples.
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2 Methods

A dried sample of each of the tested wood species was cut into 10 pieces of di-
mensions of 15 cm by 9 cm by 1.9 cm. The tested species of wood were Quercus
alba (White oak), Acer macrophyllum (Bigleaf maple), Pinus monticola (West-
ern white pine), Pseudotsuga menziesii (Douglas fir), Thuja plicata (Western
red cedar), and Picea engelmannii (Engelmann spruce). Notable, samples of
all wood types excepting that of Pseudotsuga menziesii had inconsistencies in
wood grain to varying degrees. Measurements of length, width, thickness and
mass of each piece were taken with a Mastercraft caliper and an O’Haus balance.
Values were averaged from 5 repeated measurements.

Preliminary frequency analysis of each wood piece was conducted using the
waterfall function of iSpectrum software. The sample was held at a node of the
target moded while the sample was tapped along its length and width. iSpec-
trum’s Fast Fourier Transform (FFT) algorithm converted input audio into a
frequency graph with sound intensity of particular frequency shown by density
of coloured pixels. With continuous tapping, bands of pixels were created at the
resonant frequencies. By taking note of where certain frequency bands disap-
peared, the nodal lines and corresponding vibrational modes could be identified.
The modes identified for the majority of the pieces were the (1,1) torsional mode,
which has one nodal line in each axis, and the (2,0) longitudinal mode [4], which
has two nodal lines perpendicular to the length.

Figure 1: Measured vibrational modes of the wood samples. (1,1) mode pic-
tured on left, (2,0) mode pictured on right. Lines represent nodes, and circled
represent areaas of high oscillation tapped for the frequency measurements.

Once the approximate frequency of a mode was identified, the exact fre-
quency measurement was performed using Audacity. The wood sample was held
at the node and tapped in several areas, as demonstrated in Figure 1 above.
The sound was recorded with a studio-quality microphone with flat frequency
response, at a sample rate of 44100 kHz. Using Audacity’s FFT algorithm, an
intensity vs. frequency plot was created for each tap andd the peak closest
to the approximated frequency was found and recorded. A sample frequency
plot is shown in Figure 2 below. 20 taps were analyzed, and the average of
the recorded frequencies was taken as the resonant frequency for that mode of
vibration. This was repeated for each sample, and the mean of the 10 samples
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was taken as the resonant frequency for that species of wood.
Bandwidth ∆f of the (2,0) resonant frequency peaks were determined by

measuring the width of the resonant peak 3dB below the maximum via pixel
counting, where one pixel corresponded to 16.7Hz of width on the display used.
Measurements of bandwidth were averaged from 10 taps per sample.

Figure 2: Sample Audacity frequency spectrum plot of one tap on /textitPinus
monticola. The resonant frequency here can be determined to be 3543 Hz.

Figure 3: Peak zoom of the frequency plot in Figure 3. By counting the pixels
of the width of the peak 3dB from the maximum, the bandwidth ∆f can be
determined.

Standard error propagation methods were used to determine error in calcu-
lated values.
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3 Introduction of applied formulae

3.1 Elastic moduli and acoustic conversion efficiency

In their 2016 paper, Hamdam et al. [5] used the following equation to determine
the Young’s modulus of a vibrating free-free rectangular beam:

Ed =
4π2f20L

4
xAp

Im4
n

. (1)

Here, f0 is the resonant frequency of the mode, Lx is the beam length, A
is the cross-sectional area of the beam, p is the beam density, mn is a constant
associated with modal number, where m1 = 4.7300 [6], and I is the second
moment of areaa of a rectangle of width Ly and thickness h.

I =
Lyh

12
. (2)

An observation can be made that the first mode of a vibrating free-free beam
has nodal lines identical to the (2, 0) mode of a rectangular plate, as shown in
Figure 4. indicating that the mode of vibration is similar in nature.

Figure 4: Mode shape analysis of a free-free beam. Nodal lines are present at
approximately 20% of the length from either end of the beam. Figure taken
without permission from [7].

In this paper, this comparison was used to approximate the Young’s modulus
of elasticity of the rectangular wood plate sampled using resonant frequencies
of the (2,0) mode with equation (1), with n=1.

The quality factor Q of the resonance can be determined with:

Q =
f0
∆f

(3)
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Where f0 is the resonant frequency, and ∆f is the bandwidth of the peak
3dB below the maximum.

The internal friction tan(δ) of wood can be calculated with the equation:

tan δ = tan(π
√

3
f0
∆f

) (4)

Which can be combined with equation (3) to be written as:

tan δ = tan(π
√

3Q−1) (5)

The specific gravity γ of an object is defined to be its density divided by the
density of the water, where pwater = 997kg/m3:

γ =
pwood

pwater
=

pwood

997kg/m3
(6)

Equations (1), (5), and (6) can be combined to obtain a ratio known as
acoustic conversion efficiency. Different sources in the literature use slight vari-
ations of the derivation of this quantity. In this study, the formula by Hamdam
et al. [5] was used:

ACE =

√
Ed/γ

γ tan δ
(7)

Higher values of ACE correspond to a better efficiency at converting vibra-
tions into sound. Larger values of Young’s modulus, smaller values for specific
gravity, and smaller values of internal friction correspond to greater ACE [5].

3.2 Modelling resonant frequencies

Unfortunately, no analytical solution to the differential equation that governs
plate oscillation for rectangular plates with free-free boundary conditions can be
derived. However, solutions can be found in the limit of certain plate geometries;
namely, square plates and bars. The relations used in this paper are those
discussed in Principles of Vibration and Sound [4].

The resonant frequency of the (1,1) mode of a square plate is given by:

f1,1(square) ≈
h
√
cxcy

LyLx

√
1−√vxyvyx

2
. (8)

And the frequency of the nth mode of a free-free vibrating bar is given by:

fn(bar) =
0.113h

L2
x

√
cxcy[(3.0112)2, 52, . . . , (2n+ 1)2]. (9)

Where cx and cy are defined as:

cx =

√
Ex

p(1− vxyvyx)
(10)
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cy =

√
Ey

p(1− vxyvyx)
(11)

Where Lx is the length of the bar, Ly is the width, h is the thickness, Ex and
Ey are the Elastic moduli in the longitudinal and radial directions, and vxyvyx
is the product of the longitudinal-radial and radial-longitudinal Poisson’s ratios
of stress and strain.

The resonant frequencies of the other modes of vibration of square plates
can be determined by multiplying Equation (8) by given ratios. For the (2,0)
mode of vibration, the ratio is 1.94, giving us:

f2,0(square) = 1.94 ∗ f1,1(square) ≈ 1.94
h
√
cxcy

LyLx

√
1−√vxyvyx

2
. (12)

Numerical values for Ex,Ey, vxy, and vyx were obtained from the Wood
Handbook [8]. We used the values for Young’s modulus of wood of 12% moisture
content, as this provided the closest moisture content to our samples.

As the rectangular plates used in this study were geometrically a combination
of a beam and a square plate, it is therefore expected that a combination of the
models would be the most effective. Therefore, in this study it is proposed that
the resonant frequency of a plate can be approximated via an average of the two
pre-existing models, which will be henceforth called the averaged prism model:

f2,0(prism) =
f1(bar) + f2,0(square)

2
. (13)

Although errors in measurements of mass and dimensions are present in the
approximations given by Equations (8), (9), (11) and (12), such errors are many
orders of magnitude below the possible variations in the elasticity moduli of the
wood pieces. Hence, such errors are considered negligible. The literature values
of elasticity moduli given in the Wood Handbook [8] that are used in the approx-
imations are stated to have a 22% coeficcient of variation (standard deviation
divided by the mean). Thus, standard deviation of the approximated frequen-
cies haave been assumed to arise solely out of this variation in elastic moduli
(where one σ is 22% times the mean elastic moduli), and smaller measurement
errors have been discarded with regards to the frequency model.
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4 Discussion of results

4.1 Frequency and frequency modelling

Figure 5: Average resonant frequencies of the (1,1) mode of varying wood species
in comparison to the square plate approximation values. Experimental data fre-
quencies were averaged from N=10 pieces per species, excepting Thuja plicata,
which was averaged from N=6 pieces. Error bars on experimental data represent
standard error of the mean. The square plate approximation values were cal-
culated using values of elastic modulus and Poisson’s ratios given in the Wood
Handbook [8], experimentally measured values for dimensions and mass, and
equation (8). Error bars on the approximation represent upper and lower bounds
of approximated frequency, which were derived by reapplying equation (8) to the
mean literature Young’s modulus value plus or minus one σ.

Analysis of the (1,1) torsional mode of vibration provided no clear rela-
tionship between frequency and any other measured values such as density. A
notable observation is that the error of the mean of Pseudotsuga menziesii is
much smaller in comparison to that of other species, indicating the consistency
of grain results in a much narrower distribution of resonant frequency values in
a given set of wood pieces.

When compared with the experimental data, the (1,1) resonant frequency
values given by the square plate approximation consistently overestimate the
frequency, with no overlap of error bars. Different wood species have different
degrees of overestimation.
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When considering the (2,0) mode of vibration, two approximations can be
applied - the second mode of vibration of a square plate, and the first mode of
vibration of a bar. The nodal lines of both of these are similar to those in a
rectangular plate vibrating in the (2,0) mode, as seen in Figure 6 although in
rectangular wooden plates the nodal lines are curved whereas in square plates
and bars the nodal lines are straight.

Figure 6: Visual comparison of (2,0) vibrational bar of rectangular plate (left)
and square plate (center) with first mode of vibration of a bar (right).

When the resonant frequency is calculated, the square plate approxima-
tion consistently overestimates whereas the bar equation consistently underesti-
mates. The proposed averaged prism model utilizes this to predict the value of
the experimental data well. It should be noted that this averaged prism model
can only be applied to vibrational mode of plates of (n,0), where n > 2 n ∈ N.
Only for modes of vibration of the plates where the modes are similar with
modes of vibrating bars would this model be able to be hypothetically applied.
Any modes of vibration (n,m) of the plate where m > 0 m ∈ N would not have
a corresponding vibrational mode in a beam, and thus the model is limited to
a subset of plate vibrational modes.
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Figure 7: Average Resonant Frequencies of the (2,0) Mode of varying wood
species in comparison to the square plate, thin beam, and averaged prism ap-
proximation values. Experimental frequencies were averaged from N=8 pieces
for Pinus monticola, N=9 pieces for Picea engelmannii, and N=10 pieces for all
other species. Error bars on experimental data represent standard error of the
mean. The approximation values were calculated using values of Elastic modulus
and Poisson’s ratios given in the Wood Handbook [8], experimentally measured
values for dimensions and mass, and equations (8), (9), and (10). Error bars
on the approximation represent upper and lower bounds of approximated fre-
quency, which were derived by reapplying equations (8), (9), and (10) to the
mean literature Young’s modulus value plus or minus one σ.

The averaged prism model was found to be an accurate model for four of the
five species tested. For Quercus alba, Pinus monticola, Pseudotsuga menziesii,
and Picea engelmannii the experimental resonant frequency falls within the
error bars of the model. There is a significant degree of variation within the
Young’s Modulus in a species, and thus the model can be considered a sufficient
approximation for the species so long as the experimental values falls within one
standard deviation of the model.

The sole species for which the averaged prism model was not effective was
Acer macrophyllum, whose data is approximated best by the square plate ap-
proximation. A discussion of this discrepancy will be provided later in the
paper.

Overall, the averaged prism model was found to be most accurate. This
aligns with the geometry of our rectangular plates, which are geometrically
in-between squares and bars. It can be hypothesized that for plates of other
dimensions a weighted mean of the two approximations could be used, though
the investigation of this lies beyond the scope of this study.
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4.2 Young’s modulus and acoustic conversion efficiency

Figure 8: Computed Young’s Moduli of various wood species. The calculated
values are the mean of each sample (N=8 for Pinus monticola, N=9 for Picea
engelmannii, and N=10 for all other species), where the Young’s modulus of
each piece was approximated using Equation (1). Error bars on calculated values
represent standard error of the mean. Calculated values are compared with the
literature values of 12% MC wood in the Wood Handbook [8]. Error bars on the
Literature Values represent 2 standard deviations based off the 22% coefficient
of variation.

When looking at the experimental Young’s Modulus values, the beam ap-
proximation (1) gives values of elasticity modulus that generally agree with the
Wood Handbook [8]. Mean elastic modulus for the samples of Quercus Alba,
Pseudotsuga menziesii, and Picea engelmannii fall within one σ of the mean lit-
erature value, and mean elastic modulus of the samples of Pinus monticola fall
within two σ of the literature value. Interestingly, much like with the averaged
prism model, the exception is Acer macrophyllum, for which the mean elastic
modulus of the samples does not fall within two σ of the literature value.
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Figure 9: Mean Quality factor of various species of wood. The Quality Factor of
each sample was calculated using Equation (3), and the mean of each species was
then taken (N=8 for Pinus monticola, N=9 for Picea engelmannii, and N=10
for all other species). The error bars represent standard error of the mean.

When comparing the mean quality factors of the tested wood species, all fall
into a range of 45 to 70. The mean of Pseudotsuga heterophylla is noticeably
higher, indicating that it oscillates with the least energy loss. Pinus monticola
has both the lowest value, as well as the largest standard error.
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Figure 10: Mean acoustic conversion efficiency factor of various species of wood.
The ACE of each sample was calculated using Equation (7), and the mean of
each species was then calculated (N=8 for Pinus monticola, N=9 for Picea en-
gelmannii, and N=10 for all other species). The error bars represent standard
error of the mean.

The acoustic conversion efficiency of the tested species was overall similar,
with the exception of the noticeably higher Pseudotsuga menziesii. A one-
way ANOVA statistical test yielded a p < 0.000001, suggesting one (or more)
treatments was statistically significantly different. A post-hoc Tukey’s HSD
test yielded p < 0.01 for comparisons of Pseudotsuga menziesii with all other
varieties, and p > 0.01 (ranging from 0.64 to 0.89) for all other comparisons,
indicating that there is a statistically significant difference between Pseudotsuga
menziesii and other varieties, but not between other varieties.

A relationship of interest is the correlation between consistent wood grain
and high acoustic conversion efficiency. Although it is possible that Pseudot-
suga menziesii has a higher acoustic conversion efficiency relative to the tested
wood types, another possible explanation of the results is that wood plates with
consistent grain have higher efficiency compared to plates that have inconsistent
grain or imperfections in the grain.
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5 Discussion of errors

The most apparent error, both in the approximation of Young’s modulus of Elas-
ticity and in the model for approximating the (2,0) mode resonant frequency was
the discrepancies with regard to Acer macrophyllum. A comparison of specific
gravity measured from the samples (using equation (6)) with those found for
the species in the Wood Handbook shows a possible reason for the discrepancy:

Figure 11: Experimental and literature values of specific gravity of the tested
wood species. Experimental values are in blue, and represent the mean specific
gravity of the ten samples. Error bars on experimental values represent stan-
dard error of the mean. Orange dots represent the specific gravity values for
12% moisture content wood given in the Wood Handbook [8]. Error bars on
the literature values represent two standard deviations, calculated from the 10%
coefficient of variation of specific gravity.

The above results show that the specific gravity values of the samples of
Quercus alba, Pinus monticola, Pseudotsuga menziesii, and Thuja plicata are
in agreement with the literature values. It is noticeable that the specific grav-
ity value for Picea engelmannii is greater than the mean literature value by
approximately 0.13, and the value for Acer macrophyllum is greater than the
literature value by approximately 0.28. This would imply that the density of
the experimental samples of these two wood species is greater than that of the
density of literature values, especially with regards to A. macrophyllum.

In consideration of the dependence of Young’s modulus and frequency on
density and specific gravity (with regard to equations (1), (9), (11), and (12))
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it is entirely possible that this difference from literature and experimentally
measured density of A. macrophyllum leads to the discrepancy. A significantly
higher density would result in Young’s modulus and frequency values that are
higher than those the literature values used. This larger density value could
be explained by the samples being drier than the literature moisture content of
12%, or on misidentification of the wood species, though the latter case is quite
unlikely.

Being unable to measure the exact moisture content of the samples, another
source of error arises from comparing the experimental values to literature values
for 12% moisture content wood. The samples used had a possible range of
moisture content from 6-12% depending on the extent of kiln drying. This
could possibly have an affect on the ability to accurately compare literature and
experimental values.

Measurement errors in weighing, measuring dimensions, and measuring res-
onant frequencies were also present to a degree. These were minimized by
repeating measurements multiple times.

Other experimental errors arise from assumptions made in applying math-
ematical equations. Equation (1) normally is applied to wooden beams, and
although its application returns elasticity moduli that agree with the literature
value, there are factors of plate vibration that are unaccounted for. Thus the
equation can give an estimate but not an exact value. Equations (9) and (10)
also also assume objects of a beam-like or square like nature, and perfectly con-
sistent wood grain. Imperfections in the wood are not accounted for and thus
error could have been produced to varying degrees depending on the sample.
The variance in wood grain consistency between the different specimens is also
an experimental error. It is an uncontrolled factor between the species, and due
to this factor, it cannot be definitely concluded whether trends in the data are
due to material differences in species or differences in wood grain consistency.
However, correlations can still be observed.
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6 Conclusion

When predicting resonant frequency values for modes higher than (n,0) (where
n > 2 n ∈ N) in a free-free rectangular wooden plate, an average of the bar
and square plate approximations was most accurate in predicting experimen-
tal values. Although more complex numerical approximations for frequencies
of plate vibrations exist, for this subset of vibrational modes this derived sim-
ple approximation provided a very good estimate for the dimensions of plates
studied.

Out of tested species, Pseudotsuga menziesii had the highest mean ACE
value, near double of all of the others, and thus is the most efficient at convert-
ing energy into sound. This would indicate that out of the tested specimens, the
P. menziesii boards were the best suited for usage as soundboards in musical
instruments. However, it is unclear whether the higher relative ACE value of
P. menziesii is a result of the characteristics of it as a species, or simply a con-
sequence of its more consistent wood grain relative to the rest of the specimens.
One possible interpretation of the data is that it provides numerical support for
the inviability of inconsistent-grain wood for usage in musical instruments, as
all specimens with inconsistent wood grain demonstrated lower values of ACE.
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8 Appendix - Supplemental graphs

Graphs of the data and model values of the (2,0) resonant frequencies of indi-
vidual pieces are given below.

Figure 12: Resonant Frequencies of the (2,0) mode of Quercus alba. Mean reso-
nant frequency was determined by averaging frequency values from 20 taps. Ex-
perimental data is plotted as diamonds, and model values are plotted as circles.
Error bars on the data represent standard error of the mean, but are too small to
be visible (Error < 10 Hz). Approximations were calculated using values of Elas-
tic modulus and Poisson’s ratios given in the Wood Handbook [8], experimentally
measured values for dimensions and mass, and equations (9) and (11). Error
bars on the approximation represent upper and lower bounds of approximated
frequency, which were derived by reapplying equation (8) to the mean literature
Young’s modulus value plus or minus one standard deviation. Averaged prism
model values were determined by averaging the two approximations.
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Figure 13: Resonant Frequencies of the (2,0) mode of Acer macrophyllum. Mean
resonant frequency was determined by averaging frequency values from 20 taps.
Experimental data is plotted as diamonds, and model values are plotted as cir-
cles. Error bars on the data represent standard error of the mean, but are too
small to be visible (Error < 10 Hz). Approximations were calculated using val-
ues of Elastic modulus and Poisson’s ratios given in the Wood Handbook [8],
experimentally measured values for dimensions and mass, and equations (9)
and (11). Error bars on the approximation represent upper and lower bounds
of approximated frequency, which were derived by reapplying equation (8) to the
mean literature Young’s modulus value plus or minus one standard deviation.
Averaged prism model values were determined by averaging the two approxima-
tions.
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Figure 14: Resonant Frequencies of the (2,0) mode of Pinus monticola. Mean
resonant frequency was determined by averaging frequency values from 20 taps.
Experimental data is plotted as diamonds, and model values are plotted as cir-
cles. Error bars on the data represent standard error of the mean, but are too
small to be visible (Error < 10 Hz). Approximations were calculated using val-
ues of Elastic modulus and Poisson’s ratios given in the Wood Handbook [8],
experimentally measured values for dimensions and mass, and equations (9)
and (11). Error bars on the approximation represent upper and lower bounds
of approximated frequency, which were derived by reapplying equation (8) to the
mean literature Young’s modulus value plus or minus one standard deviation.
Averaged prism model values were determined by averaging the two approxima-
tions.
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Figure 15: Resonant Frequencies of the (2,0) mode of Pseudotsuga menziesii.
Mean resonant frequency was determined by averaging frequency values from 20
taps. Experimental data is plotted as diamonds, and model values are plotted
as circles. Error bars on the data represent standard error of the mean, but are
too small to be visible (Error < 10 Hz). Approximations were calculated us-
ing values of Elastic modulus and Poisson’s ratios given in the Wood Handbook
[8], experimentally measured values for dimensions and mass, and equations (9)
and (11). Error bars on the approximation represent upper and lower bounds
of approximated frequency, which were derived by reapplying equation (8) to the
mean literature Young’s modulus value plus or minus one standard deviation.
Averaged prism model values were determined by averaging the two approxima-
tions.
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Figure 16: Resonant Frequencies of the (2,0) mode of Picea engelmanni. Mean
resonant frequency was determined by averaging frequency values from 20 taps.
Experimental data is plotted as diamonds, and model values are plotted as cir-
cles. Error bars on the data represent standard error of the mean, but are too
small to be visible (Error < 10 Hz). Approximations were calculated using val-
ues of Elastic modulus and Poisson’s ratios given in the Wood Handbook [8],
experimentally measured values for dimensions and mass, and equations (9)
and (11). Error bars on the approximation represent upper and lower bounds
of approximated frequency, which were derived by reapplying equation (8) to the
mean literature Young’s modulus value plus or minus one standard deviation.
Averaged prism model values were determined by averaging the two approxima-
tions.
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