A BEGINNER'S GUIDE TO MAJORANA FERMIONS PHYS 366 Final Presentation

RIO WEIL

DEPARTMENT OF PHYSICS, UNIVERSITY OF CHICAGO

March 11, 2025

- 1. Historical background from particle physics
- 2. Majorana Fermions in Condensed Matter Systems
- 3. Quantum Computing with Majoranas
- 4. Experimental realization attempts

TEORIA SIMMETRICA DELL'ELETTRONE E DEL POSITRONE

Nota di Ettore Majorana

Sunto. - Si dimostra la possibilità di pervenire a una piena simmetrizzazione formale della teoria quantistica dell'elettrone e del positrone facendo uso di un nuovo processo di quantizzazione. Il significato delle equazioni di DIRAC ne risulta alquanto modificato e non vi è più luogo a parlare di stati di energia negativa; nè a presumere per ogni altro tipo di particelle, particolarmente neutre, l'esistenza di « antiparticelle » corrispondenti ai « nuoti » di energia negativa.

Solutions to the Dirac equation:

$$(i\gamma^{\mu}\partial_{\mu} - m)\Psi = 0 \tag{1}$$

Take the form:

$$\Psi(x) = \underbrace{\sum_{E>0} a_E e^{-iEt} \Phi_E(x)}_{\text{particles}} + \underbrace{\sum_{E<0} b^{\dagger}_{-E} e^{-iEt} \Phi_E(x)}_{\text{anti-particles}}$$

Charge conjugation symmetry:

$$\Phi_{-E}(x) = \Phi^c(x) = C\Phi^*(x) \tag{3}$$

Enforcing $\Psi^{c}(x) = \Psi(x)$ (reality) - Majorana fermion! - with $b_{E} = a_{E}$.

(2)

MAJORANAS IN NATURE?

 $\nu = \bar{\nu}$? Active research question.

MEAN-FIELD HAMILTONIAN OF SUPERCONDUCTOR

Minimal model:

$$H = \int d^{d}r [\underbrace{h_{0}^{\sigma\sigma'}(\mathbf{r})c_{\sigma\mathbf{r}}^{\dagger}c_{\sigma'\mathbf{r}}}_{\text{kinetic}} \underbrace{-Vn_{\uparrow\mathbf{r}}n_{\downarrow\mathbf{r}}}_{\text{attraction}}] \tag{4}$$

Self-consistent mean-field decoupling:

$$-n_{\uparrow}n_{\downarrow} \approx \langle c_{\uparrow}^{\dagger}c_{\downarrow}^{\dagger}\rangle c_{\uparrow}c_{\downarrow} + c_{\uparrow}^{\dagger}c_{\downarrow}^{\dagger}\langle c_{\uparrow}c_{\downarrow}\rangle - \langle c_{\uparrow}^{\dagger}c_{\downarrow}^{\dagger}\rangle\langle c_{\uparrow}c_{\downarrow}\rangle \tag{5}$$

to get:

$$H_{\rm BdG} = \int d^d r \left[h_0^{\sigma\sigma'}(\mathbf{r}) c^{\dagger}_{\sigma\mathbf{r}} c_{\sigma'\mathbf{r}} + (\Delta(\mathbf{r}) c^{\dagger}_{\uparrow\mathbf{r}} c^{\dagger}_{\downarrow\mathbf{r}} + h.c.) \right] - \frac{1}{V} |\Delta(\mathbf{r})|^2 \tag{6}$$

with (spatially varying) SC order parameter:

$$\Delta(\mathbf{r}) = V \langle c_{\uparrow \mathbf{r}} c_{\downarrow \mathbf{r}} \rangle \tag{7}$$

Defining Nambu spinor and *h*:

$$\Psi_{\mathbf{r}} = \begin{pmatrix} c_{\uparrow \mathbf{r}} \\ c_{\downarrow \mathbf{r}} \\ c_{\downarrow \mathbf{r}}^{\dagger} \\ -c_{\uparrow \mathbf{r}}^{\dagger} \end{pmatrix} = \begin{pmatrix} \psi_{\mathbf{r}} \\ i\sigma^{y}\psi_{\mathbf{r}}^{*} \end{pmatrix}, \quad h_{\mathsf{BdG}}(\mathbf{r}) = \begin{pmatrix} h_{0}(\mathbf{r}) & \Delta(\mathbf{r}) \\ \Delta^{*}(\mathbf{r}) & -\sigma^{y}h_{0}^{*}(\mathbf{r})\sigma^{y} \end{pmatrix}$$
(8)

we get:

$$H_{\rm BdG} = \int d^d r \left[\Psi_{\mathbf{r}}^{\dagger} h_{\rm BdG}(\mathbf{r}) \Psi_{\mathbf{r}} - \frac{1}{V} |\Delta(\mathbf{r})|^2 \right]$$
(9)

with Majorana(!!) fermion:

$$C\Psi_{\mathbf{r}}^* \coloneqq \tau^y \sigma^y \Psi_{\mathbf{r}}^* = \Psi_{\mathbf{r}}$$
(10)

So superconductors admit natural description in terms of Majoranas. Also....

- $\Delta L = 2$ and $c^{\dagger}c^{\dagger}$ operators
- *C*-symmetry \approx screening/confining \mathbf{E}/\mathbf{H} -fields
- **B**ogoliobov transformations \approx Majorana transformations

6

LOOKING CLOSER - MAJORANA FERMIONS AS "HALF" OF ELECTRONS

Fermions/electrons with (anti)-canonical commutation relations:

$$\{c_i^{\dagger}, c_j^{\dagger}\} = \{c_i, c_j\} = 0, \quad \{c_i^{\dagger}, c_j\} = \delta_{ij}$$
(11)

Majorana operators:

$$\gamma_{2j-1} = c_j^{\dagger} + c_j, \quad \gamma_{2j} = i(c_j^{\dagger} - c_j)$$
 (12)

with algebra:

$$\{\gamma_i, \gamma_j\} = 2\delta_{ij}, \quad \left|\gamma_i^{\dagger} = \gamma_i\right| \tag{13}$$

If γ obeys:

$$[H,\gamma] = 0 \tag{14}$$

 γ s have zero energy:

$$H|E\rangle = E|E\rangle \implies H(i\gamma_1\gamma_2|E\rangle) = (i\gamma_1\gamma_2)H|E\rangle = E(i\gamma_1\gamma_2|E\rangle)$$
(15)

(Note, more physically):

$$[H,\gamma] \sim e^{-x/\xi} \tag{16}$$

Concrete Model: *L* spinless(!) fermions in 1-D:

$$H = \sum_{j} \left[-\underbrace{t(c_{j}^{\dagger}c_{j+1} + h.c.)}_{\text{hopping}} - \underbrace{\mu(c_{j}^{\dagger}c_{j} - \frac{1}{2})}_{\text{single-site}} + \underbrace{(\Delta c_{j}^{\dagger}c_{j+1}^{\dagger} + h.c.)}_{\text{superconductor}} \right]$$
(17)

In terms of 2L Majoranas:

$$H = \frac{i}{2} \sum_{j} \left[-\mu \gamma_{2j-1} \gamma_{2j} + (t + |\Delta|) \gamma_{2j} \gamma_{2j+1} + (-t + |\Delta|) \gamma_{2j-1} \gamma_{2j+1} \right]$$
(18)

Kitaev's Toy Model - trivial point ($|\Delta| = t = 0$)

$$H = \frac{i}{2}(-\mu)\sum_{j}\gamma_{2j-1}\gamma_{2j} = -\mu\sum_{j=1}^{L}\left(c_{j}^{\dagger}c_{j} - \frac{1}{2}\right)$$
(19)

Just L non-interacting electrons; nothing to see here.

Kitaev's Toy Model - topological point ($|\Delta| = t > 0, \mu = 0$)

$$\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4} \gamma_{5} \gamma_{6} \cdots \qquad \gamma_{2L-5} \gamma_{2L-3} \gamma_{2L-2} \gamma_{2L-1} \gamma_{2L}$$

$$H = it \sum_{j} \gamma_{2j} \gamma_{2j+1} = 2t \sum_{j=1}^{L-1} \left(\tilde{c}_{j}^{\dagger} \tilde{c}_{j} - \frac{1}{2} \right) \qquad (20)$$

 γ_1, γ_{2L} are MZMs - we get zero energy excitations at the edge!

Spectrum:

$$\epsilon_{\pm}(q) = \pm \sqrt{(2t\cos q + \mu)^2 + 4|\Delta|^2\sin^2 q}$$
 (21)

BUT - unrealistic - spinless (electrons have spin!) and long-range ordered (Mermin-Wagner)

How do we realistically realizing Majoranas? - Realistic 1D system

$$H = H_{\text{wire}} + H_{\Delta}$$
(22)
$$H_{\text{wire}} = \sum_{\sigma\sigma'} \int dx \psi_{\sigma}^{\dagger} \left(\underbrace{-\frac{\partial_x^2}{2m} - \mu}_{\text{kinetic}} + \underbrace{i\alpha\sigma^y\partial_x}_{\text{spin-orbit}} + \underbrace{h\sigma^z}_{\text{Zeeman}} \right) \psi_{\sigma'}$$
(23)
$$H_{\Delta} = \int dx (\Delta\psi_{\uparrow}^{\dagger}\psi_{\downarrow}^{\dagger} + \Delta^*\psi_{\uparrow}\psi_{\downarrow})$$
(24)

Image Credit: J. Alicea 2012 Rep.Prog.Phys. 75 076501

Spin-Orbit, Zeeman, and Proximity to the Rescue

- 1. Two parabolas due to \pm spin-couplings (blue/red); *h* then breaks the symmetry, creating the gap (black) wire then appears spinless(!).
- 2. Superconducting proximity effect allows for lower-band electrons to p-wave pair, driving state to long-ranged(!) topological superconductor, so long as:

$$h > \sqrt{\Delta^2 + \mu^2} \tag{25}$$

Image Credit: J. Alicea 2012 Rep.Prog.Phys. 75 076501

Other 1D realizations:

- Edges of 2D topological insulators
- Wires of 3D topological insulators

2D:

- Spinless p + ip spinless superconductors
- FQH states
- Intrinsic p + ip superconductivity
- 3D topological insulators

The hunt for Majoranas in $p_x + i p_y$ intrinsic superconductors

• Candidate: Sr_2RuO_4 (Intrinsic p + ip), hosts vortices (Majorana binding sites).

 \blacksquare Complications; $p_x\pm ip_y$ degeneracy, $E_{\rm vortex}\sim \frac{(k_F\Delta)^2}{E_F}\sim {\rm mK}$

Image Credit: J. Alicea 2012 Rep.Prog.Phys. 75 076501

MZMs $\gamma_1, \gamma_2, \gamma_3, \gamma_4 \dots \gamma_{2N-1}, \gamma_{2N}$ yields exponential GSD

- Topologically protected encoding into eigenstates of $n_j = \frac{1}{2}(1 + i\gamma_{2j-1}\gamma_{2j})$.
- Topologically protected evolution via braiding.

A QUICK PRIMER ON ANYONS

- 3D: $\Pi_{ex}^2 = 1 \implies$ bosons, fermions.
- 2D: "Anyons" with nontrivial exchange statistics.

Exchange statistics of MZMs

 $\Delta \to e^{i\phi}\Delta$ results in $c_a \to e^{i\phi/2}c_a$ and $c_a^{\dagger} \to e^{-i\phi/2}c_a^{\dagger}$. So for $\phi = 2\pi, \gamma \to -\gamma$. "Cut" picture for exchange T_{ij} :

$$\gamma_i \to -\gamma_j, \quad \gamma_j \to \gamma_i, \quad \gamma_k \to \gamma_k$$
(27)

Or as an operator:

$$T_{ij} = \frac{1}{\sqrt{2}} (1 + \gamma_j \gamma_i) \tag{28}$$

BRAIDING MZMS - 2-QUBIT EXAMPLE

Basis states $|n_a, n_b\rangle$ with $n_a = \frac{1}{2}(1 + i\gamma_1\gamma_2)$ and $n_b = \frac{1}{2}(1 + i\gamma_3\gamma_4)$.

$$T_{12}|n_a, n_b\rangle = e^{i\frac{\pi}{4}(1-2n_a)}|n_a, n_b\rangle$$
(29)

$$T_{31}|n_a, n_b\rangle = \frac{1}{\sqrt{2}}[|n_a, n_b\rangle + (-1)^{n_a}|1 + n_a, 1 + n_b\rangle]$$
(30)

Takeaway:

- Braiding ⇒ topologically protected gateset.
- Note: $U_{\text{phase}} = \text{diag}(1, e^{i\Delta Et})$ (unprotected) needed for universality.

EARLY EXPERIMENTS + SHORTCOMINGS

- Peak in $g(V) = \frac{dI}{dV} \propto \rho_{\text{wire-end}}$ can indicate MZMs, with $\frac{2e^2}{h}$ quantization.
- Disorder is also an explanation stronger signatures needed.
- Microsoft 2018 retraction.

MICROSOFT 2021-2023 - A MORE ROBUST PROTOCOL?

- Topological Gap Protocol (2021) measurement of Δ_{bulk} closing via non-local conductance measurements $G_{LR}, G_{RL} = \frac{dI_L}{dV_R}, \frac{dI_R}{dV_L}$.
- (2023) Reports on devices passing the protocol though with some controversy, e.g. in releasing parameters at publication, also a recent arXiv comment¹ suggests inconsistencies.

¹arXiv:2502.19560v1 Image credit: Microsoft, Phys Rev. B 107, 245423 (2023)

MICROSOFT 2025 - NO MZMS... YET

"The editorial team wishes to point out that the results in this manuscript do not represent evidence for the presence of Majorana zero modes in the reported devices. The work is published for introducing a device architecture that might enable fusion experiments using future Majorana zero modes."

23

Image credit: Microsoft, Nature 2025 + Press Release

- Original Conext + Importance in Particle theory
- Connection to superconductors
- MZMs in condensed matter systems
- How to harness MZMs for quantum computation
- Experimental signatures and progress

Thanks for listening!

"Physics Today"-level articles:

- Holstein, The mysterious disappearance of Ettore Majorana, Journal of Physics, 2009
- Wilczek, Majorana returns, Nature Physics, 2009
- Gibney, Inside Microsoft's quest for a topological quantum computer, Nature, 2016
- Aguado and Kouwenhoven, Majorana qubits for topological quantum computing, Physics Today, 2020
- Frolov, Quantum computing's reproducibility crisis: Majorana fermions, Nature, 2021

Technical Review articles:

- Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Reports on Progress in Physics, 2012
- Elliot and Franz, Majorana fermions in nuclear, particle, and solid-state physics, Reviews of Modern Physics, 2015
- Sarma et. al, Majorana zero modes and topological quantum computation, npj Quantum Information, 2015

References II

MZMs in superconducting systems:

- A. Kitaev, Unpaired Majorana fermions in quantum wires Physics-Uspekhi, 2001
- Sengupta et al., Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors, Phys. Rev. B, 2001
- Stanescu et al., Majorana Fermions in Semiconductor Nanowires, Phys. Rev. B, 2011
- Lutchyn et al., *Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures*, Phys. Rev. Lett., 2010
- Oreg et. al, Helical Liquids and Majorana Bound States in Quantum Wires, Phys. Rev. Lett., 2010
- J. Alicea, Majorana fermions in a tunable semiconductor device, Phys Rev. B, 2010
- Jang et al., Observation of Half-Height Magnetization Steps in SrRuO, Science, 2011

Non-Abelian anyons, topological quantum computation

- Wilczek, Quantum Mechanics of Fractional-Spin Particles, Phys. Rev. Lett., 1982
- Ivanov, Non-Abelian Statistics of Half-Quantum Vortices in p -Wave Superconductors, Phys. Rev. Lett., 2001
- Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2003
- Sau et al., A generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett., 2010
- Alicea et al., Non-Abelian statistics and topological quantum information processing in 1D wire networks, Nature Physics, 2011
- Nayak et al., Non-Abelian Anyons and Topological Quantum Computation, RevModPhys, 2022

References III

Earlier Experimental Work + Criticisms

- Nilsson et al., Splitting of a Cooper Pair by a Pair of Majorana Bound States, Phys. Rev. Lett., 2008
- Mourik et al., Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices, Science, 2012
- Liu et al., Zero-Bias Peaks in the Tunneling Conductance of Spin-Orbit-Coupled Superconducting Wires with and without Majorana End-States, Phys. Rev. Lett., 2012
- Deng et al., Majorana bound state in a coupled quantum-dot hybrid-nanowire system, Science, 2016
- Liu et al., Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks, Phys. Rev. B, 2017
- Lutchyn et al., *Majorana zero modes in superconductor-semiconductor heterostructures*, Nature Reviews Materials, 2018

Microsoft saga

- Microsoft Quantum, Large zero-bias peaks in InSb-Al hybrid semiconductor- superconductor nanowire devices, arXiv, 2018 (edited/retracted Nature article)
- Microsoft Quantum, *Protocol to identify a topological superconducting phase in a three-terminal device*, arXiv:2103.12217, 2021
- Microsoft Quantum, InAs-Al hybrid devices passing the topological gap protocol, Phys. Rev. B, 2023
- Legg, Comment on "InAs-Al hybrid devices passing the topological gap protocol", arXiv:2502.19560, 2025
- Microsoft Quantum, Interferometric single-shot parity measurement in InAs-Al hybrid devices, Nature, 2025