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Abstract

The paradigm of measurement-based quantum computing (MBQC) provides an ideal theoretical

playground to characterize quantum computational resources. Recent advances have yielded a

formalism to characterize the computational power of finite one-dimensional MBQC resource states,

extending prior classification for infinite systems based on symmetry-protected topological (SPT)

phases. In this work, we develop techniques for the experimental realization of these results on

Noisy Intermediate-Scale Quantum (NISQ) devices. We demonstrate a post-processing algorithm

for bypassing the generally inefficient transformation to the resource states of interest. We also

develop and perform a variational algorithm for obtaining the coefficients of this transformation.

Our results demonstrate the capability of NISQ devices for showcasing phenomena relating to

quantum computational resource characterization.
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Chapter 1

Introduction

And I’m not happy with all the analyses that go with just the classical theory, because
nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d
better make it quantum mechanical, and by golly it’s a wonderful problem, because it

doesn’t look so easy. — Richard Feynman (1981)

Though quantum simulation is still very much an application of interest for quantum devices today

[1], not even Feynman could have predicted the wide explosion in popularity and scope for the

field of quantum computing. Since his 1981 keynote [2] many use cases have been discovered for

quantum computers, such as in efficient prime factorization [3], database search [4], and solving

linear systems of equations [5].

However, the field is faced with many outstanding problems, two of which together form the

central motivation for this work. The first is experimental; we currently reside in the noisy-

intermediate scale quantum (NISQ) eram where available quantum devices are far too small and

noisy to be able to perform most discovered algorithms [6]. It is not even entirely clear that so-called

quantum supremacy has been demonstrated, with the 2019 Google “demonstration” [7] being now

overtaken by an improved classical algorithm [8]. The second question is theoretical; the property

that gives quantum computers their advantage over their classical counterparts continues to elude

physicists. The often discussed condition of quantum entanglement is in fact necessary but not

sufficient, as proven by the celebrated Gottesman-Knill Theorem [9]. Additionally, it turns out

that most states are actually too entangled to be useful for quantum computation [10].

The latter problem is interesting not only from a theoretical perspective, but also from the

perspective of developing applications. Learning more about the source of quantum advantage

can provide useful insights into the development of novel quantum algorithms, which presents a
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genereally difficult task [11]. Fortunately, there exists a paradigm that is well-equipped to address

this question; namely that of measurement-based quantum computation (MBQC), as devised by

Raussendorf and Briegel [12]. Unlike in the conventional circuit model of quantum computation,

in MBQC the computational power is completely contained in the initial state, which acts as

the universal resource for any quantum computation. Hence, characterizing such resource states

can provide insights into the properties required for universal quantum computation and hence

quantum advantage. Useful resource states turn out to be extremely rare in Hilbert space in

general [10], but become easier to find once one adds symmetry to the mix. Else et al. first

elucidated this connection, leading to a classification of resource states capable of quantum wire in

1-dimension using the language of symmetry-protected topological (SPT) phases [13]. However, in

this initial work it was found that rotations (the other necessary computational primitive in one

dimension, in addition to wire) resulted in decoherence in the system when one used states in the

SPT phase away from the cluster state (the canonical MBQC resource). This tension was resolved

by Raussendorf et al. who promoted this SPT classification to full one-dimensional quantum

computation [14], demonstrating a “divide-and-conquer” technique to manage the decoherence

introduced when performing rotations.

While promising, this analysis was limited to infinite systems; a problem considering that any

real quantum computation takes place on a device finite in scale. To resolve this problem, recent

work has elucidated the connection between computational usefulness and string-order parameter,

giving rise to a formalism of classifying one-dimensional resource states that applies to finite and

infinite systems alike [15]. Here it was shown that the optimal regime for computation to best

manage decoherence in a finite setting takes place at short length scales generally avoided in the

infinite setting; hence giving rise to computation in the “counter-intuitive regime”.

The work of this thesis sits at the intersection of the two defining problems discussed above.

Namely, we will demonstrate results concerning the computational power of MBQC resource states

through experiment on IBM NISQ devices. We will develop and execute algorithms for performing

these experiments to circumvent a major difficulty. Namely, that the known representations of

the transformations used to generate the resource states of interest are non-unitary. Since quan-

tum computers evolve states via unitary evolution, such transformations are in general not able to

be implemented efficiently. Our algorithm will circumvent this difficulty by pushing the transfor-

mation past the measurement; hence allowing us to perform experiments on the easily generated

cluster state and post-process the measurement outcomes to obtain the desired results. We will

further develop and perform a version of a variational quantum eigensolver (VQE) algorithm that

can be used to find these transformation operators using quantum devices; thus providing a fully

2



quantum-mechanical experimental showcase of the theoretical predictions of interest. Our results

will demonstrate the capability of NISQ-era devices to showcase phenomenology of MBQC re-

sources, thus providing a step forwards to answering the questions “What are interesting things

that current-era quantum computers are capable of doing?” and “How do we characterize quantum

computational advantage?”

In the proceeding chapter, we will introduce the general formalism of quantum computing in

the circuit and measurement-based models. We will then discuss MBQC resource states in one

dimension, introducing how their computational power can be characterized in the infinite case

(using SPT phases) and in the finite case (using string-order parameter). We will introduce the

interpolating Hamiltonian whose ground states will be the objects of interest for experimental

exploration of computational power, and a method for testing the computational power of these

states through the rotation-counter rotation protocol. We end off this chapter by discussing how

these ground states can be generated, as well as a general introduction to VQE algorithms. In

Chapter 3, we will discuss methods of how to simulate MBQC on available circuit-model IBM

quantum computers. In Chapter 4 we discuss theory results in the form of algorithms created for

this work. In particular, we discuss the algorithm to simulate the rotation-counter rotation protocol

experimentally, as well as the VQE algorithm that can be used to find an operator to generate the

ground states of the interpolating Hamiltonian. In Chapter 5 we will present experimental results of

the rotation-counter rotation protocol for characterizing computational power of the interpolation

Hamiltonian ground states. In Chapter 6 we will conclude with future directions.
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Chapter 2

Theory

2.1 Quantum computing 101

2.1.1 From the bit to the qubit

In classical computers, the fundamental unit of information is the bit; a binary value of 0 or 1,

physically corresponding to whether the value of a voltage is above some critical threshold. In

quantum computers, the fundamental unit of information is instead the quantum bit, or qubit. It

can be expressed as the complex superposition of the computational basis states |0⟩, |1⟩:

|ψ⟩ = a|0⟩+ b|1⟩. (2.1)

Where |0⟩, |1⟩ are the eigenstates of the Pauli-Z operator, and α, β are complex coefficients such

that |a|2 + |b|2 = 1. With this normalization condition and the irrelevancy of the global phase, we

may write:

|ψ⟩ = cos(θ/2)|0⟩+ eiφ sin(θ/2)|1⟩ (2.2)

which invites a useful visualization of a qubit state as a vector on the surface of the Bloch sphere,

as in Fig. 2.1.

2.1.2 Qubit operations

We recall that in quantum mechanics there exist two methods of evolution; Unitary evolution and

measurement. The Pauli operators are prime examples of unitary evolution, with action on the

4



φ

θ

x̂

ŷ

ẑ = |0⟩

−ẑ = |1⟩

|ψ⟩

Figure 2.1: A single-qubit state |ψ⟩ = cos(θ/2)|0⟩+ eiϕ sin(θ/2)|1⟩ visualized on the surface
of the Bloch sphere.

computational basis states given byX|0/1⟩ = |1/0⟩, Y |0/1⟩ = ±i|1/0⟩, and Z|0/1⟩ = ±|0/1⟩. These
correspond to a rotation of the vector on the Bloch sphere by π radians around their respective axes.

These rotations can be generalized by considering the rotation operator RP (β) = exp(−iβP/2)
(where P ∈ {X,Y, Z}) which corresponds to a rotation of angle β about the chosen axis. We also

introduce the Hadamard operator, which is defined by the action of exchanging computational basis

states with Pauli-X eigenstates: H|0/1⟩ = |+/−⟩ = (|0⟩ ± |1⟩)/
√
2 and H|+/−⟩ = |0/1⟩ (note this

also implies that HZH = X; something we will make use of later on). In general, all single-qubit

unitaries can be viewed as rotations about the Bloch sphere, as visualized in Fig. 2.2.

x̂

ŷ

ẑ

|ψrot⟩

Rz(β)

x̂

ŷ

ẑ

|ψ⟩

β

Figure 2.2: Bloch sphere visualization of single-qubit unitaries. Here the unitary Rz(β) is
applied to the state |ψ⟩, rotating the state by angle β about the z-axis of the Bloch
sphere.

We also consider multi-qubit unitaries, which are necessary operations to entangle qubits. First,
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we recall the tensor product formalism of composing multiple quantum systems; for example, the

system of two qubits in the |0⟩ states is written as |0⟩ ⊗ |0⟩ or abbreviated as |00⟩ or |0⟩⊗2.

We can then define operations that act on these multi-qubit quantum states. For example, the

controlled-X gate acts on the basis states as CX12|00⟩ = |00⟩, CX12|01⟩ = |01⟩, CX12|10⟩ = |11⟩,
and CX12|11⟩ = |10⟩. Given an (unentangled) input state of |+0⟩ the CX1,2 gate will produce the

(entangled) bell state:

CX12|+0⟩ = CX12|00⟩+ CX12|10⟩√
2

=
|00⟩+ |11⟩√

2
=: |B00⟩. (2.3)

For measurements, we consider some Hermitian observable O =
∑

i λi|ϕi⟩⟨ϕi| where λi are the

(real) eigenvalues and |ϕi⟩ the eigenstates. For non-degenerate observables, the post-measurement

outcomes are given by the eigenstates |ϕi⟩ (where λi is the measured outcome) and the measurement

probabilities by p(i) = |⟨ϕi|ψ⟩|2. In terms of the Bloch sphere picture, measurements can be viewed

as collapsing the state |ψ⟩ onto one of two antipodal points corresponding to the eigenstates of the

measured observable (for example the north and south poles for the computational basis states |0⟩
and |1⟩, as in Fig. 2.3).

x̂

ŷ

ẑ

|ψ⟩

Measure in {|0⟩, |1⟩}

|0⟩

|1⟩

or

Figure 2.3: Bloch sphere visualization of qubit measurement. Here the state |ψ⟩ is measured
in the computational basis {|0⟩, |1⟩}. The post-measurement states are antipodal points
on the Bloch sphere, with probability p(0) = |⟨0|ψ⟩|2 of obtaining |0⟩ and p(1) =
|⟨1|ψ⟩|2 of obtaining |1⟩.

6



2.1.3 The circuit model

The circuit model is the standard model of quantum computation. It operates in analogy to the

circuit model of classical computation, where one starts with a register of bits initialized in the 0

state and proceeds with the computation by the application of logic gates (such as AND and NOT). In

a quantum circuit, one starts with a register of qubits in the |0⟩ state, and then evolves the qubits

through a computation-specific sequence of unitary quantum gates. At the end of the computation,

all qubits are measured in the computational basis as a readout procedure. The computation is in

general repeated many times to account for the probabilistic nature of the final measurement.

Z

Z

Z

|0⟩ H

|0⟩

|0⟩ Rz(β)

Figure 2.4: An example of a 3-qubit quantum circuit. The computation begins with a register
of qubits in the |0⟩⊗3 state. The computation proceeds by the application of unitary
quantum gates, such as single-qubit gates like the Hadamard gate (red) and Rz(β)
rotation gate (green) as well as entangling gates such as the CX gate (blue). The
qubits are all measured in the computational basis {|0⟩, |1⟩} in the end to obtain the
information stored in the state.

Much like the NAND gate forms a universal gate set in classical computation (where one can

emulate any other logic gate through use of NAND gates alone) [16], a similar notion exists in

quantum computing. Namely, a set of quantum gates is labelled as universal if a the composition

of gates from the set can form any unitary transformation up to an arbitrarily small error. Although

there are more restrictive gate sets, the set composed of single-qubit rotations and the CX gate is

quantum computationally universal [17]. Therefore, if any other computational model is able to

simulate these two types of operations and their composition, it too is universal.
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2.2 Measurement-based quantum computing (MBQC) in 1D

2.2.1 Motivating MBQC

Although the circuit model is the dominant paradigm of quantum computing (and most physical

realizations of quantum computers today invoke this model), this paradigm is ill-suited to address

the question of where quantum computers obtain their advantage. Currently, quantum algorithms

such as Shor’s algorithm for prime factorization [3] seem to suggest that quantum computers pos-

sess some kind of theoretical advantage over their classical counterparts. However, the source of

this advantage remains a open problem. Quantum mechanical properties such as superposition

and entanglement turn out to be necessary but not sufficient conditions for such advantage. One

can, for example, have a local n-qubit state of the form |Ψ⟩ = |ψ⟩1 ⊗ |ψ⟩2 ⊗ . . . ⊗ |ψ⟩n that is in

superposition, but the locality of the state means that it can be efficiently simulated with O(n) coef-

ficients (which can be easily simulated classically). In addition, while a general entangled quantum

state and its evolution requires an exponential number of coefficients to simulate classically (with

O(2n) coefficients required to specify a general entangled n-qubit quantum state), the celebrated

Gottesman-Knill theorem [9] shows that quantum computation that proceeds via gates only from

the Clifford group (which notable includes the entangling CX gate) can be simulated in polynomial

time. Furthermore, there are actually results that show that most quantum states are actually “too

entangled” for use in quantum computation [10]!

The circuit model is not optimal for characterization of quantum advantage given that the gates

used are highly computation dependent and the computational power of gates is made unclear by

results such as the Gottesman-Knill theorem. We therefore desire a model which is computationally

equivalent but for which this analysis is more convenient. We therefore consider the paradigm of

measurement-based quantum computation, as introduced by Raussendorf and Briegel [12]. In

this model, computation begins by preparing qubits into an initial state, known as a “resource

state”. The computation then proceeds by adaptive single-qubit measurements on the resource

state. The benefit of the MBQC model is that the resource state used is independent of the

choice of computation, being a universal canvas on which the computation can be etched out via

measurements. Therefore, in this picture characterization of quantum computational advantage

becomes a question of characterizing such resource states.

In this section, we will start by defining the cluster state, which is the canonical MBQC re-

source state. We will then study operations on the cluster state in 1-dimension to show how the

measurement-based model can simulate the evolution of a single qubit. As the central topic of

8



X Y Y Y Y Y Y Y Y

X X X X X X Y X X

Y

X X X X X X X X

Z Z Z Z Z Z Z Z

Z Z Z Z Z Z Z Z Z

Simulated Time

S
im

u
la
te
d
R
eg
is
te
rs

Figure 2.5: An example of quantum computation in the measurement-based formalism, sim-
ulating the circuit computation in Fig. 2.4. Computation proceeds by single-qubit
measurements on an initial resource state. Here the resource state is two dimensional,
with one dimension acting as the simulated qubit registers, and one dimension act-
ing as simulated time. The qubit measurements in X simulate quantum wire, qubit
measurements in red simulate the Hadamard gate, the qubit measurements in blue
simulate the CX gate, and the measurement in green simulates the Rz(β) gate.

the thesis concerns one-dimensional MBQC resources, we will omit a full universality proof of the

MBQC model, which requires discussion of 2-dimensional resource states and operations.

2.2.2 The cluster state

We here provide two equivalent definitions of the cluster state in one dimension. The first is an

operational definition, and will be useful for when we require the creation of cluster states on

quantum devices.

Definition (Cluster Chain). The cluster chain |C⟩ is the quantum state obtained via the

following procedure:

1. Start with a register/chain of n qubits each initialized to |0⟩: |0⟩⊗n.

2. Apply Hadamard gates to each qubit to obtain |+⟩⊗n.

3. Apply controlled-Z gates between neighbouring qubits in the chain to obtain the cluster state

|C⟩.

Note that the entanglement generated in step 3 of the above procedure can be equivalently
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implemented via an translation-invariant Ising interaction for a fixed amount of time (independent

of the system size). An equivalent definition of the state involves Hamiltonians:

Definition (Cluster Chain). The cluster chain |C⟩ is the unique ground state of the

Hamiltonian Hc := −
∑

i Zi−1XiZi+1. Alternatively, it is the unique quantum state for which

Zi−1XiZi+1|C⟩ = +|C⟩ for each site i. Therein, the set of Zi−1XiZi+1 operators generates the

stabilizer group of the cluster state.

While the first definition will help us to demonstrate the mechanism of MBQC in one-dimension,

the second will be extremely useful when we enter discussion of generalized one-dimensional resource

states.

2.2.3 Operating on the cluster state

Having now established what the cluster state is, we discuss how one can carry out MBQC on this

state. We will demonstrate three capabilities; quantum wire (the identity operation), z-rotations,

x-rotations, and general rotations. Much of the development in this section is modelled after the

discussion in [15].

Quantum wire

We consider a 2-qubit cluster state where the first qubit is some input state |ψin⟩ = a|0⟩+ b|1⟩. So,
our starting state is |Ψ⟩ = CZ12(|ψin⟩ ⊗ |+⟩). We wish to find a way to move the input state from

the first qubit to the second without modifying it (i.e. perform a wire operation). To this end, we

consider measuring the first qubit in the Pauli-X eigenbasis of {|+⟩, |−⟩}. Expanding out the first

qubit in this basis, we find:

|Ψ⟩ = CZ12((a|0⟩+ b|1⟩)⊗ |+⟩)

= a|0⟩|+⟩+ b|1⟩|−⟩

= a

(
|+⟩+ |−⟩√

2

)
|+⟩+ b

(
|+⟩ − |−⟩√

2

)
|−⟩

= |+⟩
(
a√
2
|+⟩+ b√

2
|−⟩
)
+ |−⟩

(
a√
2
|+⟩ − b√

2
|−⟩
)

=
1√
2
(|+⟩H|ψin⟩+ |−⟩HZ|ψin⟩)
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So after the measurement of the first qubit, the post-measurement state of the second qubit is:

|ψout⟩ = HZs|ψin⟩

where s = 0 or 1 depending on whether the measurement on the first qubit yields the positive or

negative eigenvalue respectively. Graphically, we can picture this as the circuit identity in Fig. 2.6.

Xs

|ψin⟩

|+⟩ |ψout⟩
= |ψin⟩ Zs H |ψout⟩

Figure 2.6: Quantum half-teleportation circuit identity.

The above protocol can be recognized as a variant of the famous quantum teleportation protocol

[18], with the modification that we measure in a single-qubit basis (rather than the Bell basis) and

only require one classical bit of information (s) to post-process the result (compared to two). Thus,

we have demonstrated that we can perform quantum wire/the identity operation on the cluster

state through measurement alone.

z-rotations

While the ability to do nothing is certainly appreciated, we certainly want to be able to do more

than just shuttle our state down our cluster chain. As a next step, we consider how we might carry

out z-rotations on our input state. Of course, in the circuit model this would be as simple as just

applying the Rz(β) gate to our initial state. However, we don’t have access to such gates, and are

tasked with finding a way to implement this rotation through measurement alone. To this end, we

consider a quantum circuit that applies some unitary operator U followed by a measurement in the

eigenbasis of an observable O. We can write the projectors corresponding to the measurement as

11



ΠO,± = I±O
2 where I is the identity gate. The action of this circuit is then:

ΠO,±U = UU † I ±O

2
U

= U
U †IU + U †OU

2

= U
I + U †OU

2

= UΠU†OU,±

where we use that U †U = I for unitary operators. We conclude that:

ΠO,±U = UΠU†OU,± (2.4)

The above manipulations tell us that applying a unitary operator U and then measuring in O is

totally equivalent to skipping the unitary and just measuring the new observable U †OU Note we

can discard the U in front of the projector in the last line as we don’t particularly care about what

happens after measurement. With this in mind, we now consider the circuit identity in Figure. 2.7.

O(β)s

|ψin⟩

|+⟩ |ψout⟩
=

Xs

|ψin⟩ Rz(β)

|+⟩ |ψout⟩

Figure 2.7: z-rotation circuit identity.

where we have commuted the Rz(β) past the CZ gate and then applied the unitary-projector

identity as derived above. We now measure the first qubit in the eigenbasis of the observable:

O(β) = Rz(β)
†XRz(β) = cos(β)X − sin(β)Y.

So combining this identity with the quantum wire result, the output on the second qubit of this

circuit is:

|ψout⟩ = HZsRz(β)|ψin⟩

Let us recap what we have done here. We wanted to find a way to not just teleport but also rotate

our input qubit. In the circuit model, we could just apply a z-rotation gate, but now we want to

12



accomplish this with measurements alone. So, we derived a unitary-projector identity and showed

that the action of a z-rotation unitary gate is equivalent to just changing our measurement basis to

O(β) = Rz(β)
†XRz(β). Combining this with the quantum wire result, this allows for the desired

rotation via measurements.

x-rotations

We’ve now found ways to perform the identity operation, and to rotate in z; but of course there are

more rotations possible than just that! We now wish to find a method to rotate about the x-axis.

To this end, we consider a similar setup to the above z-rotation argument, but now on a cluster

state of three qubits instead of two (with again an input state |ψin⟩ on the first qubit). Suppose

we measure the first qubit in the wire (X) basis with outcome s1 and measure the second qubit in

the rotated basis O(β) with outcome s2. Combining the results of the previous two sections, the

output state will be:

|ψout⟩ = (HZs2Rz(β))(HZ
s1)|ψin⟩

= (HZs2Rz(β)H)Zs1 |ψin⟩

= Xs2Rx(β)Z
s1 |ψin⟩

= Xs2Zs1Rx((−1)s1β)|ψin⟩

Where in the third line we make use of the Hadamard conjugation identity of HZH = X and in

the fourth line we use that ZX = −XZ.
This almost looks like the x-rotation that we want! As before, we note the presence of operators

sitting in front of the state. These are so-called “byproduct operators” in MBQC, which are

dependent on the probabilistic measurement outcomes. We can keep track of these operators

throughout the computation and account for them at the end, so they do not pose a significant

problem. More concerning is the presence of the (−1)s1 in the x-rotation. It seems as though

depending on the measurement outcome on the first qubit, we have a 50/50 chance of rotating our

state by a positive or negative angle, and hence our operation seems to be probabilistic! However

this is not the case. What the above expression really tells us is that depending on the outcome

s1 of our first measurement, we should adjust the measurement basis of our second measurement

to be O((−1)s1β) accordingly so as to perform the correct (positive) rotation that we desire. Note

that this enforces a temporal order of measurements, as future measurements are adaptive based
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Xs1

O((−1)s2β)s2

|ψin⟩

|+⟩

|+⟩ |ψout⟩

= |ψin⟩ Rx(β) Zs1 Xs2 |ψout⟩

Figure 2.8: x-rotation circuit identity.

on outcomes of the past. With this adaptive measurement, we obtain the post measurement state:

|ψout⟩ = (HZs2Rz((−1)s1β))(HZs1)|ψin⟩

= Xs2Zs1Rx(β)|ψin⟩

which is the desired x-rotation performed on our state! In all, this yields the circuit identity

depicted in Fig. 2.8.

There are three takeaways here. The first is that we have managed to accomplish a x-rotation

via measurements on the cluster state. The second is that in MBQC there are byproduct operators

which are harmless, but have to be kept track of as the computation proceeds in order to account

for them on the output. Finally, in order to induce the correct state evolution, we require adap-

tively changing our measurement bases based on past measurement outcomes; hence MBQC has a

temporal order.

General rotations

We are extremely close to our desired end goal of performing arbitrary rotations through measure-

ment on a 1-dimensional cluster chain. The final piece of our puzzle is provided by the great late

Euler, who informs us that any rotation U can be decomposed as:

U = Rx(γ)Rz(β)Rx(α)

for some α, β, γ ∈ R. To accomplish this, we extend our earlier argument to a five qubit cluster state

with input |ψin⟩. We measure the first qubit in the wire (X) basis, and perform measurements on

the second/third/fourth qubits in the rotated bases O(ϕ2), O(ϕ3), O(ϕ4) with ϕi chosen to perform

14



Xs1

O((−1)s1α)s2

O((−1)s2β)s3

O((−1)s1+s3γ)s4

|ψin⟩

|+⟩

|+⟩

|+⟩

|+⟩ |ψout⟩

=

|ψin⟩ U Zs1+s3 Xs2+s4 |ψout⟩

Figure 2.9: Circuit identity for general rotations.

U . From the results of the previous sections, the output state will be:

|ψout⟩ = (HZs4Rz(ϕ4))(HZ
s3Rz(ϕ3))(HZ

s2Rz(ϕ2))HZ
s1 |ψin⟩

= [HZs4Rz(ϕ4)H]Zs3Rz(ϕ3)[HZ
s2Rz(ϕ2)H]Zs1 |ψin⟩

= Xs4Rx(ϕ4)Z
s3Rz(ϕ3)X

s2Rx(ϕ2)Z
s1 |ψin⟩

= Xs2+s4Zs1+s3Rx((−1)s1+s3ϕ4)Rz((−1)s2ϕ3)Rx((−1)s1ϕ2)|ψin⟩

So adaptively choosing ϕ2 = (−1)s1α, ϕ3 = (−1)s2β, and ϕ4 = (−1)s1+s3γ based on measurement

outcomes, we obtain output:

|ψout⟩ = Xs2+s4Zs1+s3Rx(γ)Rz(β)Rx(α)|ψin⟩

= Xs2+s4Zs1+s3U |ψin⟩

and we have therefore accomplished our arbitrary rotation (up to byproduct operators)!

We have therefore shown that the cluster state is capable of performing arbitrary rotations/single-
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qubit unitaries on a single logical/simulated qubit, through use of adaptive measurements and some

classical side-processing only; thus MBQC is equivalent computationally to a single qubit in the

circuit model! A full universality proof would require going into the realm of two-dimensional

cluster states, where we could then discuss the simulation of multiple qubits and entangling gates

between them. However, we refer readers to sources such as [12] for full universality proofs as

two-dimensional cluster states largely lie outside the scope of this thesis.

2.2.4 Computational power

To conclude this section, we introduce an operational definition of computational power of states:

Definition (Computational power). The computational power of a one-dimensional quan-

tum state is defined as its ability to carry out MBQC; that is, perform quantum wire and arbitrary

single-qubit unitaries.

From the above analysis, we would conclude that the cluster state has full computational power.

As a foil to the cluster state, we also introduce the product state |+⟩⊗n, which is the ground state

of the local magnetic field Hamiltonian Hp := −
∑

iXi. Given the fact that the product state

is unentangled, it possesses no capability to perform MBQC. Intuitively, no operations on one

part of the state can affect the other, and measurements on one part of the state just destroy the

information contained in that part of the state. We will soon return to discussion of the cluster

and product state when we introduce the interpolation Hamiltonian.

2.3 MBQC resources in 1D

In the previous section, we introduced the 1-dimensional cluster state, and demonstrated how an

adaptive measurement sequence on this state could simulate any single-qubit unitary. However,

one may now wonder if the cluster state is the unique state for which such a measurement-based

computation protocol is possible. This turns out to be not the case, and such a property turns

out to be a property of an entire phase of matter, rather than a particular special state (like the

cluster state). In this section, we will give a non-technical overview of computational phases of

matter and how symmetry can characterize resource states in one-dimension. We will then discuss

a recent development for characterizing the computational power of finite MBQC resource states,

where the notion of phases becomes ill-defined.
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2.3.1 SPT order and computational power

Classically, a thermodynamic phase of a system is a region of phase space for which properties of

materials are uniform. Phase transitions are characterized under the Ehrenfest classification by

non-differentiability in thermodynamic state functions (such as free energy) as parameters (such

as temperature) are varied as we pass through the transition. Going from the realm of classical to

quantum, quantum phases are defined at zero temperature; if we are interested in studying phase

transitions due to quantum fluctuations, we must remove thermal fluctuations that could wash out

the quantum ones. At zero temperature, the systems of interest must be in the ground state and

therefore quantum phases are characterized by the ground state of systems and the energy gap

between the ground state and first excited state [19].

For many decades, the Landau’s symmetry-breaking theory of phase transitions [20] was thought

to be capable of describing all possible phase transitions; in this formalism the Hamiltonian pos-

sesses more symmetry than the ground states (leading to the title of “symmetry-breaking”). How-

ever, discoveries such as fractional quantum Hall states that inherit the symmetry of the Hamil-

tonian [21] paved the way for the new formalism, namely that of topological order [22]. First, we

introduce the notion of a gapped quantum phase, where gapped refers to the fact that the energy

gap between the ground state and first excited state of the Hamiltonians of interest do not vanish

in the thermodynamic limit:

Definition (Gapped Quantum Phase). Two gapped states |ψ0⟩, |ψ1⟩ belong in distinct

gapped quantum phases if Hamiltonians H0, H1 which they are ground states of can be smoothly

deformed into each other without closing the gap. Equivalently, they belong in the same phase if

and only if they are related by a local (system size-independent) unitary transformation.

From this follows the definition of topological order:

Definition (Topological Order). A gapped state |ψ0⟩ possesses non-trivial topological order

if the Hamiltonian it is the ground state of cannot be smoothly connected to the product state

Hamiltonian without closing the gap. Equivalently, there exists no local unitary transformation

that connects |ψ0⟩ to the product phase.

However, the above notion of topological order makes no reference to the concept of symmetries

associated with the problem. Inclusion of these symmetries can lead to interesting classifications,

motivating the definition of symmetry-protected topological (SPT) order:

Definition (Symmetry-Protected Topological Order). States |ψ0⟩, |ψ1⟩ with a given

symmetry belong in distinct SPT phases if they cannot be smoothly deformed into each other via a

low-depth local unitary circuit (that is, a circuit whose depth which does not scale with the system
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size) that respects the symmetry. A state belongs to a non-trivial SPT phase if it cannot be connected

via a symmetry-respecting low-depth local unitary circuit to the product state.

How does all of this condensed-matter theoretic discussion of phases connect back to our discus-

sion of quantum computation? The breakthrough connection between SPTO and computational

power was first made by Else et al., who showed that the ability for a state to carry out quantum wire

was a consequence of the symmetry-protected phase [13]. Raussendorf et al. would generalize this

notion to show that computational power as a whole is uniform across each symmetry-protected

topologically ordered phase [14]. In particular, the cluster state lives in a symmetry-protected

phase with a Z2 × Z2 symmetry (where the symmetry group is generated by IXIXIX . . . and

XIXIXI . . .), and the computational power of states that live in this SPT phase are uniform.

The takeaways here are twofold. First, the characterization of computational power in terms

of symmetry further elucidates the question of the source of quantum computational advantage,

as the capability to do quantum computation has now reduced to a question of a classification of

symmetries. Second, computational power is in some sense a robust property. Rather than being

a property of specific states (e.g. the cluster state), it belongs an entire symmetry-protected phase

of matter. This is useful in the sense that preparing states exactly experimentally may be difficult

due to real-world noise, but slight perturbations to useful states (that do not take them outside

of the computationally useful phase) are still computationally powerful. This second takeaway ties

into the main objective of the thesis, namely, can we demonstrate this robustness experimentally?

2.3.2 The interpolating Hamiltonian

In this section, we concretely discuss one-dimensional computational phases, and introduce a Hamil-

tonian that will play a central role to the thesis. To this end, we recall the definition of the cluster

state |C⟩ as the ground state of the Hamiltonian Hc = −
∑

i Zi−1XiZi+1 and the definition of the

product state |+⟩⊗n as the ground state of the Hamiltonian Hp = −
∑

iXi. We then consider the

interpolation Hamiltonian, defined as:

H(α) := − cos(α)
∑
i

Zi−1XiZi+1 − sin(α)
∑
i

Xi (2.5)

The ground states |ϕ(α)⟩ of this Hamiltonian all lie in the trivial topological phase as we can vary

α smoothly to get to H(π2 ) = − sin(π2 )
∑

iXi = Hp; i.e. we can connect the Hamiltonians smoothly

without closing the gap. However, there are two distinct symmetry-protected topological phases

that arise from this Hamiltonian. The Hamiltonian possesses a Z2 ⊗Z2 symmetry that the ground
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|C⟩ |+⟩
α

|ϕ(α)⟩
0 π/2π/4

Cluster phase Product phase

Figure 2.10: SPT Phase diagram for ground states of interpolating Hamiltonian H(α). For
α < π

4 , the states reside in the computationally useful cluster phase. For α > π
4 , the

states reside in the computationally useless product phase.

states inherit. In the thermodynamic limit, there is no way to connect the Hamiltonians with α < π
4

to the Hamiltonians for α > π
4 via a path that respects the symmetry that does not close the gap

above the ground state. Equivalently, there is no local low-depth unitary circuit that smoothly

connects the ground states of α < π
4 to α > π

4 via a path that respects the symmetry. We therefore

denote the states for α < π
4 as residing in the cluster phase and the states for α > π

4 as residing

in the product phase. The work of [14] proved the uniformity of computational power of states in

these phases, proving that states in the cluster phase are equivalently powerful in MBQC as the

cluster state and states in the product phase as useless as the product state.

2.3.3 Characterizing finite resources

It would seem as if the formalism of symmetry-protected topological phases puts a nice bow on the

problem of characterizing quantum computational resources1; this is unfortunately not the case.

While the problem is resolved in the thermodynamic limit, an infinitely large quantum computer

cannot physically exist, with any real quantum computation takes place in a finite setting. This

is further exacerbated by the current landscape of quantum computing, where available devices

are still quite small (on the order of 10s of qubits). The notion of a computational phase becomes

ill-defined in such finite settings. As a prime example, we consider again the Hamiltonian given

by (2.5). Looking at the ground states of such Hamiltonians for finite spin chains, we find that

the gap never closes when a symmetry-respecting path is taken [15]. Hence all ground states in

the finite regime belong to the same phase. However, we still have the sense in the finite setting

that |C⟩ = |ϕ(0)⟩ and |+⟩⊗n = |ϕ(π/2)⟩ have strikingly different computational capabilities, and

intuitively we feel as though states “close” to the cluster state should have more power than states

close to the product state.

The results in [15] provide the resolution for the finite regime. Namely, Adhikary reveals the con-

nection between computational order parameters with string-order parameters used in condensed

1or at least, in one dimension

19



matter physics to distinguish between SPT phases. In this formalism (which we note applies equally

as well to finite and infinite systems to characterize computational power), the computational power

of the ground states of H(α) for a odd length n chain can be characterized by the expectation value:

2ν01(α) = ⟨ϕ(α)|ZkXk+1Ik+2Xk+3 . . . In−2Xn−1Zn|ϕ(α)⟩ (2.6)

2.3.4 Decoherence, division, and correlation length

Thus far we have glossed over what happens when one tries to do MBQC with ground states of

(2.5) that are away from the cluster state. In fact, it would be reasonable to meet the result of [14]

and the display of computational power in Fig. 2.10 with confusion; how are ground states |ϕ(α)⟩
of H(α) for 0 < α < π

4 equally as powerful as the cluster state, when in going away from cluster

state we are adding “computational uselessness” in the form of the product state term?

The devil lies in the details; as one does MBQC on states away from the cluster state, one finds

that symmetry breaking measurements generate decoherence. The formal reason for this is that

symmetry-respecting (i.e. X-basis if we recall the Z2⊗Z2 symmetry ofH(α)) measurements prevent

the mixing of the so-called logical and junk subsystems but symmetry-breaking measurements

(i.e. rotations) which are necessary to carry out one-dimensional computation entangles these two

systems, leading to the loss of quantum information [13].

At this point, the skeptical reader may object that it doesn’t sound as though computational

power should be uniform within the cluster phase at all, if symmetry breaking measurements

on non-cluster states results in loss of information! Therein, we present (but do not prove) the

result from [14] that within the cluster phase, one can use the construction of “oblivious wire”

to implement rotations in the cluster phase with error quadratic in the measurement angle. This

immediately presents a way to reduce the decoherence attained through rotations; namely by

splitting of the rotation angle. If we have that the error is ϵ(β) ∝ O(β2), then the effect of splitting

the measurement into N smaller rotations is therefore:

ϵ(βsplit) = NO((β/N)2) = O(β2/N)

so the takeaway is that in the infinite setting we can chop up our rotation as finely as we like

(take N large) for states within the cluster phase to decrease our error arbitrarily, in a technique

known as “divide-and-conquer”. With this technique, states in the cluster phase can be said to

have uniform computational power.

Now moving back to the finite setting, the idea of “chopping up the rotation as finely as we

20



like” is no doubt setting off alarm bells as of course this was a luxury only affordable to us when we

had infinite number of qubits to work with. In fact the problem is even more complex; there is a

α-dependent correlation length of the system ζ(α). In the infinite setting, the textbook approach is

to take the distance ∆ between successive rotations to be ∆ ≫ ζ(α) such that the rotations can be

considered independently and the total error is just the sum of the individual error. If this condition

is not met, then the operations are no longer independent and the total error is greater than the

sum of the errors of the individual operations. In the finite setting then, there appears to be a

trade-off. Does one split the rotation finely so as to minimize the decoherence from rotations but

where ∆ ≈ ζ(α) leads to complications with not being able to treat the rotations independently?

Or is it better to take ∆ large and to continue to work in the textbook regime?

The resolution to this question is provided by [15], where it is shown that not only is splitting

the rotation still beneficial in the finite setting, and in addition that is beneficial to split the rotation

as much as possible. Even though one enters the “counter-intuitive regime” where the different

rotations interact with each other, the computation still proceeds most efficiently (i.e. with the

least amount of logical decoherence) with maximal splitting.

2.3.5 Rotation-counter rotation test to measure computational power

We now consider the “simplest test” where one could showcase the computational power of finite

MBQC resources. Namely, we perform the following protocol:

1. Prepare a ground state |ϕ(α)⟩ of the interpolation Hamiltonian H(α) as in Eq. (2.5).

2. Prepare the one-qubit (logical) input state of |+⟩.

3. Implement what on the cluster state would be the composition of cancelling z-rotations, sep-

arated by an even distance ∆. In other words, implement Rz(β)Rz(−β) = I by measurement

in the eigenbasis of O(±β) on qubits with even separation ∆.

4. Measure the expectation value ⟨X⟩ of the logical output qubit (denoted as
〈
X
〉
).

For the 4-ring this protocol is illustrated graphically in Fig. 2.11.

The idea is that at the cluster point of α = 0 we expect
〈
X
〉
= 1 as the output state is

just |+⟩ as the result of the cancelling z-rotations. As we go away from the cluster state with

α ̸= 0, we expect a drop in
〈
X
〉
from effects of the aforementioned logical decoherence from the

symmetry-breaking measurements of O(±β). From here onward, we take β = π/2 as this yields the

measurement furthest away from the symmetry respecting choice (note that β = 0 mod π would
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β

X

−β
X

Figure 2.11: Visualization of the rotation-counter rotation MBQC protocol. A ring is pre-
pared in the state |ϕ(α)⟩. We input a |+⟩ state, then perform measurements O(±β)
on qubits 1/3 (with rotations separated by distance ∆ = 2) and wire basis mea-
surements on qubits 2/4 before measuring the expectation value ⟨X⟩ of the resulting
logical qubit state.

lead to Rz(β) = I which would in fact respect the Z2 ⊗ Z2 symmetry). The intuition is that the

experiment is measuring the ability for states |ϕ(α)⟩ to carry out rotations without decoherence;

therefore the value of
〈
X
〉
is a measure of the computational power of the state.

The theoretical predictions for these expectation values as a function of the interpolation pa-

rameter α, the ring size N , and the rotation separation ∆ can be calculated using iTensor [23].

These predictions are provided in Figs. 2.12 and 2.13, with computations credited to A. Adhikary.

We note that in systems approaching the thermodynamic limit (e.g. for large system size

N = 400, as seen in Fig. 2.12) that the curves reproduce the SPT-phase result; we see a clear

separation of states that are computationally useful (α < π
4 ) and states that are computationally

useless (α > π
4 ) with a phase transition at α = π

4 . In the small-system regime, the drop in

computational power is not as steep as in the thermodynamic limit, but the curves of computational

power follow a similar characteristic shape that tends to the thermodynamic limit result as N is

taken to be large.

Also, we note the choice of boundary conditions for the above experiment, which has so far been

an unexplained switch from the familiar formalism of MBQC on chains. The ultimate reason is

that while the boundary effects are insignificant in the thermodynamic limit, for small system sizes

the effects can be quite severe. One can point to the fact that a finite cluster chain has incomplete

stabilizers of X1Z2 and Zn−1Xn at the chain boundaries. To avoid this effect, one can consider
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Figure 2.12: Theory plots of
〈
X
〉
versus the interpolation parameter α for the rotation-

counter rotation protocol. The plots were obtained using iTensor, for rings of size
N = 4, 8, 12, 16, 400, rotation angle β = π

2 and rotation separation ∆ = 2. The
calculations and plots are credited to A. Adhikary.
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Figure 2.13: Theory plots of
〈
X
〉
versus the interpolation parameter α for the rotation-

counter rotation protocol. The plots were obtained using iTensor, for a ring of size
N = 100, rotation angle β = π

2 and rotation separations ∆ = 2, 4, 6. The calculations
and plots are credited to A. Adhikary.
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closing the chain into a ring by enforcing the stabilizers ZnX1Z2 and Zn−1XnZ1 (or operationally,

by applying a entangling CZ gate between the two chain boundary qubits). We will return to this

discussion when we discuss experimental implementations in the following chapter.

A theoretical calculation can be made in the limit that the separation distance is much larger

than the correlation length, i.e. ∆ ≫ ζ(α). In this regime, with rotation angle β = π/2 we have:

〈
X
〉
= (2ν01)

2 (2.7)

where ν01 is the computational order parameter as introduced in Eq. (2.6). Note that the correlation

length ζ(α) diverges at α = π
4 (where the phase transition from the cluster phase to product phase

would occur in the thermodynamic limit) and the numerics in Fig. 2.13 indeed demonstrate a

deviation from this simple relation of
〈
X
〉
and ν01. There we see that as α approaches π

4 the curves

differ depending on ∆, while in Eq. (2.7) the expectation value is ∆-independent.

There are two takeaways here that will motivate the remainder of the thesis. The first is

the following: even in the finite regime, we observe the “robusteness” of quantum computational

power. Though
〈
X
〉
(which we take as a proxy for computational power in this experiment, with

the direct relationship of Eq. (2.7) holding when ∆ ≫ ζ(α)) is maximized when α = 0 (i.e. the

cluster state), we still observe computationally useful states as we go away from the cluster state.

The second is the following: we see a deviation from the simple theory prediction of (2.7) in the

above numerical results due to the interplay of ν01 and correlation length ζ(α). This interplay is

key to the “counter-intuitive regime” result of managing decoherence in MBQC in finite settings as

previously discussed, and any experiment to demonstrate such decoherence management will need

to be sensitive enough to be able to measure this interplay and hence deviation.

This gives us a concrete objective that we will pursue for the remainder of the thesis. Namely,

can we reproduce the curves depicted in Fig. 2.12 on a physical quantum device? As per the

first takeaway, this will allow us to experimentally demonstrate the robustness of computational

power in MBQC resource states. Not only is this interesting from the theoretical perspective, but

it also provides a new use case of NISQ devices to showcase interesting phenomenology concerning

quantum computational power. As per the second takeaway, such a result would show that NISQ

devices possess the fidelity to resolve small but intriguing theoretical effects. Hence, it would

demonstrate that they are viable for future studies concerning not only the display of decoherence in

MBQC, but optimal techniques for management of that decoherence (namely “divide-and-conquer”

and “the counter-intuitive regime”).
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2.3.6 Creating resource states

One natural question that comes up in the discussion of the ground states |ϕ(α)⟩ of the interpolation
Hamiltonian in Eq. (2.5) is “how does one actually generate these states on a quantum computer”.

Of course we know how to create the cluster state |C⟩ and the product state |+⟩⊗n with relative

ease, but generating the interpolated ground states appears to be nontrivial.

Here we take our first steps to resolve this problem. First, we recognize that we can always

find a unitary U(α) that connects two states in the same Hilbert space. So, let us connect |ϕ(α)⟩
and the cluster state |C⟩ as |ϕ(α)⟩ = U(α)|C⟩. Further, we can take U(α) to respect the Z2 ⊗ Z2

symmetry of H(α). Now, we claim that we can find a simple representation of U(α) that only

consists of Pauli-X and Identity operators. The argument will rely on the fact that U(α) respects

the above symmetry, and the fact that we can pull out cluster state stabilizers Zi−1XiZi+1 from

|C⟩.
Proof. It suffices to prove the claim for a Pauli operator P that satisfies [P, IXIXIX . . .] =

[P,XIXIXI . . .] = 0 as U(α) can then be written as the weighted sum of such Pauli operators. If

P consists solely of X and I operators already, then we are done. Suppose then that P does not

consist of solely X and Is; then, P contains Zs or Y s (or both). However, since P commutes with

the symmetries, the following conditions must hold:

1. There are in total an even number of Zs/Y s on odd sites.

2. There are in total an even number of Zs/Y s on even sites.

This is because since XZ = −ZX and XY = −Y X, there must be an even number of anti-

commutations for the negatives to cancel and for P to commute with the symmetries.

To this end, let us pair up Z/Y s on odd sites (pairing up those that are the closest to each

other) and let us pair up Z/Y s on even sites (again pairing up those that are the closest to each

other). We now introduce an algorithm to deal with each pair and get rid of the Z/Y s.

For each pair on odd sites (one of Z2n+1Z2n+1+2k, Y2n+1Z2n+1+2k, Z2n+1Y2n+1+2k, Y2n+1Y2n+1+2k)

we multiply P by the stabilizers Z2n+1X2n+2Z2n+3, Z2n+3X2n+4Z2n+5, · · ·Z2n−1+2kX2n+2kZ2n+1+2k.

In other words, multiply P by all the cluster stabilizers centered on even sites that fall in between

the two offending Z or Y operators. This has the net effect of multiplying P by:

Z2n+1X2n+2I2n+3X2n+4 . . . I2n+2k−1X2n+2kZ2n+2k+1.

This has the effect of removing the offending Z/Y terms at the 2n + 1 and 2n + 2k + 1 sites. In
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addition, it introduces no new Z/Y operators in between. Repeating this process for every pair of

odd sites with offending Z/Y operators, we remove all Zs/Y s on odd sites.

Similarly, for each pair on even sites (one of Z2nZ2n+2k, Y2nZ2n+2k, Z2nY2n+2k, Y2nY2n+2k), we

multiply P by the stabilizers Z2nX2n+1Z2n+2, Z2n+2X2n+3Z2n+4, · · ·Z2n−2+2kX2n−1+2kZ2n+2k. In

other words, multiply P be all the cluster stabilizers centered on odd sites that fall in between the

two offending Z or Y operators. This has the net effect of multiplying P by:

Z2nX2n+1I2n+2X2n+3 . . . I2n+2k−2X2n+2k−1Z2n+2k.

This has the effect of removing the offending Z/Y operators at the 2n and 2n+2k sites. In addition,

it introduces no new Z/Y operators in between. Repeating this process for every pair of even sites

with offending Z/Y operators, we remove all Zs/Y s on even sites.

Hence, we have given an algorithm such that our Pauli operator P modulo the cluster state

stabilizers can be represented by purely X and I operators (as we have removed all the Z and Y s

by the above algorithm). This concludes the proof.

So, we have shown that there exists a representation T (α) of U(α) that solely consists of Pauli

X and I operators. Note that in the above construction that different Pauli parts in the weighted

sum can be multiplied by different stabilizer operators; as such, the unitary of U(α) can be lost in

this process. We will return to this consequence in a later portion of the thesis. We can make a

further simplification; to first-order in perturbation theory, T (α) is local. Further, on a ring T (α)

will be translation invariant, so its action will the same on each site. We can therefore write:

T (α) =

n⊗
i=1

(a(α)Ii + b(α)Xi) .

Given this simple form of T (α), classical variational algorithms can be used to solve for the coef-

ficients a(α) and b(α). From previous work by D. Bondarenko, it has been shown that for small

ring-sizes (up to n = 6), the T (α)|C⟩ found by classical optimization with the locality assumption

is found to well approximate the exact ground state |ϕ(α)⟩. However, we may desire more general-

izable method for finding these coefficients, as for larger systems the calculation of T (α) becomes

inaccurate under the locality assumption and intractable. To this end, we introduce a method to

search for T (α) using a quantum device through the method of VQE.
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2.4 Variational quantum eigensolvers

In this section, we introduce the theory of Variational Quantum Eigensolvers, or VQEs. VQEs are

a a class of hybrid quantum-classical algorithms which have seen use in fields such as quantum

chemistry [24]. The goal is to search for the unknown ground state |ψ0⟩ of some Hamiltonian H.

To this end, these algorithm make use of variational principle, which states that for a Hamiltonian

H with ground state energy E0, any quantum state |ψ⟩ satisfies:

⟨ψ|H|ψ⟩ ≥ E0.

Given this principle, we can consider some variational ansatz |ψ(θ⃗)⟩ which depends on parameters

θ⃗. We can adjust these parameters to try to minimize ⟨ψ(θ⃗)|H|ψ(θ⃗)⟩, leading to an approximation

of the ground state |ψ0⟩. This motivates the VQE algorithm as given in Table 2.1. We will discuss

a specific variation on this general algorithm in the proceeding sections, which we can use to search

for the T (α) operator experimentally.

VQE algorithm.

For a given Hamiltonian H for which we wish to approximate the ground state
|ψ0⟩, execute the following steps.

1. Devise a variational anstatz |ψ(θ⃗)⟩ for the ground state.

2. Create |ψ(θ⃗)⟩ on a quantum device, with the preparation gates parame-
terized by θ⃗.

3. Measure the energy E = ⟨ψ(θ⃗)|H|ψ(θ⃗)⟩ of the state.

4. Feed in the results into a classical computer to optimize the parameters
θ⃗.

5. Repeat steps 2-4 until E is minimized. The resulting |ψ(θ⃗)⟩ yields an
approximation to the ground state.

Table 2.1: VQE algorithm.
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Chapter 3

Methods

In the previous section, we discussed the theory that forms the groundwork of the thesis. We also

introduced in subsection 1.3.5 a test of computational power one could conduct. In this section,

we flesh out the methods necessary to conduct this test experimentally, in the simplest setting of

the 4-qubit ring.

3.1 Simulating MBQC on IBM devices

In this work, we have chosen to use the quantum devices provided by IBM as a) They have a widely

used open-source SDK Qiskit for creating, simulating, and running quantum circuits and b) They

offer free usage of small-scale quantum devices. IBM’s quantum devices use superconducting qubits

that execute quantum computation using the circuit model [25]. Therein enters the second layer

of “simulation” in the title of this thesis; while MBQC simulates of the circuit model via adaptive

measurements, we now wish to simulate a MBQC measurement protocol in the circuit model. The

ideal simulation of the protocol in Section 1.3.5. would proceed as in Table 3.1.

However, there are logistical problems with all but the last step of this procedure at the outset:

(A) (Step 1) The IBM machines do not have universal connectivity of qubits; that is, it is not

possible to apply entangling CZ gates between arbitrary pairs of qubits.

(B) (Step 2) The T (α) representation we have is a non-unitary operator; it therefore cannot in

general be implemented efficiently via unitary quantum gates.

(C) (Step 3) The IBM machines operate in the circuit model, and therefore do not support mea-

surement in arbitrary measurement bases; only the computational basis.
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Protocol for measurement of
〈
X
〉
ϕ(α)

on IBMQ device (ver 1).

1. Create a cluster state by applying H⊗4 to the initial register of qubits
|0⟩⊗4, and then applying CZ gates between qubits pairs 1-2, 2-3, 3-4,
1-4 to form the cluster ring |Cring⟩

2. Apply the T (α) =
⊗n

i=1 (a(α)Ii + b(α)Xi) transformation operator to
each qubit as discussed in Section 1.3.6 to |Cring⟩ to obtain the ground
state of interest |ϕ(α)⟩.

3. Measure the first qubit in O(β = π/2), the second qubit in X, the third
qubit adaptively in O((−1)s2(−β)) where s2 is the measurement outcome
of the second qubit, and the fourth qubit in X.

4. Obtain the measurement outcome for X on the encoded qubit by inter-
preting the measurement outcomes from Step 3.

5. Repeat many times and average outcomes to obtain the expectation
value ⟨X⟩ of the encoded qubit.

Table 3.1: Procedure (version 1) for measurement of
〈
X
〉
for (4-qubit)

ground state |ϕ(α)⟩ of H(α) on an IBM circuit-model quantum
computer.

(D) (Step 3) The IBM machines do not support adaptive measurements1; hence we cannot adap-

tively change the measurement basis on the third qubit based on the outcome of the second

qubit.

(E) (Step 4) We do not know how to interpret the measurement outcomes to extract the value of

the logical X-measurement.

We address problems D/C/E here and address A/B in the proceeding sections.

Solution to problem D. Since we cannot adaptively measure, we post-select on measurement

outcomes; we measure in O(β) on the first qubit, X on the second qubit, O(−β) on the third qubit,

1For completeness, we note that while the devices do allow for intermediate measurements, conditional operations
based on the outcomes of such intermediate measurements are not supported at this time. So effectively, we only
have access to an all-at-once measurement at the end of the computation.
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and X on the fourth qubit, and if we find that s2 = 1 (i.e. the “wrong” measurement outcome

that would flip the third measurement) we discard that run of the experiment.

Solution to problem C. We recall the projector-unitary identity as in Eq. (2.4), which tells

us that for a measurement observable O (with eigenvalues ±1) and unitary U :

ΠOU = ΠU†OU .

Previously, we used this relation to show that applying a unitary and then measuring could be

equivalently attained with one measurement. We now use the reverse; that one measurement can

be equivalent to applying a unitary (which we now have access to as we work with a circuit-

model quantum computer) and then measuring in Z. Therein, suppose O′ is the observable whose

eigenbasis we wish to measure in, but we only have access to measuring in the computational (Z)

basis. We set O = Z, U †OU = O′ and then solve for what U should be. If |v+⟩, |v−⟩ are the ±1

eigenstates of O′, then we find from O′ = U †ZU that

U = |0⟩⟨v+|+ |1⟩⟨v−| (3.1)

Note that for the measurement bases of interest of X and O(±β), this amounts to ΠX = ΠZH

and ΠO(±β) = ΠXRz(±β) = ΠZHRz(±β).
Solution to problem E. We can carry out an explicit calculation of the MBQC protocol on a

4-qubit cluster ring to determine what ⟨X⟩ should be for the encoded state. Given an input state

of |ψin⟩ = |+⟩1, the circuit to be executed is provided by Fig. 3.1(a). This circuit can then be

simplified via the half-teleportation and z-rotation identities to yield the circuit in Fig. 3.1(b).

O(β)s1

Xs2

O(−β)s3

Xs4

|+⟩1

|+⟩2

|+⟩3

|+⟩4

=

(a) (b)

Xs3

Xs4

|+⟩1 Rz(β) Rz((−1)s2(−β)) Zs1 Xs2

|+⟩4

Figure 3.1: Circuit for rotation-counter rotation protocol on 4-qubit cluster ring (a) and
subsequent simplification using half-teleportations (b).
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We then use the identity that the two qubit cluster state is a locally Hadamard rotated bell

pair, where:

|C2⟩ = CZ1,2|++⟩ = (I1 ⊗H2)|B00⟩.

Combining these with the projector identity of ΠX = ΠZH and the conjugation identity of

HZH = X, we obtain the circuit in Fig. 3.2.

Zs3

Zs4
|B00⟩

Rz(β) Rz((−1)s2(−β)) Zs1 Xs2 H

Figure 3.2: Simplified version of circuit in Fig. 3.1 for the rotation counter-rotation protocol
on the 4-qubit cluster ring. The input is written as a Bell state, and the combination
of the CX and Hadamard gate with the computational basis measurements realizes a
Bell measurement.

The circuit above provides us with a physical interpretation of MBQC on a ring. In this setting,

the input is realized as the Bell state |B00⟩. Then, the first qubit of the Bell pair is selectively

evolved through the sequence of measurements (with byproduct operators), as would occur in the

standard mechanism of MBQC on a chain. Finally, the pair of qubits is measured in the Bell basis.

For our experimental realization of the protocol, we post select on s2 = 0. The measurement

outcome of our interest, which is the outcome on the first qubit of the Bell pair (the qubit that

undergoes evolution) is then determined by s1+s3, which can seen by propogating the Zs1 byprod-

uct to the final measurement. Explicitly, an outcome of s1 + s3 = 0 corresponds to a logical X

outcome of 1, and the outcome of s1 + s3 = 1 corresponds to a logical X outcome of −1. It then

follows that
〈
X
〉
= ⟨(−1)s1+s3⟩. The fully simplified circuit is shown in Fig. 3.3 below.

It is evident from the fully simplified circuit that s1+s3 = 0 always for the cluster state as Rz(β)

and Rz(−β) perfectly cancel and the subsequent Bell measurement on |B00⟩ returns the outcome

00. Hence, we find that
〈
X
〉
= ⟨(−1)s1+s3⟩ = 1 as we expect. For MBQC on states away from the

cluster state (i.e. |ϕ(α)⟩ for α > 0), we find that the rotations Rz(±β) are no longer implemented

without logical decoherence, and hence do not cancel to the identity as in the cluster case. However,

the final measurement outcome of interest is still determined in the same way as the cluster case to

be s1 + s3. Hence, the expectation value of X for the logical qubit in the rotation-counter rotation
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Zs1+s3

Zs4
|B00⟩

Rz(β) Rz(−β) H

Figure 3.3: Fully simplified circuit for the rotation-counter rotation protocol on 4-qubit clus-
ter ring, using post-selection condition of s2 = 0 and propagating the Zs2 gate past
the Hadamard and into the measurement.

protocol is concluded to be given by:

〈
X
〉
=
〈
(−1)s1+s3

〉
. (3.2)

3.2 Solution to problem A - Local complementation

As was noted in the previous section, the available IBM devices do not have universal connectivity;

entangling gates cannot be applied to arbitrary pairs of qubits. In particular, the smallest-qubit

architectures of our interest have linear connectivity, as shown in Fig. 3.4 below.

Figure 3.4: Visualization of linear architecture of the 5-qubit quantum computers
ibmq bogota, ibmq santiago, and ibmq manila. Circles represent qubits and lines rep-
resent pairs for which two-qubit gates (i.e. CX gates) may be applied.

We wish to prepare the 4-qubit cluster ring, so this architecture is less than optimal. In

principle, we could prepare the 4-qubit cluster chain, swap the states of the first and third qubits

through a series of SWAP gates, apply an entangling gate to close the ring, and then SWAP back.

However, two qubit gates have higher error-rates than single-qubit operations; we therefore want

to minimize the number of two qubit gates we apply. Given that a SWAP gate is equivalent to

CZ1,2CZ2,1CZ1,2 the closing of the ring at first seems to incur a cost of 12 additional 2-qubit gates,

which is suboptimal.

Fortunately, there exists a way to interchange between graph state architectures of certain types

through use of local gates only, in a method known as local complementation [26]. In [26] it is
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shown that through a sequential application of the (local) operator:

Ua(G) =
√
−iXa

∏
b∈Na

√
iZb (3.3)

that it is possible to convert between the cluster chain and cluster ring. Note thatNa here represents

the neighbours of the qubit a in the graph state. This sequence is outlined in Fig. 3.5 below.

Cluster chain

3 4

2 1

3 4

2 1

3 4

2 1

3 4

2 1
=

Cluster ring

2 4

3 1

Figure 3.5: Visualization of local complementation sequence to convert from the 4-qubit
cluster chain to ring. At each step, the operator in Eq. 3.3 is applied, with a taken to
be the vertex in blue.

We therefore in our experiments can generate a 4-qubit cluster chain and then apply a sequence

of inexpensive/less error-prone local unitary gates to transform this into a ring. We also note the

small detail of qubits 2/3 switching their positions through the complementation. We do not need

to apply a SWAP gate to account for this, but rather can keep track of the relabelling in the circuit

and in post-processing the outcomes thereafter.

Before we move onto addressing the final (and most subtle) problem, the protocol in its current

state is given in Table. 3.2, with graphical representation given in Fig. 3.6. Of course, this circuit

is still not the one we can actually run due to the sticking issue of the non-unitarity of T (α), which

we now address.

3.3 Solution to problem B - Pushing T (α) to the measurement

3.3.1 Associativity trick

Finally, we will now resolve the issue of the inefficiency of implementing T (α) arising from its non-

unitarity. First, we note that as per the realization that
〈
X
〉
= ⟨(−1)s1+s3⟩ and s2 = s4 = 0, we

really are just measuring the four probabilities p(s1 = 0, s3 = 0), p(s1 = 0, s3 = 1), p(s1 = 1, s3 = 0),

and p(s1 = 1, s3 = 1). Denote by |O(±β)±⟩ the positive/negative eigenstates of O(±β). Then the
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Protocol for measurement of
〈
X
〉
ϕ(α)

on IBMQ device (ver 2).

1. Prepare the cluster chain on |0⟩⊗4 by applying H⊗4 and applying CZ
gates on pairs 1-2, 2-3, 3-4 as allowed by the architecture.

2. Apply the local complementation procedure as dictated by Eq. (3.3) and
Fig. 3.5 to convert from a cluster chain to a ring.

3. Apply the T (α) =
⊗n

i=1 (a(α)Ii + b(α)Xi) transformation operator to
each qubit as discussed in Section 1.3.6 to |Cring⟩ to obtain the ground
state of interest |ϕ(α)⟩.

4. Apply H to qubits 2/4, Rz(β)H to qubit 1, and Rz(−β)H to set up
measurements in the desired bases.

5. Physically measure all 4-qubits in the computational basis.

6. If s2 = 1, then throw away that run of the experiment. Otherwise, keep
the measured outcome, and calculate the logical expectation value as〈
X
〉
= ⟨(−1)s1+s3⟩.

Table 3.2: Procedure (version 2) for measurement of
〈
X
〉
for (4-qubit)

ground state |ϕ(α)⟩ of H(α) on an IBM circuit-model quantum
computer.

post-measurement states |v±,±⟩ are given by:

|v±,±⟩ = |O(β)±⟩1|+⟩2|O(−β)±⟩3|+⟩4 (3.4)

and therefore the probabilities of obtaining this post measurement state is given simply by the

Born rule to be:

p(s1 = 0/1, s3 = 0/1) = |⟨v±,±|ϕ(α)⟩|2

We now observe, using that |ϕ(α)⟩ = T (α)|C⟩ and associativity that:

p(s1 = 0/1, s3 = 0/1) = |⟨v±,±|(T (α)|C⟩)|2 = |(⟨v±,±|T (α))|C⟩|2 = |
〈
T †(α)v±,±

∣∣∣C〉|2
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4-Chain L.C. T (α) Measurement
Zs1

Zs3

Zs2

Zs4

|0⟩ H V1 T Rz(β) H

|0⟩ H V2 T Rz(−β) H

|0⟩ H V3 T H

|0⟩ H V4 T H

|0⟩⊗4 |Cchain⟩|Cring⟩|ϕ(α)⟩

Figure 3.6: Circuit realization of the rotation-counter rotation protocol as described in Sec-
tion 2.3.5.. We first prepare the 4-qubit cluster chain (red), then form the 4-qubit
cluster ring (orange) via local complementation (noting the relabelling of qubits 2/3).
We then apply the T (α) operator to obtain the ground state of interest |ϕ(α)⟩ (yellow).
We then apply Rz(±β) to qubits 1/3 to produce a rotation aand counter rotation, and
apply Hadamards to qubits 2/4 to produce quantum wire 2/4 (green). The value of〈
X
〉
is obtained by taking ⟨(−1)s1+s3⟩.

so we conclude:

p(s1 = 0/1, s3 = 0/1) = |⟨v±,±|ϕ(α)⟩|2 = |
〈
T †(α)v±,±

∣∣∣C〉|2. (3.5)

the above derivation is mathematically trivial, but is profound. Namely, it tells us that the proba-

bility of obtaining post measurement state |v±,±⟩ with pre-measurement state |ϕ(α)⟩ is equivalent
to obtaining post measurement state |T †(α)v±,±⟩ with pre-measurement state |C⟩ (the cluster

state). In other words, our problem decomposes; instead of having to worry about preparing

|ϕ(α)⟩ = T (α)|C⟩ on the quantum device (which could be inefficient), we can (easily) prepare the

cluster state and just change our measurement basis instead, obtaining the same results for the

probabilities and hence for
〈
X
〉
.
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3.3.2 Non-orthogonal measurements

The above trick does not quite solve all of our problems, for the following reason: non-unitary

operators do not in general preserve angles. We here will discuss a simpler example to show why

this could be problematic. Suppose we have an orthonormal basis B0 = {|k+⟩, |k−⟩}. We then

consider applying some non-unitary T † to both of these states, giving us T †|k+⟩, T †|k−⟩, which
we want to find the probabilities of obtaining as post-measurement states. T † is not in general

norm preserving, so we first normalize; we define |n±⟩ = T †|k±⟩
⟨k±|TT †|k±⟩ which are indeed normalized.

However, |n+⟩, |n−⟩ are not in general orthogonal, as TT † ̸= I and so generally:

⟨n+|n−⟩ =
⟨k±|TT †|k±⟩

⟨k+|TT †|k+⟩⟨k−|TT †|k−⟩
̸= ⟨k+|k−⟩

⟨k+|TT †|k+⟩⟨k−|TT †|k−⟩
= 0

Therefore {|n+⟩, |n−⟩} does not in general form an orthonormal basis. However, we require an

orthonormal basis to carry out quantum measurements!

We rectify this situation as follows: We consider the two orthonormal bases given by B1 =

{|n+⟩, |n+⟩⊥}, B2 = {|n−⟩, |n−⟩⊥} where |ψ⟩⊥ is a normalized ket orthogonal to |ψ⟩. For |ψ⟩ =

a|0⟩+ b|1⟩, |ψ⟩⊥ = b∗|0⟩ − a∗|1⟩.

|k+⟩

|k−⟩

T †

|n+⟩

|n−⟩

|n−⟩⊥

|n+⟩⊥

Figure 3.7: Visualization of application of a non-unitary T † to an orthonormal basis
{|k+⟩, |k−⟩}. Since non-unitary operators do not preserve inner products, the resulting
states T †|k±⟩ are not generally normalized nor orthogonal. However, we can normalize
to form |n±⟩, and then define orthogonal vectors to these transformed states to form
two separate bases.

We can then do two experiments; one measuring in the B1 basis and one measuring in the B2

basis. Then, denote by p+ the probability of measuring |n+⟩ in the first experiment and by p− the
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probability of measuring |n−⟩ in the second experiment. We can then calculate:

p′+ =
p+

p+ + p−
, p′− =

p−
p+ + p−

and these probabilities p′+, p
′
− are precisely what the probabilities of measuring |n+⟩ ∼ T †|k+⟩ and

|n−⟩ ∼ T †|k−⟩ would be if we were able to perform a single experiment measuring in {|n+⟩, |n−⟩}.
Let us return back from this illustrative example and consider the states at hand. We want to

measure in the basis {T †(α)|v±,±⟩} where |v±,±⟩ = |O(β)±⟩1|+⟩2|O(−β)±⟩3|+⟩4 as before. Note

that since the coefficients a(α), b(α) in T (α) =
⊗n

i=1 (a(α)Ii + b(α)Xi) are real, we have that

T †(α) = T (α). Looking at the action of Ti(α) = a(α)Ii + b(α)Xi on |+⟩, we have:

Ti(α)|+⟩ = (a(α)I + b(α)X)|+⟩ = (a(α) + b(α))|+⟩

so other than a renormalization of the state by 1
a(α)+b(α) , qubits 2/4 are unchanged by T (and are

still orthogonal to |−⟩); hence for these qubits the above construction of forming a new ONB need

not be applied. For the action of Ti(α) on |O(β)±⟩, we are less fortunate:

Ti(α)|O(β)±⟩ = (a(α)I + b(α)X)

(
± e

iβ

√
2
|0⟩+ 1√

2
|1⟩
)

=
±a(α)eiβ + b(α)√

2
|0⟩+ ±b(α)eiβ + a(α)√

2
|1⟩

we find that Ti(α)|O(β)+⟩ and Ti(α)|O(β)−⟩ are not orthogonal to each other. Therefore, for qubits

1 and 3 we define:

|n(±β)±⟩ =
Ti(α)|O(±β)±⟩

⟨O(±β)±|T 2
i (α)|O(±β)±⟩

(3.6)

And construct orthogonal kets |n(±β)±⟩⊥. Since we now have two non-orthogonal measurements,

we require 22 = 4 different experiments in different measurement bases. These four bases are

(omitting the |+⟩ qubits on 2 and 4 which are the same for each bases):

(a) {|n(β)+⟩1|n(−β)+⟩3, |n(β)+⟩⊥1 |n(−β)+⟩3, |n(β)+⟩1|n(−β)+⟩⊥3 , |n(β)+⟩⊥1 |n(−β)+⟩⊥3 }

(b) {|n(β)+⟩1|n(−β)−⟩3, |n(β)+⟩⊥1 |n(−β)−⟩3, |n(β)+⟩1|n(−β)−⟩⊥3 , |n(β)+⟩⊥1 |n(−β)−⟩⊥3 }

(c) {|n(β)−⟩1|n(−β)+⟩3, |n(β)−⟩⊥1 |n(−β)+⟩3, |n(β)−⟩1|n(−β)+⟩⊥3 , |n(β)−⟩⊥1 |n(−β)+⟩⊥3 }

(d) {|n(β)−⟩1|n(−β)−⟩3, |n(β)−⟩⊥1 |n(−β)−⟩3, |n(β)−⟩1|n(−β)−⟩⊥3 , |n(β)−⟩⊥1 |n(−β)−⟩⊥3 }
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Denoting j1, j2, j3, j4 as the outcomes on the four qubits in the experiments above, we are interested

in the probability p(j1 = j3 = 0) of getting the first outcome in the basis (again post selecting on

experiments where j2 = 0). Each of these probabilities corresponds to a probability that we wanted

to measure in the original experiment. Namely, p(j1 = j3 = 0) in experiment (a) corresponds to

the probability that p(s1 = s3 = 0), and analogously experiment (b) gives the probablity that

p(s1 = 0, s3 = 1), experiment (c) gives the probability that p(s1 = 1, s3 = 0) and experiment (d)

gives the probability that p(s1 = s3 = 1).

In accordance with applying a unitary to adjust the measurement bases, the corresponding

unitaries for the above measurement bases as given by Eq. (3.1) are denoted:

Nα(β,±) = |0⟩⟨n(β)±|+ |1⟩⟨n(β)±|⊥. (3.7)
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Chapter 4

Results - Algorithms

4.1 Circuits and post-processing algorithm rotation-counter
rotation experiment

Having now resolved all of the problems with our initial formulation in Table 3.1, we give a complete

and fully executable procedure for the measurement of the expectation value
〈
X
〉
for the rotation-

counter rotation protocol as carried out on the 4-qubit (ring) |ϕ(α)⟩. This is provided in Table 4.1,

with visualized circuits in Fig. 4.1.
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Protocol for measurement of
〈
X
〉
ϕ(α)

on IBMQ device (ver 3).

For a given value of the interpolation parameter α, and corresponding coeffi-
cents a(α), b(α) of the transformation operator T (α), execute the following:

1. For many times, run the four circuits given in Fig. 4.1. In each, the
following occurs:

(a) The cluster chain is prepared |0⟩⊗4 by applying H⊗4 and applying
CZ gates on pairs 1-2, 2-3, 3-4 as allowed by the architecture.

(b) The local complementation procedure as dictated by Eq. (3.3) and
Fig. 3.5 is applied to convert from a cluster chain to a ring.

(c) H is applied to qubits 2/4 to set up for a wire basis measurement.
A combination of Nα(β = π/2,±) and Nα(−β = −π/2,±) (defined
by Eq. 3.7) are applied to qubits 1/3 respectively to set up the
non-orthogonal measurement protocol as described in Section 3.3.

(d) The qubits are physically measured in the computational basis.

(e) Any outcomes with j2 = 1 are discarded due to post selection.

(f) From the remaining outcomes, compute the probability p(j1 = j3 =
0).

2. Denote by p++ the the probability of p(j1 = j3 = 0) found in the first
step for N(β,+) on qubit 1 and N(−β,+) on qubit 3, with analogous
definitions of p+−, p−+, and p−−. Calculate P = p+++p+−+p−++p−−
as the normalization factor.

3. Define p′++ = p++/P and analogously for p′+−, p
′
−+, p

′
−−. Note the

correspondence of p(s1 = s3 = 0) = p′++, p(s1 = 0, s3 = 1) = p′+−,
p(s1 = 1, s3 = 0) = p′−+ , p(s1 = 1, s3 = 1) = p′−−.

4. Calculate
〈
X
〉
as:〈

X
〉
=
〈
(−1)s1+s3

〉
= p′++ + p′−− − p′+− − p′−+.

Table 4.1: Procedure (complete) for measurement of
〈
X
〉
for (4-qubit)

ground state |ϕ(α)⟩ of H(α) on an IBM circuit-model quantum
computer.
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4-Chain L.C. Measurement
Zj1

Zj2

Zj3

Zj4

|0⟩ H U1 Nα(β,+) or Nα(β,−)

|0⟩ H U2 H

|0⟩ H U3 Nα(−β,+) or Nα(−β,−)

|0⟩ H U4 H

Figure 4.1: The 4 circuits used for measurement of the encoded
〈
X
〉
on the 4-qubit ring

|ϕ(α)⟩. We prepare the 4-qubit cluster chain (red), then form the 4-qubit cluster ring
(orange) via local complementation (noting the relabelling of qubits 2/3). We then
have four sets of Nα(β,±) operators that we apply to conduct the non-orthogonal
measurement.

4.2 VQE to find T (α)/VQE algorithm for ⟨Xi⟩θ
Currently, our transformation operator T (α) is found via classical variational optimization. How-

ever, we have two reasons for wanting to find T (α) on a quantum computer. Firstly, the search for

T (α) becomes classically intractable for large system sizes. Secondly, the project would be closer to

true quantum mechanical demonstration by cutting out a currently classical component. Therein,

we consider a variant of the VQE algorithm as described in Section 2.4 on the IBM devices. We

therefore require a variational ansatz state |Ψ(θ)⟩ which approximates |Φ(α)⟩ = T (α)|C⟩ (where

|C⟩ is a cluster ring of even size). Therein, we select the ansatz:

|Ψ(θ)⟩ = T ′(θ)|C⟩ =

(
n⊗

i=1

cos(θ)Ii + sin(θ)Xi

)
|C⟩ =

⊗
i

T ′
i (θ)|C⟩. (4.1)

This ansatz has many of the desired properties; namely that it shares the translation invariance

and Z2 ⊗Z2 symmetry of H(α), it agrees with a perturbation theory theory to linear order, and it

predicts the existence of a phase transition (much like we see with |ϕ(α)⟩.
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We have that T ′(θ) = (
⊗

i cos(θ)Ii + sin(θ)Xi) approximates T (α) best when the energy is

minimized. The per-site energies are given by:

Ei = − cos(α) ⟨Ki⟩θ − sin(α) ⟨Xi⟩θ (4.2)

Where Ki = Zi−1XiZi+1 is the cluster state stabilizer at site i, and Xi is the magnetic field at site

i. So for each α we find a θ for which Ei is minimized, allowing us to find θ as a function of α and

therefore learn a form of T (α) using a quantum variational algorithm.

We therefore wish to construct circuits to conduct measurements of ⟨Xi⟩θ and ⟨Ki⟩θ for varying
values of θ. Note that due to the translation invariance of |Ψ(θ)⟩, it suffices to consider measure

and minimize for a single site i (as the result will be the same for every site). WLOG we can

then consider measurements of ⟨X1⟩θ and ⟨K2⟩θ = ⟨Z1X2Z3⟩θ. One roadblock that stands in our

way follows from the previous discussion of non-unitarity; T ′(θ) as given in (4.1) is non-unitary, so

implementing and then measuring this state should be inefficient. However, there turns out to be a

drastic simplification in the measurement of ⟨X1⟩θ. The algorithm for measuring it is given below

in Table 4.2. The proceeding algorithm, its derivation, and its proof of correctness are attributed

to R. Raussendorf.
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Protocol for the measurement of the magnetic field.

1. For many times, run the simple one qubit circuit

Zs′

|+⟩ U(θ)

where U(θ) ∼=
[
cos θ sin θ
− sin θ cos θ

]
. Group the simulation outcomes s′i into

batches of size 2.

2. Pick a pair of batches (b, b′). If it holds that
∑

i∈b s
′
i mod 2 =

∑
j∈b′ s

′
j

mod 2 = 0, then keep both batches; otherwise discard them. Repeat
until all batches have been checked.

3. From the remaining batches, approximate the magnetic field as ⟨Xi⟩θ =
1
2N

∑
b

∑
i∈b s

′
i, where N is the number of batches remaining after step

2.

Table 4.2: Procedure for obtaining the expectation value of the local magnetic field term for
the ansatz state of Eq (4.1).

Proof of correctness

A straight quantum-mechanical calculation of the magnetic field yields:

⟨Xi⟩θ = ⟨X1⟩θ = ⟨Ψ(θ)|X1I2I3I4|Ψ(θ)⟩ = 2x

1 + x2
. (4.3)

Where x = 2 sin θ cos θ. A derivation of this formula is found in the appendix. If the algorithm

can reproduce this value, then it is correct. It does so as follows. The uncorrelated probabilities

p(0), p(1) of obtaining the positive/negative outcomes in step 1 of the algorithm can be calculated

to be:

p(0) =
(cos θ + sin θ)2

2
=

1 + x

2
, p(1) = 1− p(0) =

1− x

2
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Therefore the probability that one batch passes the parity test in step 2 is calculated to be:

p+,1 = p(0)2 + p(1)2 =
1 + x2

2

Therefore the probability p+ that both batches pass the parity tests is:

p+ = (p+,1)
2 =

(
1 + x2

2

)2

We now consider the probabilities p++ for passing both parity tests and having the spin being up

(in the zero/positive state) and the probability p−+ for passing both parity tests having the spin

being down (in the one/negative state). With the above, these probabilities are

p++ = p(0)2p+,1 =

(
1 + x

2

)2 1 + x2

2
, p−+ = p(1)2p+,1 =

(
1− x

2

)2 1 + x2

2

The expectation value outputted by the procedure is thus

⟨Xi⟩θ =
p++ − p−+

p+
=

2x

1 + x2

This agrees with the quantum-mechanical value of Eq. (4.3).

Circuit derivation

The straightforward circuit for the measurement of the magnetic field is displayed in Fig. 4.2.

The circuit in Fig. 4.2 is made of two parts, namely the creation of the cluster states and the

probabilistic implementations of the non-unitary transformation operator T ′
i (θ) = cos θIi+sin θXi.

We note that the latter is what yields an unwieldy circuit of 8 qubits to measure something on a 1

qubit state, as the implementation of a non-unitary operation requires a measurement rather than

an application of a unitary gate. This implementation is realized as the circuit in Fig. 4.3, which

implements the operation:

Ti = cos θIi + sin θXi

T̄i = Xi(cos θIi − sin θXi)
(4.4)

If sz,i = 1 (i.e. the ancilla measurement gives the negative outcome) then the byproduct Xi is

absorbed in the subsequent X-measurement, but the minus sign is a probabilistic effect that sticks.
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Xs1

Zsz,1

Xs2

Zsz,1

Xs3

Zsz,3

Xs4

Zsz,4

|+⟩

|+⟩ U(θ)

|+⟩

|+⟩ U(θ)

|+⟩

|+⟩ U(θ)

|+⟩

|+⟩ U(θ)

Figure 4.2: Unsimplified circuit for measurement of the expectation value ⟨Xi⟩θ = ⟨X1⟩θ for
the VQE algorithm. The ancilla measurements (red) correspond to the probabilistic
application of T ′

i (θ) to each site. The value of ⟨X1⟩θ is taken as the expectation value
of the X-measurement on the first site (blue).

Zsz,i

|+⟩ U(θ)

Figure 4.3: Circuit with ancilla for probabilistic implementation of T ′
i (θ) at each site.

45



To mitigate this, we can pull out cluster state stabilizers from the cluster state and propogate them

forwards in time. They flip any relative sign in T ′
i/T̄

′
i , on pairs of the even and odd sub-lattices.

That is, a pattern of T̄ ′
i s is correctable if:∑

i even

sz,i mod 2 = 0,
∑
i odd

sz,i mod 2 = 0 (4.5)

If this condition is satisfied, then the effect of pulling out the stabilizers is (in each qubit line):

Zsz,i

Zsz

|+⟩ U(θ)

Figure 4.4: Circuit with ancilla for probabilistic implementation of T ′
i (θ) at each site, with

correction due to pullout of cluster state stabilizers.

We then observe the phase kickback circuit identity:

ΠXi:siCXj,i = ZsijΠXi:si (4.6)

which is graphically represented in Fig. 4.5.

Xs

Zsz,i

|+⟩ U(θ)

=

Xs

Zsz,i

|+⟩ Zs U(θ)

Figure 4.5: Circuit representation of the phase kickback identity Eq. (4.6).

Applying the phase kickback to each qubit line and pushing the Zsz,i correction past the X

measurements to yield si 7→ si + sz,i = s′i, we get the circuit shown in Fig. 4.6.

This is a major simplification with half of the qubits (the ancillas) disconnecting from the circuit!

Looking at the remaining residual circuit, the remaining measurements (excepting two) implement

half-teleportations as discussed in Section 2.2.3. This leads to the series of simplifications provided

in Fig. 4.7.

The circuit residue therefore finds that s′1 + s′3 mod 2 = 0, s′2 + s′4 mod 2 = 0. Because of the
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Xs′1

Zsz,1

Xs′2

Zsz,2

Xs′3

Zsz,3

Xs′4

Zsz,4

|+⟩

|+⟩ Zs1 U(θ)

|+⟩

|+⟩ Zs2 U(θ)

|+⟩

|+⟩ Zs3 U(θ)

|+⟩

|+⟩ Zs4 U(θ)

Figure 4.6: Circuit simplification of Fig. 4.2. The ancillas split off from the main circuit due
to the phase kickback identity in Eq. (4.6).

Z2 ⊗ Z2 symmetry it holds that
∑

i even si =
∑

j odd sj = 0, and therefore∑
i even

s′i mod 2 =
∑
i even

si + sz,i mod 2 =
∑
i even

sz,i mod 2,

and the same follows for the odd sites. Therefore the circuit residue merely reinforces the post-

selection criterion Eq. (4.5) which we already assumed, and therefore does not have to be performed.

We have therefore reduced the original 8-qubit circuit measurement for the local magnetic field

for the Ansatz Eq. (4.1) to the repeated running of a 1-qubit circuit. The last step is to transform

the 1-qubit circuit (the disconnected ancillas as depicted in Fig. 4.6 which depend on sz and s

separately to those that only depend on s′ = s+sz. Since U is real, [U, Y ] = 0 and so UZ = ZXUX.

Therefore we perform the last simplification, as displayed in Fig. 4.8. The final circuit is precisely

the one used in the algorithm in Table 4.2, thus concluding its derivation.

Before moving on, we note again that originally, the implementation of (non-unitary) T ′(θ) was
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Xs′1

Xs′2

Xs′3

Xs′4

|+⟩

|+⟩

|+⟩

|+⟩

=

Xs′3

Xs′4

|+⟩ Zs′1 H Zs′2 H

|+⟩

=

Xs′3

Xs′4

|+⟩ Zs′1

|+⟩ Zs′2

=

Xs′1+s′3

Xs′2+s′4

|+⟩

|+⟩

Figure 4.7: Series of circuit simplifications of the residual ⟨Xi⟩θ measurement circuit. In the
first step we carry out two half-teleportation steps. In the second step we commute
the single qubit gates past the CZ. In the final step we use that (CZ)2 = I and push
the Z gates past the measurement, where they flip the measurement outcome. The
final circuit is merely a reinforcement of an already assumed post-selection criterion
and hence does not have to be executed.

Zsz

|+⟩ Zs U(θ)

=

Zsz

|+⟩ Xs U(θ) Xs Zs

=

Zs+sz=s′

|+⟩ U(θ)

Figure 4.8: Final simplification of the one-qubit ancilla circuits for the ⟨Xi⟩θ measurement.
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inefficient, and required 8 qubits to make a 4 qubit state. Yet for the choice of final measurement

bases of ⟨Xi⟩θ, the entire circuit simplifies into the repeated running of just a single-qubit circuit.

Note that while we showed the n = 4 case above, the argument easily generalizes to larger rings,

where we still see the drastic simplification of a 2n-qubit circuit to a single-qubit circuit.

Having discussed a ⟨Xi⟩θ measurement algorithm, we now derive an analogous algorithm for

the ⟨Ki⟩θ (stabilizer) measurement.

4.3 VQE algorithm for ⟨Ki⟩θ
The protocol for the measurement of ⟨Ki⟩θ for a ring of size 4 is described in Table 4.3, with

accompanying correctness proof and derivation.
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Protocol for the measurement of the cluster stabilizer.

For a ring of size 4, execute the following steps:

1. Run the two one-qubit circuits:

Zsz,2

|+⟩ Zs2 U(θ)

for a equal number of times for s2 = 0 and s2 = 1 (and a large number

of times in total). As before, in the Z-basis, U ∼=
(

cos θ sin θ
− sin θ cos θ

)
.

2. For many times, run the (four) three-qubit circuits:

Zs′1

Zs′3

Xs′4

|+⟩ Xsz,2 U(θ)

|+⟩ Zs2+sz,2 H U(θ)

|+⟩

3. Pair up each circuit from step 1 with the circuit with the same corre-
sponding s2/sz,2 values in step 2. If s′1 = 1 or s′3 = 1, discard the pair.

4. For many times, run the following 1-qubit circuit:

Zsz,4

|+⟩ Zs′4+sz,2 U(θ)

and pair up these circuits with the step 1/2 pairs with the same corre-
sponding s′4/sz,2 values. If sz,2 + sz,4 mod 2 ̸= 0, then discard the trio.

5. Denote by N+ the number of surviving batches with s2 = 0 and N− the
number of remaining batches with s2 = 1. Then, calculate ⟨Ki⟩ as:

⟨Ki⟩ =
N+ −N−
N+ +N−

Table 4.3: Procedure for obtaining the expectation value of the cluster
stabilizer term for the ansatz state of Eq. (4.1)
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Proof of correctness

Like in the case of the magnetic field measurement algorithm, we show the correctness of Table

4.3 by showing that it reproduces the straight quantum mechanical calculation of for the cluster

stabilizer expectation value:

⟨Ki⟩θ = ⟨K2⟩θ = ⟨Ψ(θ)|Z1X2Z3I4|Ψ(θ)⟩ = 1− x2

1 + x2
. (4.7)

where x = 2 cos θ sin θ. A derivation of this formula is found in the appendix. Denoting by psz,2

the measurement probabilities for the circuit in Step 1, if s2 = 0 we find:

psz,2(0) =
1 + x

2
, psz,2(1) =

1− x

2

and if s2 = 1 the above probabilities are exchanged. Case-by-case analysis of the circuit in Step 2

shows that ps′1(0) =
1
2 for all values of s2 and that ps′3(0) = 1 if s2 = 0 and ps′3(0) = x2 if s2 = 1.

Further, we find that s′4 + s2,z = 0 if s2 = 0 and s′4 + s2,z = 1 if s1 = and hence for the circuit in

Step 3 we inherit the probabilities from the circuit in step 1. All in all, if s2 = 0 the batch has

survival probability:

p++ = psz,2(0)ps′1(0)ps′3(0)psz,4(0) + psz,2(1)ps′1(0)ps′3(0)psz,4(1) =
1 + x2

4

Analogously, if s2 = 1 the batch has survival probability:

p−− = psz,2(0)ps′1(0)ps′3(0)psz,4(0) + psz,2(1)ps′1(0)ps′3(0)psz,4(1) = x2
1 + x2

4
= x2p++

Therefore calculating ⟨Ki⟩ we find:

⟨Ki⟩ =
p++ − p−−
p++ + p−−

=
p++ − x2p++

p++ + x2p++
=

1− x2

1 + x2
.

This agrees with the quantum-mechanical value of Eq. (4.7).

Circuit derivation

The straightforward state for measuring the cluster term on the ansatz state Eq. (4.1) is:

Where ⟨K2⟩ is calculated as ⟨(−1)s1+s2+s3⟩. We have the same correctability condition as in
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Zs1

Zsz,1

Xs2

Zsz,1

Zs3

Zsz,3

Xs4

Zsz,4

|+⟩

|+⟩ U(θ)

|+⟩

|+⟩ U(θ)

|+⟩

|+⟩ U(θ)

|+⟩

|+⟩ U(θ)

Figure 4.9: Unsimplified circuit for measurement of the expectation value ⟨Ki⟩θ for the VQE
algorithm. The ancilla measurements (red) correspond to the probabilistic application
of T ′

i (θ) to each site. The value of ⟨Ki⟩θ = ⟨K2⟩θ is taken as ⟨(−1)s1+s2+s3⟩ (blue).

the ⟨Xi⟩ algorithm, with: ∑
ieven

sz,i mod 2 = 0,
∑
iodd

sz,i mod 2 = 0 (4.8)

and assuming this condition is satisfied, the effect of pulling out the stabilizers in each qubit line

is given by the circuit in Fig. 4.10. Note that unlike the ⟨Xi⟩ case, the X part of the stabilizer on

the second qubit flips the measurement outcome on the first qubit (in the previous protocol, the

X commuted past the Xs1 measurement and could be ignored). We again use the phase kickback

identity as in Eq. (4.6) that:

ΠXi:siCXj,i = ZsijΠXi:si

as well as that H2 = I to obtain the circuit in Fig. 4.11.

Next, we conjugate HXH = Z and push the remaining H past the Zs1/Zs3-measurements to

convert them to Xs1/Xs3-measurements. We also push the Zsz,2/Zsz,4 gates past the Xs2/Xs4
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Zs1

Zsz,1

Xs2

Zsz,2

Zs3

Zsz,3

Xs4

Zsz,4

|+⟩ Xsz,2 Zsz,1

|+⟩ U(θ)

|+⟩ Zsz,2

|+⟩ U(θ)

|+⟩ Zsz,3

|+⟩ U(θ)

|+⟩ Zsz,4

|+⟩ U(θ)

Figure 4.10: Circuit for measurement of ⟨Ki⟩θ, with cluster state stabilizer pullout correc-
tions to probabilistic implementations of per-site T ′

i (θ).

Zs1

Zsz,1

Xs2

Zsz,2

Zs3

Zsz,3

Xs4

Zsz,4

|+⟩ Xsz,2 Zsz,1 H H H H

|+⟩ U(θ)

|+⟩ Zsz,2

|+⟩ Zs2 U(θ)

|+⟩ Zsz,3 H H H H

|+⟩ U(θ)

|+⟩ Zsz,4

|+⟩ Zs4 U(θ)

Figure 4.11: Equivalent circuit to Fig. 4.10 obtained by application of phase kickback iden-
tity and H2 = I. The ancillas for qubits 2/4 split off from the main circuit.
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measurements, defining s′i = si + sz,i as the new measurement outcomes. Finally, we commute

some of the initial CZ gates to setup for a half-teleportation. These identities yield the circuit in

Fig. 4.12.

Xs1

Zsz,1

Xs′2

Zsz,2

Xs3

Zsz,3

Xs′4

Zsz,4

|+⟩ Xsz,2 Zsz,1 H

|+⟩ U(θ)

|+⟩

|+⟩ Zs2 U(θ)

|+⟩ Zsz,3 H

|+⟩ U(θ)

|+⟩

|+⟩ Zs4 U(θ)

Figure 4.12: Equivalent Circuit to Fig. 4.11 obtained by Hadamard conjugations and moving
gates past measurements.

Now we observe three locations where we may invoke a half-teleportation, namely between

qubits 2/3 and between the qubit and ancilla for qubits 1 and 3. Carrying out these half-

teleportations, we obtain the circuit in Fig. 4.13.

Now, we observe the problem that the circuit above seems unexecutable. In particular, there

appears to be gates Zsz,1 and Zsz,3 that are conditioned on the outcome of a future measurement.

To resolve this, we introduce a new post-selection condition of sz,1 = s1 and sz,3 = s3. Combining

this new condition with the with the conjugation identity HZH = X and the fact that ZX ∝ Y ,

we obtain the circuit in Fig. 4.14.

Since U is real, [Y,U ] = 0 and we can commute Y si past U . Further, we can push Y si past

the Z-measurement, flipping the outcome of the measurement. This yields the final circuit in Fig.

4.15.

But note that the condition sz,1 = s1 and sz,3 = s3 implies s′1 = s′3 = 0 and this forms the two

post-selection conditions given in Step 2 of the Protocol. Furthermore, the odd-site correctability
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Zsz,1

Zsz,3

Xs′4

Zsz,2

Zsz,4

|+⟩ Xsz,2 Zsz,1 H Zs1 H U(θ)

|+⟩ Zs′2 H Zsz,3 H Zs3 H U(θ)

|+⟩

|+⟩ Zs2 U(θ)

|+⟩ Zs4 U(θ)

Figure 4.13: Equivalent Circuit to Fig. 4.12 obtained by three half-teleportation steps.

Zsz,1

Zsz,3

Xs′4

Zsz,2

Zsz,4

|+⟩ Xsz,2 Y s1 U(θ)

|+⟩ Zs′2 H Y s3 U(θ)

|+⟩

|+⟩ Zs2 U(θ)

|+⟩ Zs4 U(θ)

Figure 4.14: Simplification of Circuit in Fig. 4.12 obtained by the introduction of a new
post-selection condition of sz,1 = s1 and sz,3 = s3.

conditions (4.8) imply that sz,1 = sz,3 and so s1 = s3; hence the sign of s2 alone determines

the sign of K2 (as K2 = (−1)s1+s2+s3), with s2 = 0 corresponding to Ki = +1 and s2 = 1

corresponding to Ki = −1. Finally, the even-site correctability conditions imply sz,2 = sz,4 and

hence s4 = s4 + sz,4 + sz,2 = s′4 + sz,2 which gives the circuit and post-selection condition in step 3

of the protocol. This concludes the circuit derivation of the algorithm.

We again remark that as in the case with the ⟨Xi⟩ measurement circuits, we have a tremendous

amount of circuit simplification; the originally 8 qubit circuit has reduced to a 3 qubit circuit.

Although out of the scope of this thesis, we again note that even for larger ring sizes similar

simplifications are seen, with an arbitrarily large ring collapsing down to a constant 4-qubit circuit

when the cluster stabilizer Ki is measured. Though the non-unitarity of T ′(θ) makes the general
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Zs′1

Zs′3

Xs′4

Zsz,2

Zsz,4

|+⟩ Xsz,2 U(θ)

|+⟩ Zs′2 H U(θ)

|+⟩

|+⟩ Zs2 U(θ)

|+⟩ Zs4 U(θ)

Figure 4.15: Fully simplified circuit for the ⟨Ki⟩θ measurement, as obtained by commuting
the Y si gates past U and the Z-measurements in the circuit in Fig. 4.14.

creation of the states T ′(θ)|C⟩ inefficient, we see cascading simplification for certain choices of

measurement sequences.

A small note on the physical execution of the algorithm: the circuits in Step 2 are unoptimal

for performing on the IBM circuit architectures, which do not contain a 3-ring. This is resolved

efficiently via the circuit identity in Fig. 4.16.

|+⟩
|+⟩
|+⟩

=

|+⟩ H

|+⟩ H

|+⟩

Figure 4.16: A cluster state identity. We can invoke the above identity in the execution of
the algorithm provided in Table 4.3 to circumvent the lack of a 3-qubit ring in the
IBM architecture (as given in Fig. 3.4).
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Chapter 5

Results - Experiments

5.1 Rotation-counter rotation experimental result

The protocol for the rotation-counter rotation algorithm as described in Table 4.1 was programmed

in Qiskit and performed in a quantum circuit simulator. The coefficients for T (α) required for the

algorithm were found by D. Bondarenko via a classical variational algorithm. The results are

provided in Fig. 5.1, with each point corresponding to a single run of the described algorithm at a

given α.

We observe that when performed on a quantum circuit simulator, the algorithm produces

the theory result exactly, up to statistical fluctuations arising from the probabilistic nature of

measurement. This verifies the correctness of the algorithm. Next, the algorithm/circuits were

performed on the 5-qubit ibmq manila quantum device The results are shown in Fig. 5.2 below.

We observe that the value of
〈
X
〉
is here consistently lower than the numerical prediction

due to the effects of measurement, gate, and decoherence errors present in the physical quantum

device. However, we note that the overall characteristic shape of the
〈
X
〉
curve from the numerical

prediction is reflected in the experiment. We will now proceed to obtain these results in a more

quantum mechanical fashion; namely by obtaining T (α) using VQE methods.
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0.0 0.2 0.4 0.6 0.8 1.0
Interpolation 2/
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0.4

0.6

0.8

1.0

X

X  of encoded qubit vs. Interpolation 
(Simulated)

Prediction
Simulated Circuit Result

Figure 5.1:
〈
X
〉
vs. interpolation parameter α for the 4-ring rotation-counter rotation pro-

tocol. The algorithm in Table 4.1 was executed on a classical computer, using the
noiseless Qiskit qasm circuit simulator. Each circuit in the algorithm was run for 8000
shots. Error bars represent 2 standard errors of the mean. T (α) was obtained via
classical optimization. The prediction curve is from Fig 2.12.
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Interpolation 2/
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0.6

0.8
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X

X  of encoded qubit vs. Interpolation 
(Experiment)

Prediction
Experimental Result

Figure 5.2:
〈
X
〉
vs. interpolation parameter α for the 4-ring rotation-counter rotation pro-

tocol. The algorithm in Table 4.1 was executed on the ibmq manila quantum device.
Each circuit in the algorithm was run for 8000 shots. Error bars represent 2 standard
errors of the mean. Standard measurement error mitigation procedures as provided
by Qiskit were applied. T (α) was obtained via classical optimization. The prediction
curve is from Fig 2.12.
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5.2 VQE experimental results

Having provided algorithms for the measurement of ⟨Xi⟩θ and ⟨Ki⟩θ in Tables 4.2 and 4.3, we now

execute these protocols experimentally. The results are provided in Fig. 5.3 below.
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Xi
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Figure 5.3: Local magnetic field expectation ⟨Xi⟩θ and Cluster Stabilizer expectation ⟨Ki⟩θ
as a function of variational parameter θ as produced by the protocol in Tables 4.2/4.3
for Ansatz state (4.1). The protocols was executed on the ibmq manila quantum device.
Each circuit in the protocols was run for 8000 shots. Error bars represent 2 standard
errors of the mean. Standard measurement error mitigation procedures as provided by
Qiskit were applied. The ⟨Ki⟩θ data was only collected for 0 ≤ θ ≤ π/2 (and repeated
for π/2 ≤ θ ≤ π in the above plot), given its known π/2-periodicity from Eq. (4.7).

Now, to find coefficients a(α), b(α) in T (α) =
⊗

i Ti(α) =
⊗

i a(α)Ii+b(α)Xi, we can sweep over

the range 0 ≤ θ ≤ π/4 (with θ = 0 corresponding to the cluster state and θ = π/4 corresponding

to the product state) and find what minimizes:

Ei = − cos(α) ⟨Ki⟩θ − sin(α) ⟨Xi⟩θ .

We then can take a(α) = cos(θmin), b(α) = sin(θmin). However, a naive application of this procedure

is suceptible to experimental noise in the measurements of ⟨Xi⟩θ and ⟨Ki⟩θ. To avoid this, we first

fit the ⟨Xi⟩θ and ⟨Ki⟩θ data with Fourier sums, making use of the periodic structure of the two
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expectation values. The Fourier coefficients were solved for as:

cn =
1

π

N∑
j=1

π

N
⟨X1⟩θj e

−i2nθj (5.1)

where N is the number of points and θ1, . . . θN were the θs that were sampled in the VQE algorithm.

The Fourier sum is then given by:

˜⟨X1⟩(θ) =
M∑
n=1

cne
i2nθ. (5.2)

and analogous relations follow for ⟨Ki⟩. Calculating the magnitudes of the coefficients, we find

that for ⟨Xi⟩θ only the n = 1, 3, 5 coefficients are significant, and for ⟨Ki⟩θ that only the n =

0, 2, 4, 6 coefficients are significant. We discard higher terms of the sum as they would contribute

experimental noise. We then plot the experimental data along with their Fourier sums, as well as

the analytical values for ⟨Xi⟩θ and ⟨Ki⟩θ as given by Eqs. (4.3) and (4.7). This yields Fig. 5.4.
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Figure 5.4: Expectation Values for ⟨Xi⟩θ and ⟨Ki⟩θ for the Ansatz state (4.1). Here the
analytical theory value is compared against the experimental results of Fig. 5.3, along
with Fourier series fits to the experimental data. Agreement is shown between the
Fourier fit and the theory prediction, with the noise from the experimental data being
filtered out through the fit.
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We can now proceed with the minimization procedure on the Fourier fit functions for ⟨Xi⟩θ and
⟨Ki⟩θ to find the coefficients a(α) and b(α) of T (α). This yields Fig. 5.5.
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Figure 5.5: Plot of X and I coefficients for transformation operator T (α) as obtained from
classical optimization and from VQE data with Fourier series fitting.

We note the fantastic agreement between the coefficients obtained classically and quantum

mechanically in the “cluster phase” region of 0 ≤ α ≤ π/4. However, we note that the VQE result

is less successful near the product state, in particular exhibiting a discontinuous jump. The reason

for this can be observed in Fig. 5.4, where we see that the value of ⟨Xi⟩θ exhibits a plateau close

to θ = π/4. Since Ei is dominated by ⟨Xi⟩θ for α near π/2, it follows that Ei has a similar plateau

in its minima. Small deviations resulting from experimental noise hence have a large effect in this

flat region, leading to identical values of θ (and hence identical coefficients for T (α)) being chosen

in the energy minimization after a certain threshold α close enough to π/2.

Having found the coefficients for the T (α) operator quantum mechanically, we can repeat the

experiments conducted earlier in this section using this new version of the operator.

5.3 Rotation-counter rotation experimental result, with VQE
coefficients

The protocol for the rotation-counter rotation algorithm as described in Table 4.1 was performed

experimentally, now using the coefficients for T (α) found in the VQE as displayed in Fig. 5.5. The
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results are provided in Fig. 5.6 below.
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Figure 5.6:
〈
X
〉
vs. interpolation parameter α for the 4-ring rotation-counter rotation pro-

tocol. The algorithm was executed on the ibmq manila quantum device. Each circuit
in the algorithm was run for 8000 shots. Error bars represent 2 standard errors of the
mean. Standard measurement error mitigation procedures as provided by Qiskit were
applied. T (α) was obtained via a VQE optimization algorithm. The prediction curve
is from Fig 2.12.

As before, we note the deviations from the numerical prediction result due to loss of fidelity

that is unavoidable in physical devices. We further note that due to the VQE optimization having

trouble near the product state that the characteristic shape of the curve breaks down in this region

(most notably with a jump to zero at α ∼ 9π/20. However, overall (and particularly in the regime

of interest in terms of computational power of 0 ≤ α ≤ π/4) that the experimental result shows

good agreement with the predicted characteristic shape of the
〈
X
〉
curve. We have now completed

a genuinely quantum-mechanical run of the counter-rotation experiment, both finding T (α) on a

quantum device and executing the experiments to measure
〈
X
〉
on quantum devices.
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Chapter 6

Conclusion & Outlook

In this thesis, we have developed algorithms for the reproduction of a simple protocol to test MBQC

computational power in an experimental setting. We have developed a VQE algorithm that allows

us to obtain arbitrary ground states of the interpolating Hamiltonian. We have also developed a

protocol that allows us to run the rotation-counter rotation test of computational power of these

ground states. We ran these 4-qubit protocols experimentally on IBM NISQ devices, and while

experimental noise in general causes a reduction in fidelity as well as incorrect behavior near the

product state, we find that the characteristics of the theoretical predictions are observed in the

experimental results.

Our results serve as a first experimental demonstration of the robustness of computational

power of MBQC resource states. Previous theory work predicts that computational power is not

a property specific states (such as the cluster state) and that states away from the cluster state

can possess the capability for computation; both in the infinite case where computational power

is a property of an entire phase of matter, and the finite case where computational power can be

characterized by a string-order parameter. Our experimental results are consistent with theoretical

predictions in the finite regime. We have also demonstrated the viability for NISQ-era devices to

showcase phenomenology concerning computational resources, and have opened up the possibility

for future experiments in this vein.

An immediate next step is to resolve the incorrect behaviour near the product state (α close to

π/2) which can likely be accomplished with pre-processing or averaging of the experimental data.

Resolving this, there are two major possible directions for this work. The first is an extension to

larger system sizes, where not only can we observe effects of decoherence when doing MBQC with

resource states away from the cluster state, but we can experimentally demonstrate techniques for
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managing such decoherence. The techniques built up in this thesis are conducive for the showcase of

the “divide-and-conquer” strategy of minimizing decoherence through splitting of the rotation angle

in symmetry-breaking measurements. The experimental demonstration of the “counter-intuitive

regime” of splitting rotations as much as possible is also of interest to pursue, but requires a more

sophisticated VQE ansatz than the one provided in this work. The “counter-intuitive regime”

concerns the interplay of correlation length and splitting of rotations, and there requires an ansatz

state with a length scale. Our current ansatz is local and contains no such length scale, and further

developments are required in this area to build towards an experimental demonstration. The

second direction comes out of the circuit simplification results we observe in the VQE algorithms.

Through these algorithms we observe a drastic simplification of large, system-size dependent circuits

to small, constant-qubit overhead circuits as a consequence of the choice of the prepared state and

measurement bases. It may be possible that this result is indicative of some underlying structure

that allows for more general circuit simplification; thus opening the way for potential projects in

the line of quantum compilation and quantum programming languages.
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Appendix A

Derivation of ⟨Xi⟩ and ⟨Ki⟩ for VQE

Ansatz

In this appendix, we derive the expectation values ⟨Xi⟩θ and ⟨Ki⟩θ for the VQE ansatz:

|Ψ(θ)⟩ = T ′(θ)|C⟩ =

(
N⊗
i=1

cos(θ)Ii + sin(θ)Xi

)
|C⟩ (A.1)

where |C⟩ is a cluster ring of size N = 2n for integer n > 1.

First, we observe that |C⟩ is a stabilizer state in a Hilbert space with dimension 22n, and with

a stabilizer group S generated by Pauli observables {Zi−1XiZi+1}2ni=1. We can therefore write the

density operator corresponding to |C⟩ as:

ρC = |C⟩⟨C| = 1

22n

∑
g∈S

g (A.2)

Where the gs are products of the stabilizer generators Zi−1XiZi+1. We may then write the

density operator corresponding to |Ψ(θ)⟩ as:

ρθ = T ′(θ)|C⟩⟨C|T ′†(θ) = T ′(θ)ρCT
†(θ) (A.3)

where in the last equality we note that the coefficients of T ′(θ) are all real and hence T ′†(θ) =

T ′(θ). We note ρθ is not a normalized density operator due to the non-unitarity of T ′(θ), but we

can nevertheless do calculations with it so long as we include a normalization factor. In particular

for the operators of interest, we have:
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⟨Xi⟩θ = ⟨X1⟩θ =
Tr(ρθX1)

Tr(ρθ)
(A.4)

⟨Ki⟩θ = ⟨Z1X2Z3⟩θ =
Tr(ρθZ1X2Z3)

Tr(ρθ)
. (A.5)

where in the first equality of each line we use the translation invariance of |Ψ(θ)⟩ (and so we may

without loss of generality choose X1 and Z1X2Z3).

We first calculate Tr(ρθ). By the cyclicity of the trace, we have:

Tr(ρθ) = Tr(T ′(θ)ρCT
′(θ)) = Tr(T ′2(θ)ρC)

Calculating T ′2(θ) we find:

T ′2(θ) =

2n⊗
i=1

(
(cos2 θ + sin2 θ)Ii + (2 cos θ sin θ)Xi

)
=

2n⊗
i=1

(Ii + xXi)

where we define x = 2 cos θ sin θ in the last equality. In considering the trace of T ′2(θ)ρC , we

consider that only the terms proportional to the identity will contribute (as any terms containing

Pauli Z orX operators will be traceless). Since T ′2(θ) only contains identity and Pauli-X operators,

all stabilizers in the sum of Eq. A.2 with Pauli-Zs will vanish (as they cannot be “cancelled out”

by T ′2). The only terms in the sum over cluster state stabilizers in ρC that do not contain pauli-

Z terms are
⊗n

i=1 Ii,
⊗n

i=1Xi, I1X2 . . . I2n−1X2n, and X1I2 . . . X2n−1I2n. When multiplying by

T ′2(θ), each of these four stabilizers yields a single identity term that contributes to the trace,

namely:

Tr(T ′2(θ)

n⊗
i=1

Ii) = 22n

Tr(T ′2(θ)

n⊗
i=1

Xi) = 22nx2n

Tr(T ′2(θ)I1X2 . . . I2n−1X2n) = Tr(T ′2(θ)X1I2 . . . X2n−1I2n) = 22nxn

Therefore:

Tr(ρθ) = Tr

T ′2(θ)

 1

22n

∑
g∈S

g

 = 1 + 2xn + x2n = (1 + xn)2 (A.6)
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Next, we calculate Tr(ρθX1). Since T
′(θ) consists solely of identities and Pauli-X operators, it

commutes with X1 and hence:

Tr(ρθX1) = Tr(T ′(θ)ρCT
′(θ)X1) = Tr(T ′(θ)ρCX1T

′(θ)) = Tr(T ′2(θ)ρCX1)

where in the last equality we again use cyclicity. Again since only terms proportional to the identity

contribute, we can ignore all terms in ρCX1 that contain Pauli-Z terms. The remaining four terms

that consist solely of identies and Pauli-Xs are X1 ·
⊗n

i=1 Ii, X1 ·
⊗n

i=1Xi, X1 · (I1X2 . . . I2n−1X2n),

and X1 · (X1I2 . . . X2n−1I2n). When multiplying by T ′2(θ), each of these four stabilizers yields a

single identity term that contributes to the trace, namely:

Tr(T ′2(θ)X1 ·
n⊗

i=1

Ii) = 22nx

Tr(T ′2(θ)X1 ·
n⊗

i=1

Xi) = 22nx2n−1

Tr(T ′2(θ)X1 · (I1X2 . . . I2n−1X2n)) = 22nxn+1

Tr(T ′2(θ)X1 · (X1I2 . . . X2n−1I2n)) = 22nxn−1

Therefore:

Tr(ρθX1) = Tr

T ′2(θ)

 1

22n

∑
g∈S

g

X1

 = x+xn−1+xn+1+x2n−1 = x(1+xn−2)(1+xn) (A.7)

Finally, we calculate Tr(ρθZ1X2Z3). T
′(θ) consists solely of identities and Pauli-X operators,

and so each part of T ′(θ) commutes with Z1X2Z3, with the exception of the X1, X3 terms (which

obtain a negative sign under swapping the order). Therefore we have:

T ′(θ)Z1X2Z3 = Z1X2Z3T
′′(θ)

where:

T ′′(θ) = (cos θI1 − sin θX1)⊗ (cos θI2 + sin θX2)⊗ (cos θI3 − sin θX3)⊗
2n⊗
i=4

(cos θIi + sin θXi).
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Hence we have:

Tr(ρθZ1X2Z3) = Tr(T ′(θ)ρCT
′(θ)Z1X2Z3) = Tr(T ′(θ)ρCZ1X2Z3T

′′(θ)) = Tr(T ′′(θ)T ′(θ)ρC)

where in the last equality we use that Z1X2Z3 is a cluster state stabilizer (and hence can be

absorbed into ρC), as well as the cyclicity of the trace. Computing T ′′(θ)T ′(θ), we find:

T ′′(θ)T ′(θ) = (cos2 θ − sin2 θ)I1 ⊗ (I2 + xX2)⊗ (cos2 θ − sin2 θ)I3 ⊗
2n⊗
i=4

(Ii + xXi).

which using that (cos2 θ − sin2 θ) = 1− 4 sin2 θ cos2 θ = 1− x2, we can write as:

T ′′(θ)T ′(θ) =
(
1− x2

)(
I1 ⊗ (I2 + xX2)⊗ I3 ⊗

2n⊗
i=4

(Ii + xXi)

)
.

As before, only terms without Pauli-Zs in ρC will contribute to the trace (as there are no

Pauli-Zs in T ′′(θ)T ′(θ) to cancel them out), which are again
⊗n

i=1 Ii,
⊗n

i=1Xi, I1X2 . . . I2n−1X2n,

and X1I2 . . . X2n−1I2n. When multiplying by T ′′(θ)T ′(θ), each of these contributes:

Tr(T ′′(θ)T ′(θ)

n⊗
i=1

Ii) = (1− x2)22n

Tr(T ′′(θ)T ′(θ)I1X2 . . . I2n−1X2n) = (1− x2)22nxn

Tr(T ′′(θ)T ′(θ)

n⊗
i=1

Xi) = Tr(T ′′(θ)T ′(θ)X1I2 . . . X2n−1I2n) = 0

Where we note for the last equality that the two terms are traceless since T ′′(θ)T ′(θ) contains no

X1 or X3 terms. We therefore have:

Tr(ρθX1) = Tr

T ′′(θ)T ′(θ)

 1

22n

∑
g∈S

 = (1− x2) + (1− x2)xn = (1− x2)(1 + xn). (A.8)

Combining equations (A.4), (A.6) and (A.7), we find:

⟨Xi⟩θ =
x(1 + xn−2)(1 + xn)

(1 + xn)2
=
x(1 + xn−2)

1 + xn
. (A.9)
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Additionally, combining equations (A.5), (A.6), and (A.8), we find:

⟨Ki⟩θ =
(1− x2)(1 + xn)

(1 + xn)2
=

1− x2

1 + xn
. (A.10)

Equations (4.3) and (4.7) in the main body of the thesis are then just the n = 2 (ring of size N = 4)

cases of the general expressions above.
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